This work provides rigorous verification of the super-smoothing effect of higher-order fractional Laplacian dissipation. Shang and Zhao (2017) have proved the global regularity of classical solutions of the 2D incompressible magneto-micropolar equations with linear velocity damping $ u $, microrotational dissipation $ (-\Delta)\omega $, and magnetic diffusion $ (-\Delta)^\beta b, \beta > 1 $. This paper is devoted to further investigating the large-time behavior of global smooth solutions of the system with $ 1 < \beta\leq\frac{3}{2} $. We apply the negative Sobolev space to overcome the difficulty caused by fractional-order dissipation and establish $ \int_{0}^{t}\|\nabla b(\tau)\|_{L^{2}}d\tau\leq C $. Furthermore, by fully exploiting the special structure of the system and combining the properties of a heat operator with the generalized Fourier splitting methods, we obtain the decay rates of the solutions and their first-order derivatives for $ 1\leq p\leq\frac{2}{\beta} $.
Citation: Yana Guo, Chaoying Li. Large-time behavior of solutions to the 2D generalized magneto-micropolar equations[J]. Electronic Research Archive, 2025, 33(12): 7551-7569. doi: 10.3934/era.2025333
This work provides rigorous verification of the super-smoothing effect of higher-order fractional Laplacian dissipation. Shang and Zhao (2017) have proved the global regularity of classical solutions of the 2D incompressible magneto-micropolar equations with linear velocity damping $ u $, microrotational dissipation $ (-\Delta)\omega $, and magnetic diffusion $ (-\Delta)^\beta b, \beta > 1 $. This paper is devoted to further investigating the large-time behavior of global smooth solutions of the system with $ 1 < \beta\leq\frac{3}{2} $. We apply the negative Sobolev space to overcome the difficulty caused by fractional-order dissipation and establish $ \int_{0}^{t}\|\nabla b(\tau)\|_{L^{2}}d\tau\leq C $. Furthermore, by fully exploiting the special structure of the system and combining the properties of a heat operator with the generalized Fourier splitting methods, we obtain the decay rates of the solutions and their first-order derivatives for $ 1\leq p\leq\frac{2}{\beta} $.
| [1] |
U. Frisch, S. Kurien, R. Pandit, W. Pauls, S. Ray, A. Wirth, et al., Hyperviscosity, Galerkin truncation, and bottlenecks in turbulence, Phys. Rev. Lett., 101 (2008), 144501. https://doi.org/10.1103/PhysRevLett.101.144501 doi: 10.1103/PhysRevLett.101.144501
|
| [2] |
S. Abe, Fractional diffusion equation, quantum subdynamics and Einstein's theory of Brownian motion, Int. J. Modern Phys. B, 21 (2007), 3993–3999. https://doi.org/10.1142/S0217979207045086 doi: 10.1142/S0217979207045086
|
| [3] |
A. Mellet, S. Mischler, C. Mouhot, Fractional diffusion limit for collisional kinetic equations, Arch. Ration. Mech. Anal., 199 (2011), 493–525. https://doi.org/10.1007/s00205-010-0354-2 doi: 10.1007/s00205-010-0354-2
|
| [4] |
G. Ahmadi, M. Shahinpoor, Universal stability of magneto-micropolar fluid motions, Int. J. Eng. Sci., 12 (1974), 657–663. https://doi.org/10.1016/0020-7225(74)90042-1 doi: 10.1016/0020-7225(74)90042-1
|
| [5] | J. Neuringer, R. Rosensweig, Ferrohydrodynamics, Phys. Fluids, 7 (1964), 1927–1937. https://doi.org/10.1063/1.1711103 |
| [6] |
R. Nochetto, A. Salgado, I. Tomas, The equations of ferrohydrodynamics: Modeling and numerical methods, Math. Models Methods Appl. Sci., 26 (2016), 2393–2449. https://doi.org/10.1142/S0218202516500573 doi: 10.1142/S0218202516500573
|
| [7] |
A. Popel, S. Regirer, P. Usick, A continuum model of blood flow, Biorheology, 11 (1974), 427–437. https://doi.org/10.3233/BIR-1974-11605 doi: 10.3233/BIR-1974-11605
|
| [8] | M. Turk, N. Sylvester, T. Arima, On pulsatile blood flow, Trans. Soc. Rheol., 17 (1973), 1–21. https://doi.org/10.1122/1.549295 |
