Research article Special Issues

Dynamical analysis of discrete models for mosquito population suppression

  • Published: 16 December 2025
  • Amid the global challenge of mosquito-borne disease transmission, sterile insect technology (SIT) has emerged as a promising biological control strategy. Based on the classical Beverton–Holt model and the assumption of complete cytoplasmic incompatibility (CI), we develop a discrete-time model with overlapping generations and a corresponding integro-difference equation (IDE) to investigate the population dynamics under different release strategies for infected male mosquitoes. For the discrete-time model, we apply stability and bifurcation theory to determine the existence and stability of equilibria and derive the release threshold $ r^* $ above which the wild mosquito population is successfully suppressed. Analysis of the IDE model yields a lower release threshold $ r^{**} $ and a critical patch-size $ L^* $. Comparison of the two models demonstrates that spatial diffusion reduces the required release threshold for achieving population suppression.

    Citation: Ruibin Jiang, Zhiming Guo, Ruiqiang Zhuo. Dynamical analysis of discrete models for mosquito population suppression[J]. Electronic Research Archive, 2025, 33(12): 7528-7550. doi: 10.3934/era.2025332

    Related Papers:

  • Amid the global challenge of mosquito-borne disease transmission, sterile insect technology (SIT) has emerged as a promising biological control strategy. Based on the classical Beverton–Holt model and the assumption of complete cytoplasmic incompatibility (CI), we develop a discrete-time model with overlapping generations and a corresponding integro-difference equation (IDE) to investigate the population dynamics under different release strategies for infected male mosquitoes. For the discrete-time model, we apply stability and bifurcation theory to determine the existence and stability of equilibria and derive the release threshold $ r^* $ above which the wild mosquito population is successfully suppressed. Analysis of the IDE model yields a lower release threshold $ r^{**} $ and a critical patch-size $ L^* $. Comparison of the two models demonstrates that spatial diffusion reduces the required release threshold for achieving population suppression.



    加载中


    [1] J. C. Semenza, J. E. Suk, Vector-borne diseases and climate change: a European perspective, FEMS Microbiol. Lett., 365 (2018), fnx244. https://doi.org/10.1093/femsle/fnx244 doi: 10.1093/femsle/fnx244
    [2] P. E. Simonsen, M. E. Mwakitalu, Urban lymphatic filariasis, Parasitol. Res., 112 (2013), 35–44. https://doi.org/10.1007/s00436-012-3226-x
    [3] F. G. Sauer, E. Kiel, R. Lühken, Effects of mosquito resting site temperatures on the estimation of pathogen development rates in near-natural habitats in Germany, Parasites Vectors, 15 (2022), 390. https://doi.org/10.1186/s13071-022-05505-2 doi: 10.1186/s13071-022-05505-2
    [4] J. Kronen, M. Leuchner, T. Küpper, Zika and chikungunya in Europe 2100-a GIS based model for risk estimation, Travel Med. Infect. Dis., 60 (2024), 102737. https://doi.org/10.1016/j.tmaid.2024.102737 doi: 10.1016/j.tmaid.2024.102737
    [5] M. B. Thomas, Biological control of human disease vectors: a perspective on challenges and opportunities, BioControl, 63 (2018), 61–69. https://doi.org/10.1007/s10526-017-9815-y doi: 10.1007/s10526-017-9815-y
    [6] H. A. Flores, S. L. O'Neill, Controlling vector-borne diseases by releasing modified mosquitoes, Nat. Rev. Microbiol., 16 (2018), 508–518. https://doi.org/10.1038/s41579-018-0025-0 doi: 10.1038/s41579-018-0025-0
    [7] I. Iturbe-Ormaetxe, T. Walker, S. L. O'Neill, Wolbachia and the biological control of mosquito-borne disease, EMBO Rep., 12 (2011), 508–518. https://doi:10.1038/embor.2011.84 doi: 10.1038/embor.2011.84
    [8] J. H. Yen, A. R. Barr, New hypothesis of the cause of cytoplasmic incompatibility in culex pipiens L., Nature, 232 (1971), 657–658. https://doi.org/10.1038/232657a0 doi: 10.1038/232657a0
    [9] X. Zheng, D. Zhang, Y. Li, C. Yang, Y. Wu, X. Liang, et al., Incompatible and sterile insect techniques combined eliminate mosquitoes, Nature, 572 (2019), 56–61. https://doi.org/10.1038/s41586-019-1407-9 doi: 10.1038/s41586-019-1407-9
    [10] Y. Li, L. A. Baton, D. Zhang, J. Bouyer, A. G. Parker, A. A. Hoffmann, et al., Reply to: Issues with combining incompatible and sterile insect techniques, Nature, 590 (2021), E3–E5. https://doi.org/10.1038/s41586-020-03165-9 doi: 10.1038/s41586-020-03165-9
    [11] Z. Zhang, L. Chang, Q. Huang, R. Yan, B. Zheng, A mosquito population suppression model with a saturated Wolbachia release strategy in seasonal succession, J. Math. Biol., 86 (2023), 51. https://doi.org/10.1007/s00285-023-01888-7 doi: 10.1007/s00285-023-01888-7
    [12] B. Zheng, J. Yu, At most two periodic solutions for a switching mosquito population suppression model, J. Dyn. Differ. Equations, 35 (2023), 2997–3009. https://doi.org/10.1007/s10884-021-10125-y doi: 10.1007/s10884-021-10125-y
    [13] Y. Li, X. Liu, A sex-structured model with birth pulse and release strategy for the spread of Wolbachia in mosquito population, J. Theor. Biol., 448 (2018), 53–65. https://doi.org/10.1016/j.jtbi.2018.04.001 doi: 10.1016/j.jtbi.2018.04.001
    [14] R. Jiang, Z. Guo, Dynamics of discrete Ricker models on mosquito population suppression, Math. Methods Appl. Sci., 47 (2024), 4821–4839. https://doi.org/10.1002/mma.9840 doi: 10.1002/mma.9840
    [15] B. Zheng, J. Yu, Existence and uniqueness of periodic orbits in a discrete model on Wolbachia infection frequency, Adv. Nonlinear Anal., 11 (2022), 212–224. https://doi.org/10.1515/anona-2020-0194 doi: 10.1515/anona-2020-0194
    [16] J. Yu, J. Li, Discrete-time models for interactive wild and sterile mosquitoes with general time steps, Math. Biosci., 346 (2022), 108797. https://doi.org/10.1016/j.mbs.2022.108797 doi: 10.1016/j.mbs.2022.108797
    [17] Y. Li, J. Li, Discrete-time models for releases of sterile mosquitoes with Beverton-Holt-type of survivability, Ric. Mat., 67 (2018), 141–162. https://doi.org/10.1007/s11587-018-0361-4 doi: 10.1007/s11587-018-0361-4
    [18] Q. Chen, Z. Teng, F. Wang, Fold-flip and strong resonance bifurcations of a discrete-time mosquito model, Chaos, Solitons Fractals, 144 (2021), 110704. https://doi.org/10.1016/j.chaos.2021.110704 doi: 10.1016/j.chaos.2021.110704
    [19] Y. Liu, Z. Guo, M. S. El, L. Wang, A Wolbachia infection model with free boundary, J. Biol. Dyn., 14 (2020), 515–542. https://doi.org/10.1080/17513758.2020.1784474 doi: 10.1080/17513758.2020.1784474
    [20] K. Wang, H. Wang, H. Zhao, On the role of advection in a spatial epidemic model with general boundary conditions, J. Differ. Equations, 386 (2024), 45–79. https://doi.org/10.1016/j.jde.2023.12.016 doi: 10.1016/j.jde.2023.12.016
    [21] K. Wang, H. Wang, H. Zhao, Global threshold dynamics of a spatial chemotactic mosquito-borne disease model, IMA J. Appl. Math., 88 (2023), 354–377. https://doi.org/10.1093/imamat/hxad009 doi: 10.1093/imamat/hxad009
    [22] J. Yu, J. Li, Discrete-time models for interactive wild and transgenic sterile mosquitoes, J. Differ. Equations Appl., 30 (2024), 1590–1609. https://doi.org/10.1080/10236198.2024.2325485 doi: 10.1080/10236198.2024.2325485
    [23] R. J. H. Beverton, S. J. Holt, On the Dynamics of Exploited Fish Populations, 1$^{st}$ edition, Springer Netherlands, London, 2012. https://doi.org/10.1007/978-94-011-2106-4
    [24] D. Zhang, R. S. Lees, Z. Xi, J. R. L. Gilles, K. Bourtzis, Combining the sterile insect technique with Wolbachia-based approaches: II-a safer approach to Aedes albopictus population suppression programmes, designed to minimize the consequences of inadvertent female release, PLoS One, 10 (2015), e0135194. https://doi.org/10.1371/journal.pone.0135194 doi: 10.1371/journal.pone.0135194
    [25] F. Lutscher, Integrodifference Equations in Spatial Ecology, 1$^{st}$ edition, Springer, Cham, 2019. https://doi.org/10.1007/978-3-030-29294-2
    [26] R. Lui, Existence and stability of travelling wave solutions of a nonlinear integral operator, J. Math. Biol., 16 (1983), 199–220. https://doi.org/10.1007/BF00276502 doi: 10.1007/BF00276502
    [27] M. H. Wang, M. Kot, M. G. Neubert, Integrodifference equations, Allee effects, and invasions, J. Math. Biol., 44 (2002), 150–168. https://doi.org/10.1007/s002850100116
    [28] B. Li, G. Otto, Wave speed and critical patch size for integro-difference equations with a strong Allee effect, J. Math. Biol., 85 (2022), 59. https://doi.org/10.1007/s00285-022-01814-3 doi: 10.1007/s00285-022-01814-3
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(290) PDF downloads(26) Cited by(0)

Article outline

Figures and Tables

Figures(5)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog