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Abstract: In this paper, we study initial-boundary value problem of a predator-prey model with taxis
strategies and a nonlinear growth rate for the predator. We establish that, for any spatial dimension
(N ≥ 1), the model admits positive classical solutions that are globally existent and uniformly
bounded. Our results demonstrate that the nonlinear growth rate can effectively restrain the aggregation
of predators. Furthermore, by constructing a suitable energy functional and combining it with the
previously established uniform boundedness result, we analyze the global asymptotic stability of the
coexistence steady state.
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1. Introduction

The predator-prey model is a crucial model for the interaction between biological population,
which can be used to reveal the ecological complexity. To study predator-prey models, researchers
typically formulate them as systems of partial differential equations (PDEs). This framework has
yielded a wealth of research findings, including analyses of the boundedness of solutions, the
long-time behavior of constant states, and the existence and non-existence of non-constant
steady-state solutions and periodic solutions [1, 2]. A typical PDE model is as follows:∂u

dt = du∆u − au + eug(v), x ∈ Ω, t > 0,
∂v
dt = dv∆v + bv

(
1 − v

K

)
− ug(v), x ∈ Ω, t > 0,

(1.1)

where Ω ⊂ RN denotes a bounded domain with a smooth boundary ∂Ω; u(x, t) and v(x, t) represent
the densities of the predator and prey at time t > 0 and spatial position x ∈ Ω, respectively; g(v)
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is the so-called prey-dependent functional response; du and dv are positive constants, the intensity of
random dispersals of the species; b > 0 denotes the intrinsic growth rate of the prey; K > 0 represents
the carrying capacity of the prey; a > 0 stands for the mortality rate of the predator; and e > 0
is the interaction strength between the predator and prey. For the homogeneous Dirichlet boundary
condition, Zhou and Mu [3] have proven the existence of positive steady states for system (1.1) (with
a Holling II-type functional response) by employing fixed-point index theory and bifurcation theory.
Yi et al. [4] investigated the Hopf and Turing bifurcations of the system (1.1) (with Holling II-type
functional response) under the homogeneous Neumann boundary condition.

In some existing literature, the growth function under consideration is linear, with the well-known
logistic model serving as a typical example. However, in numerous biological phenomena, the growth
rate is inherently dependent on population density. Recently, Yang et al. [5] considered the following
diffusive predator-prey system, which incorporates a Holling II-type functional response and a
nonlinear growth rate for the predator,ut = du∆u + u

(
h

1+ru − a
)

+ euv
1+mv , x ∈ Ω, t > 0,

vt = dv∆v + v(b − v) − uv
1+mv , x ∈ Ω, t > 0,

(1.2)

where r is the strength of density-dependence, and the predator population reproduces by the nonlinear
function h

1+rv , which is called Beverton-Holt-like function [6,7]. The per capita reproduction rate (with
a maximum value of h) decreases with density increasing. Under the homogeneous Dirichlet boundary
condition, the existence, stability, and exact number of positive solutions for large values of m have
been established in [6,7]. Chen and Yu [8] established the global attractivity of constant equilibria and
proved the non-existence of non-constant positive steady states for system (1.2).

In 1987, Kareiva and Odell [9] first proposed a PDEs-based prey-taxis model to explain how area-
restricted search gives rise to the phenomenon of predator aggregation:

ut = du∆u − χ∇ · (u∇v) + uh(u) + eug(v), x ∈ Ω, t > 0,
vt = dv∆v + f (v) − ug(v), x ∈ Ω, t > 0,
∂u
∂ν

= ∂v
∂ν

= 0, x ∈ ∂Ω, t > 0,
(u, v)(x, 0) = (u, v)(x), x ∈ Ω,

(1.3)

where u(x, t) and v(x, t) denote the densities of predators and preys, respectively. χ > 0 represents the
prey-taxis sensitivity coefficient, and du, dv > 0 the diffusivity abilities of predator and prey,
respectively. e > 0 denotes the intrinsic predation rate. The term uh(u) describes the population
kinetic of the predator, which is often used as the following forms of the function:

h(u) = a + bu, a > 0, b ≥ 0,

where a is the natural death rate and b denotes the rate of death resulting from the intra-specific
competition. The term f (v) is the growth function of prey, which is often used as logistic type and
Allee effect type. The Allee effect refers to the phenomenon in ecology where population growth
decreases at low population densities, often due to difficulties in mate finding, cooperative behaviors,
or predator avoidance. Typical examples include reduced reproductive success in sparse insect
populations and diminished survival in small social animal groups. This concept has been well
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documented and classified into weak and strong forms [10], and it plays an important role in
mathematical models of population dynamics, particularly when low-density behavior influences
long-term outcomes. The function ug(v) represents the inter-specific interaction, and g(v) is the
functional response accounting for the intake rate of the predator as a function of prey density. Over
the past decade, a wealth of research has emerged concerning two-species predator-prey models with
prey-taxis. Researchers have increasingly focused on analyzing three key aspects of such models: the
existence and boundedness of solutions, the long-time dynamical behavior of solutions [11–13], and
pattern formation [14]. Recently, many researchers have focused on investigating three-population
predator-prey models that incorporate prey-taxis. The interactions among these populations have
yielded many mathematics and biology results [15–20].

Mathematical modeling offers a powerful way to analyze complex behaviors in ecological and
epidemiological systems by turning real-world interactions into quantitative frameworks that allow
for stability analysis, parameter sensitivity, and long-term simulation. For instance, Ahmed and
Jawad [21] studied antibiotic effects on gut microbiota, Hakeem et al. [22] modeled desertification,
Javaid et al. [23] explored predator-prey dynamics with Allee effects, and Ali et al. [24] developed an
cholera model incorporating asymptomatic detection to evaluate control strategies. These models
highlight how mathematical approaches can uncover hidden dynamics, guide interventions, and
improve our understanding of system behavior.

Based on system (1.2), we consider the following diffusive predator-prey system with prey-taxis
and a nonlinear growth rate for the predator,

ut = du∆u − χ∇ · (u∇v) + u
(

h
1+ru − a

)
+ eug(v), x ∈ Ω, t > 0,

vt = dv∆v + v(b − v) − ug(v), x ∈ Ω, t > 0,
∂u
∂ν

= ∂v
∂ν

= 0, x ∈ ∂Ω, t > 0,
u(x, 0) = u0(x), v(x, 0) = v0(x), x ∈ Ω.

(1.4)

The initial data of system (1.4) satisfies

u0, v0 ∈ W1,p(Ω), v0 	 0, (p > N), (1.5)

and g(s) satisfies the following hypotheses:
(H1) g(s) ∈ C1([0,∞)), g(0) = 0, g(s) > 0 in (0,∞), and g′(s) > 0 on [0,∞).

The main results concerning the global existence and boundedness of solutions to system (1.4) are
presented as follows.

Theorem 1.1. Let Ω ⊂ RN(N ≥ 1) be a bounded domain with smooth boundary. For any initial data
satisfying condition (1.5), there exists χ1 > 0 (depending on the initial data) such that if χ < χ1, then
problem (1.4) possesses a unique global nonnegative classical solution

(u, v) ∈ [C0(Ω × [0,+∞)) ∩C2,1(Ω × (0,+∞))]2.

Moreover, the solution satisfies

‖u(·, t)‖L∞ + ‖v(·, t)‖W1,∞ ≤ C, for all t > 0,

where C > 0 is a constant independent of t.
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Remark 1.2. In order to better understand problem (1.4), it is necessary to mention the general form
of the prey-taxis model as follows:

ut = du∆u − χ∇ · (u∇v) + (α − βu)u + ξu f (v), x ∈ Ω, t > 0,
vt = dv∆v + (a − bv)v − u f (v), x ∈ Ω, t > 0,
∂u
∂ν

= ∂v
∂ν

= 0, x ∈ ∂Ω, t > 0,
(u, v)(x, 0) = (u0, v0)(x), x ∈ Ω.

(1.6)

Wang and Wang [25, Theorems 1.2 and 1.3] showed that, there exists a constant β∗ > 0 such that if

β > β∗, (1.7)

then (1.6) has a unique nonnegative and global bounded solution in higher dimensions (N ≥ 3). We
can distinguish the difference between (1.4) and (1.6), that is, there is no interspecific competition of
predators in (1.4). In this paper, if the prey-taxis coefficient χ is small, then system (1.4) possesses
bounded solutions.

The second objective of this paper is to clarify the role of prey-taxis in regulating the stability of
nonnegative spatially homogeneous equilibria. We consider g(v) = v, and let a = b = e = 1 then

ut = du∆u − χ∇ · (u∇v) + u
(

h
1+ru − 1

)
+ uv, x ∈ Ω, t > 0,

vt = dv∆v + v(1 − v) − uv, x ∈ Ω, t > 0,
∂u
∂ν

= ∂v
∂ν

= 0, x ∈ ∂Ω, t > 0,
(u, v)(x, 0) = (u, v)(x), x ∈ Ω.

(1.8)

By direct computation, (1.8) have two semi-trivial equilibrium, (0, 1) and
(

h−1
r , 0

)
, if h > 1.

Furthermore, (1.8) has the unique positive constant solution

u∗ =
−1 +

√
1 + 4hr

2r
, v∗ =

2r + 1 −
√

1 + 4hr
2r

. (1.9)

The positive constant solution (u∗, v∗) exists if h < r + 1.

Theorem 1.3. Assume that h, r, χ > 0 and Ω is a bounded domain with smooth boundary, then

1) If h < r + 1, then the co-existence steady state (u∗, v∗) is locally asymptotically stable;
2) If h > r + 1, then the semi-trivial steady state (u∗, 0) is locally asymptotically stable;
3) The semi-trivial steady state (0, 1) is unstable;
4) The extinction steady state (0, 0) is unstable.

We know from Theorem 1.3 that (0, 1) and (0, 0) are unstable, while (u∗, v∗) and (u∗, 0) are linearly
stable under suitable conditions. Hence, it is natural to study whether or not (u∗, v∗) and (u∗, 0) are
globally asymptotically stable. Then global stability results are stated in the following theorem.

Theorem 1.4. Let (u, v) be a nonnegative global bounded classical solution of system (1.8) with initial
data satisfying condition (1.5).
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(i) Suppose that h < r + 1 and

χ2 <
4dudvv∗

u∗‖v‖2L∞
,

then
‖u(·, t) − u∗‖L∞ + ‖v(·, t) − v∗‖L∞ → 0, as t → ∞.

(ii) Suppose that h ≥ r + 1 and

χ2 <
4dudv

u∗
, (1.10)

then
lim
t→∞

(‖u(·, t) − u∗‖L∞ + ‖v(·, t)‖L∞) = 0.

The arrangement of this article is as follows. In Section 2, we get some useful estimates of the
solution and proof of Theorem 1.1. In Section 3, we consider the dynamics behavior of the solution.
In Section 4, we give the simulations and discussion.

2. Existence and boundedness of global solutions

The existence of local solutions to system (1.4) is established via Amann’s theorem [26]. First, we
give the following lemma.

Lemma 2.1. Let Ω ⊂ RN(N ≥ 1) be a bounded domain. If the initial data satisfies condition (1.5),
then there exist a maximal existence time Tmax ∈ (0,∞] and a pair (u, v) of nonnegative functions

(u, v) ∈ [C0(Ω × [0,Tmax)) ∩C2,1(0,Tmax)]2,

which solves (1.5) in the classical sense in Ω × (0,Tmax). Moreover, we have

u > 0, 0 < v ≤ B := max{‖v0‖L∞(Ω), b}. (2.1)

and either
Tmax = ∞ or lim supt↗Tmax

(‖u(·, t)‖L∞(Ω) + ‖v(·, t)‖W1,∞(Ω)) = ∞. (2.2)

Proof. The local-in-time existence and uniqueness of the classical solution to problem (1.4) follow
from Amann’s theorem [26, Theorems 14.4 and 14.6]. The estimate (2.1) can be derived via the
maximum principle. Furthermore, the extensibility criterion (2.2) can be obtained directly from [27,
Theorem 5.2].

Lemma 2.2. Let (u, v) be a solution of (1.4). Then, u and v satisfy∫
Ω

u + e
∫

Ω

v ≤ C, (2.3)

where positive constant C is independent of t.
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Proof. From the equations of (1.4), a direct calculation indicates that

d
dt

(∫
Ω

u + ev
)

=

∫
Ω

u
(

h
1 + ru

− a
)

+ e
∫

Ω

v(b − v)

≤h
∫

Ω

u
1 + ru

− a
∫

Ω

u +
b2e
4
|Ω|

because of x(b − x) ≤ b2

4 . Thus

d
dt

(∫
Ω

u + e
∫

Ω

v
)
≤ − a

(∫
Ω

u + e
∫

Ω

v
)

+ h
∫

Ω

u
1 + ru

+ aeB|Ω| +
b2e
4
|Ω|

= − a
(∫

Ω

u + e
∫

Ω

v
)

+ h
∫

Ω

[(1 + ru) − 1]
r(1 + ru)

+ aeB|Ω| +
b2e
4
|Ω|

≤ − a
(∫

Ω

u + e
∫

Ω

v
)

+
h
r
|Ω| + aeB|Ω| +

b2e
4
|Ω|.

Hence, we have

d
dt

(∫
Ω

u + e
∫

Ω

v
)

+ a
(∫

Ω

u + e
∫

Ω

v
)
≤ C.

Accordingly, upon the ordinary differential equation comparison principle, we arrive at∫
Ω

u + e
∫

Ω

v ≤ C,

for all t ∈ (0,Tmax), which directly yields (2.3).

In view of the facts 0 ≤ v ≤ B and g(s) ∈ C1([0,∞)) (see Lemma 2.1 and (H1)), there is a constant
Mv > 0 independent of t such that

‖g(v(·, t))‖L∞ ≤ Mv, for all t ∈ (0,Tmax). (2.4)

In this subsequent proof, we assume that

sup
0<t<T

‖u(·, t)‖L∞ ≤ Mu (2.5)

with some T ∈ (0,Tmax).

Lemma 2.3. Let Ω ⊂ RN(N ≥ 1) be a bounded domain with smooth boundary. Then, for the classical
solution (u, v) of (1.4), there exists a constant M2 > 0 independent of t such that

‖∇v(·, t)‖L∞ ≤ M2 ‖v0‖L∞ + M2|Ω|
1
p

(
b2

4
+ MuMv

)
, for all t ∈ (0,T ). (2.6)

Proof. Using the variation of constants formula to the second equation of (1.4), one has

v(·, t) = edvt∆v0 +

∫ t

0
edv(t−s)∆ [

v(b − v) − ug(v)
]
ds.
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Therefore,

∇v(·, t) = ∇edvt∆v0 +

∫ t

0
∇edv(t−s)∆ [

v(b − v) − ug(v)
]
ds. (2.7)

From Minkowski’s inequality, (2.4), and (2.5), we get that there is p > n such that

‖v(b − v) − ug(v)‖Lp ≤
b2

4
|Ω|

1
p + ‖ug(v)‖Lp ≤

b2

4
|Ω|

1
p + MuMv|Ω|

1
p ,

for all t ∈ (0,T ). Applying Lemma 1.3 in [28] to (2.7), we obtain

‖∇v(·, t)‖L∞

≤
∥∥∥∇edvt∆v0

∥∥∥
L∞

+

∫ t

0

∥∥∥∇edv(t−s)∆ [
v(b − v) − ug(v)

]∥∥∥
L∞

ds

≤Ce−dvλ1t ‖v0‖L∞ + C
∫ t

0

(
1 + (t − s)−

1
2−

n
2p
)

e−dvλ1(t−s) ‖v(b − v) − ug(v)‖Lp ds

≤C ‖v0‖L∞ + C
(
b2

4
|Ω|

1
p + MuMv|Ω|

1
p

) ∫ ∞

0

(
1 + (t − s)−

1
2−

n
2p
)

e−dvλ1(t−s)ds

:=C ‖v0‖L∞ + C
(
b2

4
|Ω|

1
p + MuMv|Ω|

1
p

)
M3, for all t ∈ (0,T ),

where λ1 > 0 denotes the first nonzero eigenvalue of −∆ in Ω under Neumann boundary conditions,
M3 =

∫ ∞
0

(
1 + (t − s)−

1
2−

n
2p
)

e−dvλ1(t−s)ds, C is a positive constant. Let M2 = max {C,CM3}, and we
get (2.6).

Lemma 2.4. Let Ω ⊂ RN(N ≥ 1) be a bounded domain with smooth boundary. Then, for the classical
solution (u, v) of (1.4), there exist constants M4,M5 > 0 and j > max

{
n
2 , 1

}
such that

‖u(·, t)‖L∞ ≤ M4 + χM4M5 + M4M
1− 1

j
u , for all t ∈ (0,T ). (2.8)

Proof. Applying (2.3)–(2.6) and Hölder’s inequality, we obtain that there exist q > n and j > max
{
1, n

2

}
such that

‖u∇v‖Lq ≤ Mu|Ω|
1
q

(
M2 ‖v0‖L∞ + M2|Ω|

1
p

(
b2

4
+ MuMv

))
:= M5,

∥∥∥∥∥ hu
1 + ru

+ eug(v)
∥∥∥∥∥

L j
≤

h
r
|Ω|

1
j + eMv‖u‖L j

≤
h
r
|Ω|

1
j + eMv

(
‖u‖

1− 1
j

L∞ ‖u‖
1
j

L1

)
≤

h
r
|Ω|

1
j + eMvM

1
j

1 M
1− 1

j
u ,

for all t ∈ (0,T ). The first equation of (1.4) can be rewritten as

ut − du∆u + au = −χ∇ · (u∇v) +
hu

1 + ru
+ eug(v).
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In view of the variation of constants formula and Lemma 1.3 in [28], it yields

‖u(·, t)‖L∞ ≤
∥∥∥et(du∆−a)u0

∥∥∥
L∞

+ χ

∫ t

0

∥∥∥e(t−s)(du∆−a)
∇ · (u∇v)

∥∥∥
L∞

ds

+

∫ t

0

∥∥∥∥∥∥e(t−s)(du∆−a)
(

hu
1 + ru

+ eug(v)
)∥∥∥∥∥∥

L∞
ds

≤ ‖u0‖L∞ + Cχ
∫ t

0

(
1 + (t − s)−

1
2−

n
2q
)

e−(λ1du+a)(t−s)‖u∇v‖Lqds

+ C
∫ t

0

(
1 + (t − s)−

n
2 j
)

e−a(t−s)
∥∥∥∥∥ hu

1 + ru
+ eug(v)

∥∥∥∥∥
L j

ds

≤ ‖u0‖L∞ + CχM5

∫ ∞

0

(
1 + (t − s)−

1
2−

n
2q
)

e−(λ1du+a)(t−s)ds

+ C
(
h
r
|Ω|

1
j + eMvM

1
j

1 M
1− 1

j
u

) ∫ ∞

0

(
1 + (t − s)−

n
2 j
)

e−a(t−s)ds

≤ ‖u0‖L∞ + CχM5M6 + C
h
r
|Ω|

1
j M7 + CeMvM

1
j

1 M
1− 1

j
u M7,

for all t ∈ (0,T ), where λ1 > 0 denotes the first nonzero eigenvalue of −∆ in Ω, C is a positive constant,
M6 =

∫ ∞
0

(
1 + (t − s)−

1
2−

n
2q
)

e−(λ1du+a)(t−s)ds, and M7 =
∫ ∞

0

(
1 + (t − s)−

n
2 j
)

e−a(t−s)ds. Let

M4 = max
{
‖u0‖L∞ + C

h
r
|Ω|

1
j M7,CM6,CeMvM

1
j

1 M7

}
,

so we have (2.8).

Lemma 2.5. Let Ω ⊂ RN(N ≥ 1) be a bounded domain with smooth boundary. For the classical
solution (u, v) of (1.4), there exists χ1 > 0 (depending on the initial data) such that if χ < χ1, then

‖∇v(·, t)‖L∞ + ‖u(·, t)‖L∞ ≤ M8, for all t ∈ (0,Tmax), (2.9)

where M8 > 0 is a constant independent of t.

Proof. We take Mu sufficiently large such that

Mu > (8M4) j > 8M4 > 8 ‖u0‖L∞ , (2.10)

where Mu, j and M4 are defined in (2.5) and Lemma 2.4, respectively. Let

χ1 =
Mu

2M4M5
=

1

2M4|Ω|
1
q
(
M2 ‖v0‖L∞ + M2|Ω|

1
p
(

b2

4 + MuMv

))
and

T := sup
{

T̂ ∈ (0,Tmax)
∣∣∣ sup

0<t<T̂
‖u(·, t)‖L∞(Ω) ≤ Mu

}
.
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According to the continuity of u and (2.10), T is well-defined and positive. Next, we claim that
T = Tmax under the assumption χ < χ1. From the facts (2.10) and Young’s inequality, we obtain

sup
0<t<T

‖u(·, t)‖L∞ ≤ M4 + χM4M5 + M4M
1− 1

j
u

≤
1
8

Mu +
1
2

Mu +
1
8

Mu + 8 j−1M j
4 < Mu.

Thus, using the continuity u again, one has T = Tmax and

sup
0<t<Tmax

‖u(·, t)‖L∞ ≤ C.

By applying (2.6), we get
sup

0<t<Tmax

‖∇v(·, t)‖L∞ ≤ C.

This completes the proof of Lemma 2.5.

The proof of Theorem 1.1. From (2.1) and Lemma 2.5, we can find a constant C independent of t such
that ‖u(·, t)‖L∞ + ‖v(·, t)‖W1,∞ ≤ C, for all t ∈ (0,Tmax), which together with Lemma 2.1 implies
Theorem 1.1.

3. Stability of constant steady state

Based on the previously established global boundedness result for the classical solutions of the
system, our focus in this section shifts to analyzing the dynamics of the nonnegative constant steady
states of system (1.8), which are (u∗, v∗),

(
h−1

r , 0
)
, and (0, 1) of (1.8). Here, our discussion in this section

is divided into two closely connected parts. In the first part, we analyze the local asymptotic stability
of steady states; in the second part, we investigate the global asymptotic stability of the solutions.

3.1. Local asymptotic behavior

In this subsection, we analyze the stability and instability of constant steady states. To begin, for
the corresponding ODE, using eigenvalue analysis, we study the stability of these equilibrium points.

We first consider the following ordinary differential equation:
ut = u

(
h

1+ru − 1
)

+ uv, t > 0,

vt = v(1 − v) − uv, t > 0,
u(0) = u0, v(0) = v0.

(3.1)

For this ODE, we have the following proposition.

Proposition 3.1. Assume that h, r > 0.

(i) If h < r + 1, then the co-existence equilibrium (u∗, v∗) of (3.1) is locally asymptotically stable;
(ii) If h > r + 1, then the semi-trivial equilibrium (h−1

r , 0) is locally asymptotically stable.
(iii) The semi-trivial equilibrium (0, 1) is a saddle point.
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Proof. 1) It is easy to see that the stability of the equilibrium (u∗, v∗) can be determined by the
following linearized matrix:

AO =

(
−hru∗

(1+ru∗)2 u∗

−v∗ −v∗

)
.

The stability of (u∗, v∗) is reduced to consider the characteristic equation:

det(AO − µI) = µ2 − TOµ + DO

with TO = −hru∗
(1+ru∗)2 − v∗,

DO = hru∗v∗
(1+ru∗)2 + u∗v∗.

Then TO < 0 and DO > 0. Hence, (u∗, v∗) is locally asymptotically stable.
2) The stability of the equilibrium (h−1

r , 0) can be determined by the following linearized matrix:

Au
O =

( 1−h
h

h−1
r

0 r−h+1
r

)
.

The stability of (h−1
r , 0) is reduced to consider the characteristic equation:

det(Au
O − µI) =

(
µ +

h − 1
h

) (
µ +

h − r − 1
r

)
.

Thus, the semi-trivial equilibria (h−1
r , 0) is locally asymptotically stable when h > r + 1.

3) The stability of the equilibrium (0, 1) can be determined by the following linearized matrix:

Av
O =

(
h 0
−1 −1

)
.

The stability of (0, 1) is reduced to consider the characteristic equation:

det(Av
O − µI) = (µ − h) (µ + 1) .

Hence, the characteristic equation must have a positive root h and a negative root −1. Then (0, 1)
is a saddle point. We complete the proof of Proposition 3.1.

Now, based on Proposition 3.1, we start to prove Theorem 1.3. Let {λi}}
∞
i=1 be the sequence of

eigenvalues of operator −∆ over bounded domain Ω with homogeneous Neumann boundary condition
satisfying monotonically increasing condition, i.e., 0 = λ0 < λ1 ≤ λ2 ≤ · · · · ··.

The proof of Theorem 1.3. 1) The linearization of system (1.8) around its constant steady
state (u∗, v∗) can be written as

AP =

(
du∆u − hru∗

(1+ru∗)2 −χu∗∆v + u∗

−v∗ dv∆v − v∗

)
.
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The stability is reduced to consider the characteristic equation:

det(AP − µI) = µ2 − TPµ + DP

with TP = −(du + dv)λi −
hru∗

(1+ru∗)2 − v∗,

DP = dudvλ
2
i +

(
duv∗ + dv

hru∗
(1+ru∗)2 + χu∗v∗

)
λi + hru∗v∗

(1+ru∗)2 + u∗v∗.

One has TP < 0 and DP > 0. Hence, (u∗, v∗) is locally asymptotically stable.
2) The linearization of (1.8) at semi-trivial solution (h−1

r , 0) can be expressed by

Au
P =

(
du∆u + 1−h

h −χu∗∆v + h−1
r

0 dv∆v + r−h+1
r

)
.

So, the stability is reduced to consider the characteristic equation:

det(Au
P − µI) =

(
µ + duλi +

h − 1
h

) (
µ + dvλi +

h − 1 − r
r

)
.

Hence, (h−1
r , 0) is locally asymptotically stable as h > r + 1.

3) The linearization of (1.8) at semi-trivial solution (0, 1) can be expressed by

Av
P =

(
du∆u + h 0
−1 dv∆v − 1

)
.

So the stability is reduced to consider the characteristic equation:

det(Av
P − µI) = (µ + duλi − h)(µ + dvλi + 1).

When λi = 0, the characteristic equation must have a positive root h. Hence, (0, 1) is unstable.

3.2. Global asymptotic behavior

Next, we prove the global stability of (u∗, v∗) and ( h−1
r , 0) of (1.8) by constructing Lyapunov

functionals.

Lemma 3.2. Let (u, v) be a nonnegative global bounded classical solution to system (1.8) and (u∗, v∗)
be defined by (1.9). Suppose that h < r + 1 and

χ2 <
4dudvv∗

u∗‖v‖2L∞(Ω)

, (3.2)

so, we have
lim
t→∞

(
‖u(·, t) − u∗‖L∞(Ω) + ‖v(·, t) − v∗‖L∞(Ω)

)
= 0.
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Proof. Let

E1(t) =

∫
Ω

(
u − u∗ − u∗ ln

u
u∗

)
+

∫
Ω

(
v − v∗ − v∗ ln

v
v∗

)
.

