Research article Special Issues

Boundedness and stability analysis of the two species predator-prey model with prey-taxis and nonlinear growth rate in predator

  • Published: 15 December 2025
  • In this paper, we study initial-boundary value problem of a predator-prey model with taxis strategies and a nonlinear growth rate for the predator. We establish that, for any spatial dimension $ (N \geq 1) $, the model admits positive classical solutions that are globally existent and uniformly bounded. Our results demonstrate that the nonlinear growth rate can effectively restrain the aggregation of predators. Furthermore, by constructing a suitable energy functional and combining it with the previously established uniform boundedness result, we analyze the global asymptotic stability of the coexistence steady state.

    Citation: Jianhua Li, YingYuan Mi. Boundedness and stability analysis of the two species predator-prey model with prey-taxis and nonlinear growth rate in predator[J]. Electronic Research Archive, 2025, 33(12): 7509-7527. doi: 10.3934/era.2025331

    Related Papers:

  • In this paper, we study initial-boundary value problem of a predator-prey model with taxis strategies and a nonlinear growth rate for the predator. We establish that, for any spatial dimension $ (N \geq 1) $, the model admits positive classical solutions that are globally existent and uniformly bounded. Our results demonstrate that the nonlinear growth rate can effectively restrain the aggregation of predators. Furthermore, by constructing a suitable energy functional and combining it with the previously established uniform boundedness result, we analyze the global asymptotic stability of the coexistence steady state.



    加载中


    [1] Y. Du, S. B. Hsu, A diffusive predator-prey model in heterogeneous environment, J. Differ. Equations, 203 (2004), 331–364. https://doi.org/10.1016/j.jde.2004.05.010 doi: 10.1016/j.jde.2004.05.010
    [2] J. Wang, J. Shi, J. Wei, Dynamics and pattern formation in a diffusive predator-prey system with strong Allee effect in prey, J. Differ. Equations, 251 (2011), 1276–1304. https://doi.org/10.1016/j.jde.2011.03.004 doi: 10.1016/j.jde.2011.03.004
    [3] J. Zhou, C. Mu, Coexistence states of a Holling type-II predator-prey system, J. Math. Anal. Appl., 369 (2010), 555–563. https://doi.org/10.1016/j.jmaa.2010.04.001 doi: 10.1016/j.jmaa.2010.04.001
    [4] F. Yi, J. Wei, J. Shi, Bifurcation and spatiotemporal patterns in a homogeneous diffusive predator-prey system, J. Differ. Equations, 246 (2009), 1944–1977. https://doi.org/10.1016/j.jde.2008.10.024 doi: 10.1016/j.jde.2008.10.024
    [5] W. Yang, J. Wu, H. Nie, Some uniqueness and multiplicity results for a predator-prey dynamics with a nonlinear growth rate, Commun. Pure Appl. Anal., 14 (2015), 1183–1204. https://doi.org/10.3934/cpaa.2015.14.1183 doi: 10.3934/cpaa.2015.14.1183
    [6] M. De la Sen, The generalized Beverton-Holt equation and the control of populations, Appl. Math. Modell., 32 (2008), 2312–2328. https://doi.org/10.1016/j.apm.2007.09.007 doi: 10.1016/j.apm.2007.09.007
    [7] S. Tang, R. A. Cheke, Y. Xiao, Optimal implusive harvesting on non-autonomous Beverton-Holt difference equations, Nonlinear Anal. Theory Methods Appl., 65 (2006), 2311–2341. https://doi.org/10.1016/j.na.2006.02.049 doi: 10.1016/j.na.2006.02.049
    [8] S. Chen, J. Yu, Dynamics of a diffusive predator-prey system with a nonlinear growth rate for the predator, J. Differ. Equations, 260 (2016), 7923–7939. https://doi.org/10.1016/j.jde.2016.02.007 doi: 10.1016/j.jde.2016.02.007
    [9] P. Kareiva, G. Odell, Swarms of predators exhibit "preytaxis" if individual predators use area-restricted search, Am. Nat., 130 (1987), 233–270. https://doi.org/10.1086/284707 doi: 10.1086/284707
    [10] P. A. Stephens, W. J. Sutherland, R. P. Freckleton, What is the Allee effect? Oikos, 87 (1999), 185–190. https://doi.org/10.2307/3547011
    [11] H. Jin, Z. A. Wang, Global stability of prey-taxis systems, J. Differ. Equations, 262 (2017), 1257–1290. https://doi.org/10.1016/j.jde.2016.10.010 doi: 10.1016/j.jde.2016.10.010
    [12] S. Wu, J. Shi, B. Wu, Global existence of solutions and uniform persistence of a diffusive predator-prey model with prey-taxis, J. Differ. Equations, 260 (2016), 5847–5874. https://doi.org/10.1016/j.jde.2015.12.024 doi: 10.1016/j.jde.2015.12.024
    [13] T. Xiang, Global dynamics for a diffusive predator-prey model with prey-taxis and classical Lotka-Volterra kinetics, Nonlinear Anal. Real World Appl., 39 (2018), 278–299. https://doi.org/10.1016/j.nonrwa.2017.07.001 doi: 10.1016/j.nonrwa.2017.07.001
    [14] Q. Wang, Y. Song, L. Shao, Nonconstant positive steady states and pattern formation of 1D prey-taxis systems, J. Nonlinear Sci., 27 (2017), 71–97. https://doi.org/10.1007/s00332-016-9326-5 doi: 10.1007/s00332-016-9326-5
    [15] W. Ko, K. Ryu, A diffusive predator-prey system with hunting cooperation in predators and prey-taxis: I global existence and stability, J. Math. Anal. Appl., 543 (2025), 129005. https://doi.org/10.1016/j.jmaa.2024.129005 doi: 10.1016/j.jmaa.2024.129005
    [16] W. Ko, K. Ryu, A diffusive predator-prey system with hunting cooperation in predators and prey-taxis: II stationary pattern formation, J. Math. Anal. Appl., 543 (2025), 128947. https://doi.org/10.1016/j.jmaa.2024.128947 doi: 10.1016/j.jmaa.2024.128947
    [17] Y. Mi, C. Song, Z. C. Wang, Boundedness and global stability of the predator-prey model with prey-taxis and competition, Nonlinear Anal. Real World Appl., 66 (2022), 103521. https://doi.org/10.1016/j.nonrwa.2022.103521 doi: 10.1016/j.nonrwa.2022.103521
    [18] G. Wu, Y. Zhang, Q. Xin, Boundedness and stability of a predator-prey system with prey-stage structure and prey-taxis, Discrete Contin. Dyn. Syst. - Ser. B, 30 (2025), 360–385. https://doi.org/10.3934/dcdsb.2024092 doi: 10.3934/dcdsb.2024092
    [19] P. Zheng, Boundedness and global stability in a three-species predator-prey system with prey-taxis, Discrete Contin. Dyn. Syst. - Ser. B, 28 (2023), 4780–4799. https://doi.org/10.3934/dcdsb.2023041 doi: 10.3934/dcdsb.2023041
    [20] P. Zheng, C. Wan, Global boundedness in a two-competing-predator and one-prey system with indirect prey-taxis, Discrete Contin. Dyn. Syst., 45 (2025), 2671–2687. https://doi.org/10.3934/dcds.2025001 doi: 10.3934/dcds.2025001
    [21] M. Ahmed, S. Jawad, Bifurcation analysis of the role of good and bad bacteria in the decomposing toxins in the intestine with the impact of antibiotic and probiotics supplement, AIP Conf. Proc., 3097 (2024), 080033. https://doi.org/10.1063/5.0209388 doi: 10.1063/5.0209388
    [22] E. Hakeem, S. Jawad, A. H. Ali, M. Kallel, H. A. Neamah, How mathematical models might predict desertification from global warming and dust pollutants, MethodsX, 14 (2025), 103259. https://doi.org/10.1016/j.mex.2025.103259 doi: 10.1016/j.mex.2025.103259
    [23] Y. Javaid, S. Jawad, R. Ahmed, A. H. Ali, B. Rashwani, Dynamic complexity of a discretized predator-prey system with Allee effect and herd behaviour, Appl. Math. Sci. Eng., 32 (2024), 2420953. https://doi.org/10.1080/27690911.2024.2420953 doi: 10.1080/27690911.2024.2420953
    [24] A. H. Ali, A. Ahmad, F. Abbas, E. Hincal, A. Ghaffar, B. Batiha, et al., Modeling the behavior of a generalized Cholera epidemic model with asymptomatic measures for early detection, PLoS One, 20 (2025), e0319684. https://doi.org/10.1371/journal.pone.0319684 doi: 10.1371/journal.pone.0319684
    [25] J. Wang, M. Wang, Global solution of a diffusive predator-prey model with prey-taxis, Comput. Math. Appl., 77 (2019), 2676–2694. https://doi.org/10.1016/j.camwa.2018.12.042 doi: 10.1016/j.camwa.2018.12.042
    [26] H. Amann, Nonhomogeneous linear and quasilinear elliptic and parabolic boundary value problems, in Function Spaces, Differential Operators and Nonlinear Analysis, (1993), 9–126. https://doi.org/10.1007/978-3-663-11336-2_1
    [27] H. Amann, Dynamic theory of quasilinear parabolic systems. III. Global existence, Math. Z., 202 (1989), 219–250. https://doi.org/10.1007/BF01215256 \newpage doi: 10.1007/BF01215256
    [28] W. Winkler, Aggregation vs. global diffusive behavior in the higher-dimensional Keller–Segel model, J. Differ. Equations, 248 (2010), 2889–2905. https://doi.org/10.1016/j.jde.2010.02.008 doi: 10.1016/j.jde.2010.02.008
    [29] J. LaSalle, Some extensions of Liapunov's second method, IRE Trans. Circuit Theory, 7 (1960), 520–527. https://doi.org/10.1109/TCT.1960.1086720 doi: 10.1109/TCT.1960.1086720
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(356) PDF downloads(27) Cited by(0)

Article outline

Figures and Tables

Figures(4)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog