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Abstract: This work provides rigorous verification of the super-smoothing effect of higher-order
fractional Laplacian dissipation. Shang and Zhao (2017) have proved the global regularity of classical
solutions of the 2D incompressible magneto-micropolar equations with linear velocity damping u,
microrotational dissipation (−∆)ω, and magnetic diffusion (−∆)βb, β > 1. This paper is devoted to
further investigating the large-time behavior of global smooth solutions of the system with 1 < β ≤ 3

2 .
We apply the negative Sobolev space to overcome the difficulty caused by fractional-order dissipation
and establish

∫ t

0
∥∇b(τ)∥L2dτ ≤ C. Furthermore, by fully exploiting the special structure of the system

and combining the properties of a heat operator with the generalized Fourier splitting methods, we
obtain the decay rates of the solutions and their first-order derivatives for 1 ≤ p ≤ 2

β
.

Keywords: magneto-micropolar equations; decay rates; fractional magnetic dissipation; linear
velocity damping; Hardy-Littlewood-Sobolev inequality

1. Introduction

The magneto-micropolar equations illustrates the motion of electrically conductive micropolar
fluids in the presence of a magnetic field. The 3D magneto-micropolar equations with fractional
dissipation can be represented as

∂tu + (u · ∇)u + (µ + χ)Λ2αu = −∇π + (b · ∇)b + 2χ∇ × ω,
∂tω + (u · ∇)ω − λ∇∇ · ω + 4χω + κΛ2γω = 2χ∇ × u,

∂tb + (u · ∇)b + νΛ2βb = (b · ∇)u,
∇ · u = 0, ∇ · b = 0,
(u, ω, b)(x, 0) = (u0(x), ω0(x), b0(x),

(1.1)
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where x ∈ R3 and t ≥ 0. The vectors u(x, t), b(x, t), and ω(x, t) denote the velocity of the fluid, the
magnetic field, and the micro-rotational velocity, respectively. The scalars π(x, t) denote the
hydrostatic pressure. The positive parameters µ, χ, and 1

ν
are, respectively, the kinematic viscosity,

vortex viscosity, and magnetic Reynolds number. α, κ and λ are angular viscosities. Here, Λ = (−∆)
1
2 ,

for σ ≥ 0, the fractional Laplacian operator Λσ is defined by the Fourier transform

Λ̂σg(ξ) = |ξ|σĝ(ξ).

Standard Laplacian dissipation Λ2 = (−∆) describes a local, classical diffusion process. Higher-order
fractional dissipation Λσ = (−∆)

σ
2 , σ > 2 describes a non-local, long-range anomalous diffusion

process [1]. The fractional Laplacian operator serves as a powerful mathematical model to describe or
approximate certain complex physical processes, such as simulating plasmas with long-range
interactions, flow in porous media, and representing hyperviscosity in turbulence modeling [2, 3]. In
partial, if σ = 0, we define Λσ(g) = g. When α = γ = β = 1, (1.1) becomes the classical
magneto-micropolar equation with standard Laplacian operator dissipation.

Due to their rich phenomena, significant physical relevance, and mathematical complexity,
magneto-micropolar equation (1.1) have attracted considerable attention from physicists and
mathematicians. In 1974, Ahmadi and Shahinpoor [4] proposed the magneto-micropolar equations.
In physics, the motion of aggregates of small, solid, ferromagnetic particles in viscous magnetic fluids
can be described by the magneto-micropolar equations [5, 6]. In bioengineering, magneto-micropolar
fluids can be employed to model the application of magnetic tracers in blood flow [7, 8]. On the one
hand, for the blow-up criteria of smooth solutions to the Cauchy problem of the Eq (1.1), we refer
to [9–11], and for regularity criteria of weak solutions of (1.1), we refer to [12, 13]; on the other hand,
for large-time behavior of solutions to the Cauchy problem of (1.1), we refer to [14–16]. Recently,
Zhai et al. [17] proved the stability for the 3D compressible magneto-micropolar equations with only
velocity dissipation (i.e.µ, χ >, α = 1, κ = ν = 0) near a background magnetic field on T3.

When we set u = (u1, u2, 0), b = (b1, b2, 0), ω = (0, 0, ω), (1.1) becomes the 2D
magneto-micropolar equations

∂tu + (u · ∇)u + (µ + χ)Λ2αu = −∇π + (b · ∇)b + 2χ∇ × ω,
∂tω + (u · ∇)ω + 4χω + κΛ2γω = 2χ∇ × u,

∂tb + (u · ∇)b + νΛ2βb = (b · ∇)u,
∇ · u = 0, ∇ · b = 0,
(u, ω, b)(x, 0) = (u0(x), ω0(x), b0(x).

(1.2)

If the magnetic field b = 0, then (1.2) reduces to the micropolar fluid system. Dong and Zhang [18]
and Dong et al. [19] established the global existence and uniqueness of classical solutions to the 2D
micropolar equation (1.2) with only velocity dissipation and with only angular velocity dissipation,
respectively. Let ω, χ = 0; then (1.2) reduces to the incompressible magnetohydrodynamic (MHD)
equations. Cao et al. [20] and Jiu and Zhao [21] independently presented the global regularity of
classical solutions to the 2D MHD equation (1.2) with only magnetic diffusion µ, χ = 0, ν > 0, β > 1.
Dong et al. [22] proved that the 2D MHD equations with (−∆)αu, α > 0, ∂22b1, ∂11b2 have a unique
global smooth solution and obtained optimal large-time decay rates when the initial data is sufficiently
smooth. Liu and Zhang [23] established the linear stability of the 2D MHD equation (1.2) with µ, χ =
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0, ν > 0, β = 1 when the magnetic field is close to the equilibrium state e2 = (0, 1) in the periodic
domain T2. From the papers [20–23], we find that it is difficult to obtain the global smooth solution
and the nonlinear stability of the 2D MHD equation (1.2) with only magnetic diffusion µ, χ = 0, ν >
0, β = 1. Because of the similar structure of the 2D MHD equations and the 2D magneto-micropolar
equations, it is difficult to prove the global regularity and the large-time behavior of solutions for (1.2)
with µ, χ = 0, κ, ν > 0, γ = β = 1.

This paper considers the well-posedness to the Cauchy problem of 2D magneto-micropolar equation
(1.2). For the full dissipation case µ, χ, κ, ν > 0 of the 2D magneto-micropolar equation (1.2), the
literature [24, 25] proved the global existence and uniqueness of classical solutions. Later, the system
(1.2) with partial dissipation and fractional dissipation has also made many important advancements
(see, e.g., [26–28]). Especially, Shang and Wu [29] established the global smooth solutions for three
types of 2D magneto-micropolar fluid equations with µ, χ > 0, κ = ν = 0, α = 2, and µ, χ, κ, ν > 0, α >
0, β = 1, γ = 1, and µ, χ, ν > 0, κ = 0, 1 < α < 2, 0 < β < 1, α + β ≥ 2, respectively. Shang-Zhao [26]
established a regularity criterion for the 2D system without velocity dissipation for µ = χ = 0, κ, ν >
0, α = 0, β = 1, γ = 1 and the global regularity for µ = χ = 0, κ, ν > 0, α = 0, β > 1, γ = 1.

For the large-time behavior of the 2D magneto-micropolar equation (1.2), there has been some
research such as [30–32]. For the 2D and 3D magneto-micropolar equations with µ, χ > 0, α = 1, and
κ = ν = 0, Wu and Zhang [33] proved that L2-norms of the fluid velocity and micro-rotational velocity
decay to zero, and L2-norms of the magnetic field converge to a non-negative constant as t → ∞ by
applying the Fourier splitting method. Recently, Shang and Gu [34] established the decay estimates of
small solutions to 2D magneto-micropolar equation (1.2) with µ, χ, κ, ν > 0, α = 0, γ = 1, β = 1. They
also obtained the global existence of classical solution for 2D magneto-micropolar equation (1.2) with
µ, χ, ν > 0, α = 1, κ = 0, ∂yyb1, ∂xxb2 for small initial data. Shang and Gu [35] improved the the decay
rates of solutions to 2D magneto-micropolar equation (1.2) with µ, χ, κ, ν > 0, α = 0, γ = 1, β = 1 and
derived the optimal decay estimate for ∥b∥L∞ . Subsequently, Ye et al. [36] further improved the optimal
time rates of weak solutions for the system in [35].

Motivated by [20, 21, 23, 26, 34–36], when higher-order fractional magnetic dissipation that takes
the place of the standard Laplacian operator is introduced into the magneto-micropolar fluid model
and the MHD equations, it describes a physical system in which magnetic field perturbations can be
rapidly smoothed and dissipated in a non-local, long-range jumping manner. Moreover, it has a “super-
smoothing” effect that enhances the overall stability of the system. This paper intends to present a
rigorous mathematic theory to verify the physical smoothness effect of higher-order fractional magnetic
dissipation in terms of the 2D magneto-micropolar equations. Shang and Zhao [26] have proved the
global regularity of the magneto-micropolar equation (1.2) in the case µ, χ, κ, ν > 0, α = 0, γ = 1, β > 1;
moreover, our goal is to further investigate the large time behavior of the magneto-micropolar equations

∂tu + (µ + χ)u + (u · ∇)u + ∇π = (b · ∇)b + 2χ∇ × ω,
∂tω − κ∆ω + 4χω + (u · ∇)ω = 2χ∇ × u,

∂tb + ν(−∆)βb + (u · ∇)b = (b · ∇)u,
∇ · u = 0, ∇ · b = 0,
u(x, 0) = u0(x), ω(x, 0) = ω0(x), b(x, 0) = b0(x).

(1.3)

Electronic Research Archive Volume 33, Issue 12, 7551–7569.



7554

2. Preliminaries

To prove the essential auxiliary estimates, we firstly recall the Hardy-Littlewood-Sobolev inequality
for fractional integration (see [37]), where Λ = (−∆)

1
2 denotes the Zygmund operator.

Lemma 2.1. Let 0 < k < d and 1 < p < q < ∞ with k
d +

1
q =

1
p . Then

∥Λ−k f ∥Lp(Rd) ≤ C∥ f ∥Lq(Rd).

Next, we recall the following classic Lp-Lq estimate for the heat operator.

Lemma 2.2. (Schonbek [38]) Let α > 0, 1 ≤ p ≤ q ≤ ∞, and m ≥ 0. For any t > 0, we have

∥∇me−µ(−∆)αt f ∥Lq(R2) ≤ Ct−
m
2α−

1
α ( 1

p−
1
q )
∥ f ∥Lp(R2).

3. Main result

The precise result is stated in the following theorem.

Theorem 3.1. Let 1 < β ≤ 3
2 , and suppose (u0, ω0) ∈ H1(R2) and b0 ∈ Lp(R2)∩H1(R2) for 1 ≤ p ≤ 2

β
,

such that ∇ · u0 = ∇ · b0 = 0. Let (u, ω, b) be a global solution to the system (1.3), and

κ >
4χ2

µ + χ
.

Then for any t > 0, we have the following decay upper bounds of decay rates:

∥u∥L2(R2) + ∥ω∥L2(R2) ≤ C(1 + t)−
1
βp (2−ϵ), 0 < ϵ ≤

3
2

(3.1)

∥b∥L2(R2) ≤ C(1 + t)−
1
β ( 1

p−
1
2 ), (3.2)

∥∇u∥L2(R2) + ∥∇ω∥L2(R2) ≤ C(1 + t)−
1
βp−

2β−pβ+2
2(2β+1)p (3.3)

∥∇b∥L2(R2) ≤ C(1 + t)−
1
βp . (3.4)

Remark 3.1. When we replace 1 ≤ p ≤ 2
β

with 1 ≤ p < 2, the results of Theorem 3.1 also hold to the
system (1.3) with β = 1. And it is worth noting that it contains the results in [34, 35].

Remark 3.2. We require b0 ∈ Lp(R2) ∩ H1(R2) for 1 ≤ p ≤ 2
β
. Mathematically, this implies that the

system possesses finite total magnetic energy at the initial time, improves integrability properties, and
provides the foundation for energy estimates. Physically, this formulation eliminates extreme situations
where the initial magnetic field exhibits highly concentrated energy at singular points, prohibiting
exceedingly singular “hot spots” or “current sheets” in the initial magnetic field. When combined
with higher-order fractional dissipation −(∆)βb, β > 1 in the magnetic field, we observe that a milder
initial state coupled with a stronger dissipation mechanism together ensures the system’s stability.

Remark 3.3. Because the velocity equations of the compressible magneto-micropolar fluid system
are non-strictly hyperbolic in the absence of dissipation, their eigenvalues may coincide, leading to
potential resonance of linear waves that can strengthen nonlinear effects. Furthermore, the pressure
term is linked to the density through an equation of state, which increases the nonlinearity of the system.
Mathematically, these factors make stability analysis considerably more challenging. This represents
a worthwhile research problem, and we will continue to explore it in the future.
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4. The proof of Theorem 3.1

We remark that the decay rates on the system (1.3) are not trivial. Because of the momentum
equation without kinematic viscosity dissipation and the magnetic field equation with fractional
dissipation, the classic Schonbek’s Fourier splitting methods [39], which rely on dissipation and
Kato’s methods [40], which are based on the Lp − Lq estimates of a heat semigroup that cannot apply
directly. In order to overcome the main difficulty, we first need to obtain the auxiliary decay rates of
∥(∇u,∇b,∇ω)∥L2 . However, due to the index β > 1, the term

∫ t

0
∥∇b(τ)∥L2dτ cannot be obtained by

energy estimates. Fortunately, applying the negative Sobolev space, we can deduce that

∥Λ1−βb(t)∥2L2 + ν

∫ t

0
∥Λb(τ)∥2L2dτ ≤ C, (4.1)

but it is necessary to restrict 1 < β ≤ 3
2 in order to make the above result hold. With the aid of the

above estimates, we first derive

∥(∇u,∇b,∇ω)∥L2 ≤ C(1 + t)−
1
2 .

Furthermore, we also obtain auxiliary estimates

∥u∥L2(R2) + ∥ω∥L2(R2) ≤ C(1 + t)−
2
3

and the sharp estimate

∥b∥L2(R2) ≤ C(1 + t)−
1
β ( 1

p−
1
2 )

with the aid of the properties of a heat operator.
By the generalized Fourier splitting methods, we derive the improved decay rates

∥∇u∥L2(R2) + ∥∇ω∥L2(R2) + ∥∇b∥L2(R2) ≤ C(1 + t)−
1
βp

and the optimal upper bounds

∥u∥L2(R2) + ∥ω∥L2(R2) ≤ C(1 + t)−
1
βp (2−ϵ), 0 < ϵ ≤

3
2
.

Ultimately, we apply the implicit decay estimate∫ t

0
(1 + τ)n(∥Ω∥2L2 + ∥∇ω∥

2
L2 + ∥Λ

β j∥2L2)dτ ≤ C(1 + t)n− 2
βp

and obtain the decay rates

∥∇u∥L2(R2) + ∥∇ω∥L2(R2) ≤ C(1 + t)−
1
βp−

2β−pβ+2
2(2β+1)p .
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4.1. The priori estimates

We now show the L2-estimate for the solutions to the system (2.1). The result is stated in the
following proposition.

Proposition 4.1. Let (u0, ω0, b0) ∈ L2(R2). Then, any t > 0, (u, ω, b) of the system (1.3) satisfies

∥u∥2L2 + ∥ω∥
2
L2 + ∥b∥2L2 + 2σ

∫ t

0
∥u∥2L2dτ + 8χ

∫ t

0
∥ω∥2L2dτ

+2(κ −
4χ2

µ + χ − σ
)
∫ t

0
∥∇ω∥2L2dτ + ν

∫ t

0
∥Λβb∥2L2dτ ≤ C. (4.2)

Proof: Taking the L2-inner products of Eq (1.3) with u, ω and b, respectively, then adding the resulting
equations together, we obtain

1
2

d
dt

(∥u∥2L2 + ∥ω∥
2
L2 + ∥b∥2L2) + (µ + χ)∥u∥2L2

+4χ∥ω∥2L2 + κ∥∇ω∥
2
L2 + ν∥Λ

βb∥2L2

= 2χ
∫
R2
∇ × ω · udxdy + 2χ

∫
R2
∇ × uωdxdy. (4.3)

Applying Young’s inequality, we have

2χ
∫
R2
∇ × ω · udxdy + 2χ

∫
R2
∇ × uωdxdy

= 4χ
∫
R2
∇ × ω · udxdy

≤ (µ + χ − σ)∥u∥2L2 +
4χ2

µ + χ − σ
∥∇ω∥2L2 .

Inserting the above estimate into (4.3) yields

d
dt

(∥u∥2L2 + ∥ω∥
2
L2 + ∥b∥2L2) + 2σ∥u∥2L2 + 8χ∥ω∥2L2

+2(κ −
4χ2

µ + χ − σ
)∥∇ω∥2L2 + ν∥Λ

βb∥2L2 ≤ 0. (4.4)

Integrating (4.4) over [0, t], we get the desired estimate (4.2), thus the proof of Proposition 4.1
is completed.

We now proceed to estimate the H1-norm of (u, ω, b). Recalling the vorticityΩ = ∇×u = ∂xu2−∂yu1

and the current density j = ∇ × b = ∂xb2 − ∂yb1, we obtain
∂tΩ + u · ∇Ω + (µ + χ)Ω = b · ∇ j − 2χ∆ω,
∂t∇ω + ∇(u · ∇ω) − κ∆∇ω + 4χ∇ω = 2χ∇Ω,
∂t j + u · ∇ j + ν(−∆)β j = b · ∇Ω + Q(∇u,∇b),

(4.5)

where Q(∇u,∇b) = 2∂xb1(∂xu2 + ∂yu1) − 2∂xu1(∂xb2 + ∂yb1).
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Proposition 4.2. Let (u0, ω0, b0) ∈ H1(R2). Then, any t > 0, (Ω, ∇ω, j) obtains

∥Ω(t)∥2L2 + ∥∇ω(t)∥2L2 + ∥ j(t)∥2L2 + σ

∫ t

0
∥Ω(τ)∥2L2dτ

+2(κ −
4χ2

µ + χ − σ
− σ)

∫ t

0
∥∆ω(τ)∥2L2dτ + ν

∫ t

0
∥Λβ j(τ)∥2L2dτ

≤ (∥Ω0∥
2
L2 + ∥∇ω0∥

2
L2 + ∥ j0∥

2
L2)e

C
∫ t

0 (∥∇ω(τ)∥2
L2+∥Λ

βb(τ)∥2
L2 )dτ
, (4.6)

where σ > 0 is chosen sufficiently small such that κ > 4χ2

µ+χ−σ
+ σ.

Proof: Taking the L2-inner product of the first, second, and third equations of (4.5) with Ω, ∇ω, and j
respectively, and adding the resulting equations together, we have

1
2

d
dt

(∥Ω∥2L2 + ∥∇ω∥
2
L2 + ∥ j∥2L2) + (µ + χ)∥Ω∥2L2 + 4χ∥∇ω∥2L2 + κ∥∆ω∥

2
L2 + ν∥Λ

β j∥2L2

= −4χ
∫
R2
Ω∆ωdxdy −

∫
R2
∇u · ∇ω · ∇ωdxdy +

∫
R2

Q(∇u,∇b) jdxdy. (4.7)

Applying Young’s inequality yields

−4χ
∫
R2
Ω∆ωdxdy ≤ (µ + χ − σ)∥Ω∥2L2 +

4χ2

µ + χ − σ
∥∆ω∥2L2 .

By Hölder’s inequality, the Gagliardo-Nirenberg inequality, Young’s inequality, and ∥∇u∥L2 = ∥Ω∥L2 ,
we obtain

−

∫
R2
∇u · ∇ω · ∇ωdxdy ≤ ∥∇u∥L2∥∇ω∥2L4

≤ C∥Ω∥L2∥∇ω∥L2∥∆ω∥L2

≤ σ∥∆ω∥2L2 +C∥∇ω∥2L2∥Ω∥
2
L2 .

Applying the Gagliardo-Nirenberg inequality again yields

∥ j∥L4 ≤ C∥b∥
β−1
β

L2 ∥Λ
βb∥

2−β
2β

L2 ∥Λ
β j∥

1
2
L2;

this bound allows us to obtain∫
R2

Q(∇u,∇b) jdxdy

= 2
∫
R2
∂xb1(∂xu2 + ∂yu1) jdxdy − 2

∫
R2
∂xu1(∂xb2 + ∂yb1) jdxdy

≤ C∥Ω∥L2∥ j∥2L4

≤ C∥Ω∥L2∥b∥
2(β−1)
β

L2 ∥Λ
βb∥

2−β
β

L2 ∥Λ
β j∥L2

≤
ν

2
∥Λβ j∥2L2 +

σ

2
∥Ω∥2L2 +C∥b∥

4(β−1)
2−β

L2 ∥Λ
βb∥2L2∥Ω∥

2
L2 .
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Inserting the above estimates to (4.7) yields

d
dt

(∥Ω∥2L2 + ∥∇ω∥
2
L2 + ∥ j∥2L2) + σ∥Ω∥2L2 + 2(κ −

4χ2

µ + χ − σ
− σ)∥∆ω∥2L2

+8χ∥∇ω∥2L2 + ν∥Λ
β j∥2L2

≤ C(∥∇ω∥2L2 + ∥b∥
4(β−1)

2−β

L2 ∥Λ
βb∥2L2)∥Ω∥2L2 . (4.8)

Applying Grönwall’s inequality gives (4.6). This completes the proof of Proposition 4.2.

In order to obtain the uniform bound of
∫ t

0
∥∇b(τ)∥2L2dτ, we need to estimate the magnetic field b in

negative Sobolev space Ḣ1−β; more concretely, we have the following result.

Proposition 4.3. Under the same conditions of Theorem 3.1, then for any t > 0, we have

∥Λ1−βb(t)∥2L2 + ν

∫ t

0
∥∇b(τ)∥2L2dτ ≤ C. (4.9)

Proof: Applying Λ1−β to both sides of the Eq (1.3)3 and taking the L2-inner product of the resulting
equation with Λ1−β yields

1
2

d
dt
∥Λ1−βb∥2L2 + ν∥∇b∥2L2

= −

∫
R2
Λ1−β(u · ∇b) · Λ1−βbdxdy +

∫
R2
Λ1−β(b · ∇u) · Λ1−βbdxdy. (4.10)

Applying Lemma 2.1, Hölder’s inequality, the Gagliardo-Nirenberg inequality, and Young’s inequality,
we have

−

∫
R2
Λ1−β(u · ∇b) · Λ1−βbdxdy +

∫
R2
Λ1−β(b · ∇u) · Λ1−βbdxdy

= −

∫
R2
Λ1−2β(u · ∇b + b · ∇u) · Λbdxdy

≤ (∥Λ2−2β(u ⊗ b)∥L2 + ∥Λ2−2β(b ⊗ u)∥L2)∥Λb∥L2

≤ C(∥u ⊗ b∥
L

2
2β−1
+ ∥b ⊗ u∥

L
2

2β−1
)∥Λb∥L2

≤ C∥b∥
L

1
β−1
∥u∥L2∥Λb∥L2

≤ C∥b∥2(β−1)
L2 ∥Λb∥3−2β

L2 ∥u∥L2∥Λb∥L2

≤
ν

2
∥Λb∥2L2 +C(∥b∥2L2 + ∥ j∥2L2)∥u∥2L2 .

Inserting the above result into (4.10) and integrating time, we obtain

∥Λ1−βb(t)∥2L2 + ν

∫ t

0
∥∇b(τ)∥2L2dτ

≤ ∥Λ1−βb0∥
2
L2 +C

∫ t

0
(∥b(τ)∥2L2 + ∥ j(τ)∥2L2)∥u(τ)∥2L2dτ
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≤ C∥b0∥
2(β−1)p

2−p

Lp ∥b0∥
2(2−βp)

2−p

L2 +C sup
0≤τ≤t

(∥b(τ)∥2L2 + ∥ j(τ)∥2L2)
∫ t

0
∥u(τ)∥2L2dτ

≤ C,

where 1 ≤ p ≤ 2
β
. Thus the proof of Proposition 4.3 is completed.

4.2. The proof of Theorem 3.1

This section is devoted to the proof of the large-time behavior of the solutions and their first-order
derivatives to system (1.3).

4.2.1. Decay estimates for ∥(∇u,∇b,∇ω)∥L2 and ∥(u, b, ω)∥L2

With Propositions 4.1, 4.2, and 4.3 at our disposal, we investigate the auxiliary decay rate of
∥(∇u, ∇ω, ∇b)∥L2 .

Proposition 4.4. Assume the initial values (u0, ω0, b0) ∈ H1(R2); then we have

∥∇u(t)∥L2 + ∥∇ω(t)∥L2 + ∥∇b(t)∥L2 ≤ C(1 + t)−
1
2 . (4.11)

Proof: When t ≥ 1, by Proposition 4.1, 4.2, and 4.3, we have∫ ∞

0
∥∇ω(τ)∥2L2dτ ≤ C(∥u0∥

2
L2 + ∥ω0∥

2
L2 + ∥b0∥

2
L2), (4.12)

∫ ∞

0
∥∇u(τ)∥2L2dτ =

∫ ∞

0
∥Ω(τ)∥2L2dτ

≤ C(∥Ω0∥
2
L2 + ∥∇ω0∥

2
L2 + ∥ j0∥

2
L2)e

C(∥u0∥
2
L2+∥ω0∥

2
L2+∥b0∥

2
L2 )
, (4.13)

and ∫ t

0
∥∇b(τ)∥2L2dτ ≤ C. (4.14)

Combining (4.2) with (4.8), we obtain

∥Ω(t)∥2L2 + ∥∇ω(t)∥2L2 + ∥ j(t)∥2L2

≤ C(∥Ω(s)∥2L2 + ∥∇ω(s)∥2L2 + ∥ j(s)∥2L2)e
C
∫ t

s (∥∇ω(τ)∥2
L2+∥Λ

βb(τ)∥2
L2 )dτ

≤ C(∥Ω(s)∥2L2 + ∥∇ω(s)∥2L2 + ∥ j(s)∥2L2)e
C(∥u0∥

2
L2+∥ω0∥

2
L2+∥b0∥

2
L2 )
. (4.15)

Integrating (4.15) in ( t
2 , t) with respect to s and applying (4.12)–(4.14), we derive

t(∥Ω(t)∥2L2 + ∥∇ω(t)∥2L2 + ∥ j(t)∥2L2)

≤ 2CeC(∥u0∥
2
L2+∥ω0∥

2
L2+∥b0∥

2
L2 )
∫ t

t
2

(∥Ω(s)∥2L2 + ∥∇ω(s)∥2L2 + ∥ j(s)∥2L2)ds
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≤ C.

It implies

∥Ω(t)∥2L2 + ∥∇ω(t)∥2L2 + ∥ j(t)∥2L2 ≤ C(1 + t)−1.

For 0 < t < 1, applying Proposition 4.2, we obtain

∥Ω(t)∥2L2 + ∥∇ω(t)∥2L2 + ∥ j(t)∥2L2 ≤ C ≤ C(1 + t)−1.

In view of ∥Ω∥2L2 = ∥∇u∥2L2 , and ∥ j∥2L2 = ∥∇b∥2L2 ,we complete the proof of Proposition 4.4.

Now, we apply the properties of a heat operator to investigate the decay rate of ∥(u, ω, b)∥L2 .

Proposition 4.5. Assume the initial values (u0, ω0, b0) satisfy the assumptions stated in Theorem 3.1;
then we have

∥u(t)∥L2 + ∥ω(t)∥L2 ≤ C(1 + t)−
2
3 , (4.16)

∥b(t)∥L2 ≤ C(1 + t)−
1
β ( 1

p−
1
2 ). (4.17)

Proof: Taking the L2-inner products to the first and second equations of (1.3) with u and ω, then adding
the resulting equations together, we have

1
2

d
dt

(∥u(t)∥2L2 + ∥ω(t)∥2L2) + (µ + χ)∥u∥2L2 + 4χ∥ω∥2L2 + κ∥∇ω∥
2
L2

=

∫
R2

b · ∇b · udxdy + 4χ
∫
R2
∇ × ω · udxdy

≤ ∥b∥L4∥∇b∥L2∥u∥L4 + (µ + χ − σ)∥u∥2L2 +
4χ2

µ + χ − σ
∥∇ω∥2L2

≤ C∥b∥
1
2
L2∥∇b∥

3
2
L2∥u∥

1
2
L2∥∇u∥

1
2
L2 + (µ + χ − σ)∥u∥2L2 +

4χ2

µ + χ − σ
∥∇ω∥2L2; (4.18)

then integrating (4.18) in time, we have

∥u(t)∥2L2 + ∥ω(t)∥2L2

≤ e−ϱt(∥u0∥
2
L2 + ∥ω0∥

2
L2) +C

∫ t

0
e−ϱ(t−τ)∥b(τ)∥

1
2
L2∥∇b(τ)∥

3
2
L2∥u(τ)∥

1
2
L2∥∇u(τ)∥

1
2
L2dτ, (4.19)

where ϱ = min{2σ, 8χ}.
By (4.2), (4.13), and (4.14), we easily obtain∫ t

2

0
e−ϱ(t−τ)∥b(τ)∥

1
2
L2∥∇b(τ)∥

3
2
L2∥u(τ)∥

1
2
L2∥∇u(τ)∥

1
2
L2dτ

≤ Ce−
ϱt
2

∫ t
2

0
∥∇b(τ)∥

3
2
L2∥∇u(τ)∥

1
2
L2dτ
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≤ Ce−
ϱt
2

∫ t
2

0
(∥∇b(τ)∥2L2 + ∥∇u(τ)∥2L2)dτ

≤ Ce−
ϱt
2 . (4.20)

Set
M(t) = sup

0≤τ≤t
{(1 + τ)

1
2 (∥∇u(τ)∥L2 + ∥∇b(τ)∥L2)

and
N(t) = sup

0≤τ≤t
{(1 + τ)

2
3 (∥u(τ)∥L2 + ∥ω∥L2)};

then applying Proposition 4.1 and Proposition 4.4 can yield∫ t

t
2

e−ϱ(t−τ)∥b(τ)∥
1
2
L2∥∇b(τ)∥

3
2
L2∥u(τ)∥

1
2
L2∥∇u(τ)∥

1
2
L2dτ

≤ CM2(t)
∫ t

t
2

e−ϱ(t−τ)(1 + τ)−
4
3 [(1 + τ)

2
3 ∥u(τ)∥L2]

1
2 dτ

≤ CM2(t)N
1
2 (t)
∫ t

t
2

e−ϱ(t−τ)(1 + τ)−
4
3 dτ. (4.21)

Inserting (4.20) and (4.21) into (4.19), due toM(t) ≤ C, we have

N2 ≤ C(1 + t)
4
3 e−

ϱt
2 +CN

1
2 (t).

By Young’s inequality, we get

∥u(t)∥L2 + ∥ω(t)∥L2 ≤ C(1 + t)−
2
3 . (4.22)

Therefore, we obtain the first decay estimate of Proposition 4.5.

To obtain the decay estimate of b, we write the equation of (1.3)3 into integral form

b(x, y, t) = e−νΛ
2βtb0 +

∫ t

0
∇e−νΛ

2β(t−τ)(b ⊗ u − u ⊗ b)(τ)dτ. (4.23)

For t ≥ 1, appying Lemma 2.2 gets

∥e−νΛ
2βtb0∥L2 ≤ C(1 + t)−

1
β ( 1

p−
1
2 ).

Using Lemma 2.2 and (4.22), we have for t ≥ 1,

∥

∫ t

0
∇e−νΛ

2β(t−τ)(b ⊗ u − u ⊗ b)(τ)dτ∥L2

≤ C
∫ t

0
(t − τ)−

1
β ∥(b ⊗ u − u ⊗ b)(τ)∥L1dτ

≤ C
∫ t

2

0
(t − τ)−

1
β ∥u∥L2∥b∥L2dτ +C

∫ t

t
2

(t − τ)−
1
β ∥u∥L2∥b∥L2dτ
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≤ C
∫ t

2

0
(t − τ)−

1
β (1 + τ)−

2
3 dτ +C

∫ t

t
2

(t − τ)−
1
β (1 + τ)−

2
3 dτ

≤ C(1 + t)−
1
β+

1
3 .

Therefore, for 1 < β ≤ 3
2 , we obtain

∥b∥L2 ≤ C(1 + t)−
1
β ( 1

p−
1
2 ) +C(1 + t)−

1
β+

1
3

≤ C(1 + t)−
1
β ( 1

p−
1
2 ).

For 0 < t < 1, applying Proposition 4.1 yields

∥b∥L2 ≤ C ≤ C(1 + t)−
1
β ( 1

p−
1
2 ).

Thus we complete the proof of Proposition 4.5.

4.2.2. Faster decay estimates for ∥(∇u,∇b,∇ω)∥L2 and ∥(u, ω)∥L2

In this subsection, we are devoted to improving the decay rates of ∥(∇u,∇b,∇ω)∥L2 and ∥(u, ω)∥L2 .
Applying generalized Fourier splitting methods, we begin by obtaining the improved decay estimates
∥∇u(t)∥L2 + ∥∇b(t)∥L2 + ∥∇ω(t)∥L2 ≤ C(1+ t)−

1
βp . Then, by refined calculations, we establish the optimal

decay rates ∥u(t)∥L2 + ∥ω(t)∥L2 ≤ C(1 + t)−
1
βp (2−ϵ).

Proposition 4.6. Assume the initial values (u0, ω0, b0) satisfy the assumptions stated in Theorem 3.1;
then we have

∥∇u(t)∥L2 + ∥∇b(t)∥L2 + ∥∇ω(t)∥L2 ≤ C(1 + t)−
1
βp , (4.24)

∥u(t)∥L2 + ∥ω(t)∥L2 ≤ C(1 + t)−
1
βp (2−ϵ), (4.25)

where 0 < ϵ ≤ 2
3 .

Proof: Let ϖ = min{σ, 8χ, ν}; then we can obtain by (4.8) and Proposition 4.1 that

d
dt

(∥Ω∥2L2 + ∥∇ω∥
2
L2 + ∥ j∥2L2) +ϖ(∥Ω∥2L2 + ∥∇ω∥

2
L2 + ∥Λ

β j∥2L2)

≤ C(∥∇ω∥2L2 + ∥Λ
βb∥2L2)∥Ω∥2L2 . (4.26)

Taking
B(t) = {ξ ∈ R2

∣∣∣ |ξ|2β ≤ n
1 + t
},

and dividing the domain R2 into B(t) and B(t)c, obey

∥Λβ j∥2L2 =

∫
R2
|ξ|2β |̂ j(ξ, t)|2dξ

≥
n

1 + t

∫
B(t)c
|̂ j(ξ, t)|2dξ
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≥
n

1 + t
∥ j∥2L2 −

n
1 + t

∫
B(t)
|̂ j(ξ, t)|2dξ.

Then for t ≥ t0 > n, we have

d
dt

(∥Ω∥2L2 + ∥∇ω∥
2
L2 + ∥ j∥2L2) +

ϖn
1 + t

(∥Ω∥2L2 + ∥∇ω∥
2
L2 + ∥ j∥2L2)

≤
ϖn

1 + t

∫
B(t)
|̂ j(ξ, t)|2dξ +C(∥∇ω∥2L2 + ∥Λ

βb∥2L2)∥Ω∥2L2

≤
ϖn

1 + t

∫
B(t)
|ξ|2 |̂b(ξ, t)|2dξ +C(∥∇ω∥2L2 + ∥Λ

βb∥2L2)∥Ω∥2L2

≤ C(1 + t)−1− 1
β ∥b∥2L2 +C(∥∇ω∥2L2 + ∥Λ

βb∥2L2)∥Ω∥2L2

≤ C(1 + t)−1− 2
βp +C(∥∇ω∥2L2 + ∥Λ

βb∥2L2)∥Ω∥2L2 .

Multiplying the above inequality by (1 + t)ϖn (ϖn > 5) can deduce

d
dt

[(1 + t)ϖn(∥Ω∥2L2 + ∥∇ω∥
2
L2 + ∥ j∥2L2)]

≤ C(1 + t)ϖn−1− 2
βp +C(∥∇ω∥2L2 + ∥Λ

βb∥2L2)[(1 + t)ϖn∥Ω∥2L2].

By Grönwall’s inequality, we have

(1 + t)ϖn(∥Ω∥2L2 + ∥∇ω∥
2
L2 + ∥ j∥2L2) ≤ C(1 + t)ϖn− 2

βp ;

this implies for t ≥ t0

∥Ω∥2L2 + ∥∇ω∥
2
L2 + ∥ j∥2L2 ≤ C(1 + t)−

2
βp .

For 0 < t < t0, (4.6) implies

∥Ω∥2L2 + ∥∇ω∥
2
L2 + ∥ j∥2L2 ≤ C ≤ C(1 + t)−

2
βp .

Therefore, we have
∥Ω∥L2 + ∥∇ω∥L2 + ∥ j∥L2 ≤ C(1 + t)−

1
βp .

In addition, multiplying both sides of (4.26) by (1 + t)n for n > 5 yields

d
dt

[(1 + t)n(∥Ω∥2L2 + ∥∇ω∥
2
L2 + ∥ j∥2L2)] +ϖ(1 + t)n(∥Ω∥2L2 + ∥∇ω∥

2
L2 + ∥Λ

β j∥2L2)

≤ n(1 + t)n−1(∥Ω∥2L2 + ∥∇ω∥
2
L2 + ∥ j∥2L2) +C(1 + t)n(∥∇ω∥2L2 + ∥Λ

βb∥2L2)∥Ω∥2L2

≤ n(1 + t)n−1− 2
βp +C(1 + t)n− 2

βp (∥∇ω∥2L2 + ∥Λ
βb∥2L2). (4.27)

Integrating (4.27) in time, we can obtain∫ t

0
(1 + τ)n(∥Ω∥2L2 + ∥∇ω∥

2
L2 + ∥Λ

β j∥2L2)dτ ≤ C(1 + t)n− 2
βp . (4.28)
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Next, our goal is to improve the decay rates of ∥u(t)∥L2 and ∥ω(t)∥L2 . We re-estimate the terms on
the right-hand side of (4.18), for r > 2, which yields

1
2

d
dt

(∥u(t)∥2L2 + ∥ω(t)∥2L2) + (µ + χ)∥u∥2L2 + 4χ∥ω∥2L2 + κ∥∇ω∥
2
L2

=

∫
R2

b · ∇b · udxdy + 4χ
∫
R2
∇ × ω · udxdy

≤ ∥b∥Lr∥∇b∥L2∥u∥
L

2r
r−2
+ (µ + χ − σ)∥u∥2L2 +

4χ2

µ + χ − σ
∥∇ω∥2L2

≤ C∥b∥
2
r

L2∥∇b∥2−
2
r

L2 ∥u∥
1− 2

r

L2 ∥∇u∥
2
r

L2 + (µ + χ − σ)∥u∥2L2 +
4χ2

µ + χ − σ
∥∇ω∥2L2 . (4.29)

Integrating (4.29) in time, we obtain

∥u(t)∥2L2 + ∥ω(t)∥2L2

≤ e−ϱt(∥u0∥
2
L2 + ∥ω0∥

2
L2) +C

∫ t
2

0
e−ϱ(t−τ)∥b∥

2
r

L2∥∇b∥2−
2
r

L2 ∥u∥
1− 2

r

L2 ∥∇u∥
2
r

L2dτ

+C
∫ t

t
2

e−ϱ(t−τ)∥b∥
2
r

L2∥∇b∥2−
2
r

L2 ∥u∥
1− 2

r

L2 ∥∇u∥
2
r

L2dτ. (4.30)

For t ≥ 1, using Proposition 4.1 and Proposition 4.2, we get∫ t
2

0
e−ϱ(t−τ)∥b∥

2
r

L2∥∇b∥2−
2
r

L2 ∥u∥
1− 2

r

L2 ∥∇u∥
2
r

L2dτ

≤ Ce−
ϱt
2

∫ t
2

0
∥∇b∥2−

2
r

L2 ∥∇u∥
2
r

L2dτ

≤ Ce−
ϱt
2
( ∫ t

2

0
∥∇b∥2L2dτ

)1− 1
r
( ∫ t

2

0
∥∇u∥2L2dτ

) 1
r

≤ Ce−
ϱt
2 . (4.31)

Applying Proposition 4.4 and Proposition 4.5, we obtain∫ t

t
2

e−ϱ(t−τ)∥b∥
2
r

L2∥∇b∥2−
2
r

L2 ∥u∥
1− 2

r

L2 ∥∇u∥
2
r

L2dτ

≤ CQ1− 2
r (t)
∫ t

t
2

e−ϱ(t−τ)(1 + τ)−
2(2r+2−p)
βp(r+2) dτ

≤ CQ1− 2
r (t), (4.32)

where
Q(t) = sup

0≤s≤t
{(1 + s)

2r+2−p
βp(r+2) (∥u(s)∥L2 + ∥ω(s)∥L2)}.

Inserting the estimates (4.31) and (4.32) into (4.30) gets

Q2(t) ≤ C +CQ1− 2
r (t),
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which implies, for all t > 0,
∥u(t)∥L2 + ∥ω(t)∥L2 ≤ C(1 + t)−

1
βp (2−ϵ),

where r is sufficiently large such that 0 < ϵ = 2+p
r+2 ≤

2
3 . Thus we complete the proof of Proposition 4.6.

4.2.3. Faster decay estimates for ∥(∇u, ∇ω)∥L2

In this subsection, we are devoted to investigating the decay estimate for ∥(∇u, ∇ω)∥L2 . We are now
in the position to state one of the main results.

Proposition 4.7. Assume the initial values (u0, ω0, b0) satisfy the assumptions stated in Theorem 3.1.
Then we have

∥∇u(t)∥L2 + ∥∇ω(t)∥L2 ≤ C(1 + t)−
1
βp−

2β−βp+2
2(2β+1)p .

Proof: Taking the L2-inner products of the first and second equations of (4.5) with Ω and ∇ω,
respectively, and adding the resulting equations together, we gain

1
2

d
dt

(∥Ω∥2L2 + ∥∇ω∥
2
L2) + (µ + χ)∥Ω∥2L2 + 4χ∥∇ω∥2L2 + κ∥∆ω∥

2
L2

=

∫
R2

(b · ∇ j)Ωdxdy − 4χ
∫
R2
Ω∆ωdxdy −

∫
R2
∇ω · ∇u · ∇ωdxdy. (4.33)

Applying Hölder’s inequality and Young’s inequality yields∫
R2

(b · ∇ j)Ωdxdy

≤ ∥b∥L∞∥∇ j∥L2∥Ω∥L2

≤ C∥b∥
β

1+β

L2 ∥Λ
β j∥

1
1+β

L2 ∥ j∥
β−1
β

L2 ∥Λ
β j∥

1
β

L2∥Ω∥L2

≤
σ

2
∥Ω∥2L2 +C∥b∥

2β2
2β+1

L2 ∥ j∥
2(β2−1)

2β+1

L2 ∥Ω∥
2(β+1−β2)

2β+1

L2 ∥Λβ j∥2L2

≤
σ

2
∥Ω∥2L2 +C(1 + t)−

2β−βp+2
(2β+1)p ∥Λβ j∥2L2 ,

−4χ
∫
R2
Ω∆ωdxdy ≤ (µ + χ − σ)∥Ω∥2L2 +

4χ2

µ + χ − σ
∥∆ω∥L2 ,

and

−

∫
R2
∇ω · ∇u · ∇ωdxdy ≤

σ

2
∥∆ω∥2L2 +C∥∇ω∥2L2∥Ω∥

2
L2

≤
σ

2
∥∆ω∥2L2 +C(1 + t)−

2
βp ∥Ω∥2L2 .

Inserting the above estimates into (4.33) and multiplying both sides of the resulting equation by (1+t)n,
we can obtain

d
dt

(
(1 + t)n(∥Ω∥2L2 + ∥∇ω∥

2
L2)
)
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≤ C(1 + t)n((1 + t)−
2β−pβ+2
(2β+1)p ∥Λβ j∥2L2 + (1 + t)−

2
βp ∥Ω∥2L2),

where we have assumed that there exists a t0 > 1 such that 5 < n < ϖ(1 + t) for t > t0 and ϖ =
min{σ, 8χ}.

Integrating in time (t0, t) for the above inequality and (4.28), we can obtain

(1 + t)n(∥Ω∥2L2 + ∥∇ω∥
2
L2)

≤ C(1 + t0)n(∥Ω(t0)∥2L2 + ∥∇ω(t0)∥2L2)

+C
∫ t

t0
(1 + τ)n− 2β−pβ+2

(2β+1)p ∥Λβ j∥2L2dτ +C
∫ t

t0
(1 + τ)n− 2

βp ∥Ω∥2L2dτ

≤ C +C(1 + t)n− 2β−pβ+2
(2β+1)p −

2
βp .

It implies for t > t0

∥Ω∥L2 + ∥∇ω∥L2 ≤ C(1 + t)−
1
βp−

2β−pβ+2
2(2β+1)p .

For fixed t0, when 0 < t ≤ t0, using Proposition 4.2 can deduce

∥∇u∥2L2 + ∥∇ω∥
2
L2 ≤ C ≤ C(1 + t)−

1
βp−

2β−pβ+2
2(2β+1)p .

Therefore, the Proposition 4.7 is obtained. To summarize, the proof of Theorem 3.1 is completed.

5. Conclusions

This paper establishes the large-time behavior of solutions to the 2D magneto-micropolar equations
with linear velocity damping and fractional magnetic diffusion. To overcome the difficulty caused
by fractional-order dissipation, we apply the negative Sobolev space and prove

∫ t

0
∥∇b(τ)∥L2dτ ≤ C.

However, it is necessary to restrict 1 < β ≤ 3
2 for this result to hold. Furthermore, for the initial values

(u0, ω0, b0) ∈ H1(R2), we establish that ∥∇u(t)∥L2 + ∥∇ω(t)∥L2 + ∥∇b(t)∥L2 ≤ C(1 + t)−
1
2 and ∥u(t)∥L2 +

∥ω(t)∥L2 ≤ C(1 + t)−
2
3 . In addition, under the additional assumption that b0 ∈ Lp(R2) (1 ≤ p ≤ 2

β
), we

apply the properties of a heat operator, generalized Fourier splitting methods, and iterative methods and
obtain the desired decay rates of the solutions and their first-order derivatives presented in Theorem 3.1.
It is worth noting that in order to improve the decay estimate from ∥u(t)∥L2 + ∥ω(t)∥L2 ≤ C(1 + t)−

2
3 to

∥u(t)∥L2 + ∥ω(t)∥L2 ≤ C(1 + t)−
1
βp (2−ϵ), we require 0 < ϵ ≤ 2

3 . In our approach, it is optimal to have the
positive number ϵ as small as possible. Therefore this restriction is reasonable. This study not only
demonstrates the stabilizing effect of the magnetic field on the fluid flow, but also provides a framework
for investigating the decay properties of other fluid models with fractional dissipation.
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