| [9] |
J. Yuan, Existence theorem and blow-up criterion of the strong solutions to the magneto-micropolar fluid equations, Math. Methods Appl. Sci., 31 (2008), 1113–1130. https://doi.org/10.1002/mma.967 doi: 10.1002/mma.967
|
| [10] |
S. Gala, Y. Sawano, H. Tanaka, A new Beale-Kato-Majda criteria for the 3D magneto-micropolar fluid equations in the Orlicz-Morrey space, Math. Methods Appl. Sci., 35 (2012), 1321–1334. https://doi.org/10.1002/mma.2535 doi: 10.1002/mma.2535
|
| [11] |
Y. Wang, Blow-up criteria of smooth solutions to the three-dimensional magneto-micropolar fluid equations, Bound. Value Probl., 2015 (2015), 118. https://doi.org/10.1186/s13661-015-0382-9 doi: 10.1186/s13661-015-0382-9
|
| [12] |
F. Xu, Regularity criterion of weak solution for the 3D magneto-micropolar fluid equations in Besov spaces, Commun. Nonlinear Sci. Numer. Simul., 17 (2012), 2426–2433. https://doi.org/10.1016/j.cnsns.2011.09.038 doi: 10.1016/j.cnsns.2011.09.038
|
| [13] |
Z. Xiang, H. Yang, On the regularity criteria for the 3D magneto-micropolar fluids in terms of one directional derivative, Bound. Value Probl., 2012 (2012), 139. https://doi.org/10.1186/1687-2770-2012-139 doi: 10.1186/1687-2770-2012-139
|
| [14] |
M. Li, H. Shang, Large time decay of solutions for the 3D magneto-micropolar equations, Nonlinear Anal. Real World Appl., 44 (2018), 479–496. https://doi.org/10.1016/j.nonrwa.2018.05.013 doi: 10.1016/j.nonrwa.2018.05.013
|
| [15] |
F. Cruz, M. Novais, Optimal $L^{2}$ decay of the magneto-micropolar system in $R^{3}$, Z. Angew. Math. Phys., 71 (2020), 91. https://doi.org/10.1007/s00033-020-01314-8 doi: 10.1007/s00033-020-01314-8
|
| [16] |
Z. Tan, W. Wu, J. Zhou, Global existence and decay estimate of solutions to magneto-micropolar fluid equations, J. Differ. Equations, 266 (2019), 4137–4169. https://doi.org/10.1016/j.jde.2018.09.027 doi: 10.1016/j.jde.2018.09.027
|
| [17] |
X. Zhai, J. Wu, F. Xu, Stability for the 3D magneto-micropolar fluids with only velocity dissipation near a background magnetic field, J. Differ. Equations, 425 (2025), 596–626. https://doi.org/10.1016/j.jde.2025.01.047 doi: 10.1016/j.jde.2025.01.047
|
| [18] |
B. Dong, Z. Zhang, Global regularity of the 2D micropolar fluid flows with zero angular viscosity, J. Differ. Equations, 249 (2010), 200–213. https://doi.org/10.1016/j.jde.2010.03.016 doi: 10.1016/j.jde.2010.03.016
|
| [19] |
B. Dong, J. Li, J. Wu, Global well-posedness and large-time decay for the 2D micropolar equations, J. Differ. Equations, 262 (2017), 3488–3523. https://doi.org/10.1016/j.jde.2016.11.029 doi: 10.1016/j.jde.2016.11.029
|
| [20] |
C. Cao, J. Wu, B. Yuan, The 2D incompressible magnetohydrodynamics equations with only magnetic diffusion, SIAM J. Math. Anal., 46 (2014), 588–602. https://doi.org/10.1137/130937718 doi: 10.1137/130937718
|
| [21] |
Q. Jiu, J. Zhao, Global regularity of 2D generalized MHD equations with magnetic diffusion, Z. Angew. Math. Phys., 66 (2015), 677–687. https://doi.org/10.1007/s00033-014-0415-8 doi: 10.1007/s00033-014-0415-8
|
| [22] |
B. Dong, Y. Jia, J. Li, J. Wu, Global regularity and time decay for the 2D magnetohydrodynamic equations with fractional dissipation and partial magnetic diffusion, J. Math. Fluid Mech., 20 (2018), 1541–1565. https://doi.org/10.1007/s00021-018-0376-3 doi: 10.1007/s00021-018-0376-3
|
| [23] |
J. Liu, H. Zhang, Linear stability analysis of 2D incompressible MHD equations with only magnetic diffusion, Appl. Math. Lett., 169 (2025), 109600. https://doi.org/10.1016/j.aml.2025.109600 doi: 10.1016/j.aml.2025.109600
|
| [24] | G. Łukaszewicz, Micropolar Fluids: Theory and Applications, Birkhuser, Boston, MA, 1999. https://doi.org/10.1007/978-1-4612-0641-5 |
| [25] |
M. Rojas-Medar, J. L. Boldrini, Magneto-micropolar fluid motion: Existence of weak solutions, Rev. Mat. Comput., 11 (1998), 443–460. https://doi.org/10.5209/rev_REMA.1998.v11.n2.17276 doi: 10.5209/rev_REMA.1998.v11.n2.17276
|
| [26] |
H. Shang, J. Zhao, Global regularity for 2D magneto-micropolar equations with only micro-rotational velocity dissipation and magnetic diffusion, Nonlinear Anal., 150 (2017), 194–209. https://doi.org/10.1016/j.na.2016.11.011 doi: 10.1016/j.na.2016.11.011
|
| [27] |
K. Yamazaki, Global regularity of the two-dimensional magneto-micropolar fluid system with zero angular viscosity, Discrete Contin. Dyn. Syst., 35 (2015), 2193–2207. https://doi.org/10.3934/dcds.2015.35.2193 doi: 10.3934/dcds.2015.35.2193
|
| [28] |
D. Regmi, J. Wu, Global regularity for the 2D magneto-micropolar equations with partial dissipation, J. Math. Study, 49 (2016), 169–194. https://doi.org/10.4208/jms.v49n2.16.05 doi: 10.4208/jms.v49n2.16.05
|
| [29] |
H. Shang, J. Wu, Global regularity for 2D fractional magneto-micropolar equations, Math. Z., 297 (2021), 775–802. https://doi.org/10.1007/s00209-020-02532-6 doi: 10.1007/s00209-020-02532-6
|
| [30] |
M. Li, Stability and time decay rates of the 2D magneto-micropolar equations with partial dissipation, Z. Angew. Math. Phys., 73 (2022), 100. https://doi.org/10.1007/s00033-022-01740-w doi: 10.1007/s00033-022-01740-w
|
| [31] |
M. Li, J. He, Large time behavior and stability for two-dimensional magneto-micropolar equations with partial dissipation, J. Nonlinear Math. Phys., 30 (2023), 1567–1600. https://doi.org/10.1007/s44198-023-00144-2 doi: 10.1007/s44198-023-00144-2
|
| [32] |
R. Bai, T. Chen, S. Liu, Global stability solution of the 2D incompressible anisotropic magneto-micropolar fluid equations, AIMS Math., 7 (2022), 20627–20644. https://doi.org/10.3934/math.20221131 doi: 10.3934/math.20221131
|
| [33] |
W. Wu, Y. Zhang, Non-uniform decay of solutions to the incompressible magneto-micropolar fluids with/without magnetic diffusion and spin viscosity, J. Math. Phys., 64 (2023), 111502. https://doi.org/10.1063/5.0164843 doi: 10.1063/5.0164843
|
| [34] |
H. Shang, C. Gu, Global regularity and decay estimates for 2D magneto-micropolar equations with partial dissipation, Z. Angew. Math. Phys., 70 (2019), 85. https://doi.org/10.1007/s00033-019-1129-8 doi: 10.1007/s00033-019-1129-8
|
| [35] |
H. Shang, C. Gu, Large time behavior for two-dimensional magneto-micropolar equations with only micro-rotational dissipation and magnetic diffusion, Appl. Math. Lett., 99 (2020), 105977. https://doi.org/10.1016/j.aml.2019.07.008 doi: 10.1016/j.aml.2019.07.008
|
| [36] |
H. Ye, Y. Mao, Y. Jia, Optimal time decay rates of solutions for the 2D generalized magneto-micropolar equations, Math. Methods Appl. Sci., 44 (2021), 6336–6343. https://doi.org/10.1002/mma.7185 doi: 10.1002/mma.7185
|
| [37] | E. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton: Princeton University Press, 1971. https://doi.org/10.1515/9781400883882 |
| [38] |
M. Schonbek, T. Schonbek, Moments and lower bounds in the far-field of solutions to quasi-geostrophic flows, Discrete Contin. Dyn. Syst., 13 (2005), 1277–1304. https://doi.org/10.3934/dcds.2005.13.1277 doi: 10.3934/dcds.2005.13.1277
|
| [39] |
M. Schonbek, Large time behavior of solutions to the Navier-Stokes equations, Comm. Partial Differ. Equations, 11 (1986), 733–763. https://doi.org/10.1080/03605308608820443 doi: 10.1080/03605308608820443
|
| [40] |
T. Kato, Strong $L^P$ solutions of the Navier-Stokes equations in $\mathbb{R}^m$, with applications to weak solutions, Math. Z., 187 (1984), 471–480. https://doi.org/10.1007/BF01174182 doi: 10.1007/BF01174182
|