Clearly, E1(t) is a nonnegative function, and E1(t) = 0 if and only if (u, v) = (u∗, v∗). Differentiating
E1(t) with respect t and using (1.8), we have

d
dt

E1(t) =

∫
Ω

u − u∗

u
ut +

∫
Ω

v − v∗

v
vt

= − duu∗
∫

Ω

|∇u|2

u2 + χu∗
∫

Ω

∇u · ∇v
u

+

∫
Ω

(u − u∗)
(

h
1 + ru

− 1 + v
)

− dvv∗
∫

Ω

|∇v|2

v2 +

∫
Ω

(v − v∗)(1 − v − u)

= − duu∗
∫

Ω

|∇u|2

u2 + χu∗
∫

Ω

∇u · ∇v
u

− dvv∗
∫

Ω

|∇v|2

v2

− hr
∫

Ω

(u − u∗)2

(1 + ru∗)(1 + ru)
−

∫
Ω

(v − v∗)2

:= −
∫

Ω

X1A1XT
1 − hr

∫
Ω

(u − u∗)2

(1 + ru∗)(1 + ru)
−

∫
Ω

(v − v∗)2, (3.3)

where X1 =
(
∇u
u ,
∇v
v

)
and A1 is a matrix denoted by

A1 =

(
duu∗ −

χu∗v
2

−
χu∗v

2 dvv∗

)
.

One can verify that if (3.2) holds, the matrix A1 is positive definite, and hence there exists a positive
constant α1 such that

−

∫
Ω

X1A1XT
1 ≤ −α1

∫
Ω

(
|∇u|2

u2 +
|∇v|2

v2

)
. (3.4)

Substituting (3.4) into (3.3), we have

d
dt

E1(t) ≤ −α1

∫
Ω

(
|∇u|2

u2 +
|∇v|2

v2

)
− hr

∫
Ω

(u − u∗)2

(1 + ru∗)(1 + ru)
−

∫
Ω

(v − v∗)2 ≤ 0,

where “=” holds if and only if (u, v) = (u∗, v∗). Then using the LaSalle invariance principle [29,
Theorem 3], we see that the solution (u, v) converges to (u∗, v∗) as t → ∞ in L∞.

Now, we shall show the global asymptotical stability of constant steady state (h−1
r , 0) := (u∗, 0)

of (1.8).

Lemma 3.3. Let (u, v) be a nonnegative global bounded classical solution to system (1.8). Suppose
that h ≥ r + 1 and

χ2 <
4dudv

u∗
, (3.5)

so, we have
lim
t→∞

(
‖u(·, t) − u∗‖L∞(Ω) + ‖v(·, t)‖L∞(Ω)

)
= 0.
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Proof. Define

E2(t) =

∫
Ω

(
u − u∗ − u∗ ln

u
u∗

)
+

1
2

∫
Ω

v2 +

∫
Ω

v.

Note that E2(t) is a nonnegative function and E2(t) = 0 if and only if (u, v) = (u∗, 0). Differentiating
E2(t) with respect t, we have

d
dt

E2(t) = − duu∗

∫
Ω

|∇u|2

u2 + χu∗

∫
Ω

∇u · ∇v
u

+

∫
Ω

(u − u∗)
(

h
1 + ru

− 1 + v
)

− dv

∫
Ω

|∇v|2 +

∫
Ω

v2(1 − v − u) +

∫
Ω

v(1 − v − u)

= − duu∗

∫
Ω

|∇u|2

u2 + χu∗

∫
Ω

∇u · ∇v
u

− dv

∫
Ω

|∇v|2

− hr
∫

Ω

(u − u∗)2

(1 + ru)(1 + ru∗)
+

∫
Ω

v(u − u∗) +

∫
Ω

v2 −

∫
Ω

v3 −

∫
Ω

uv2

−

∫
Ω

v(u − u∗) − (u∗ − 1)
∫

Ω

v −
∫

Ω

v2

= − duu∗

∫
Ω

|∇u|2

u2 + χu∗

∫
Ω

∇u · ∇v
u

− dv

∫
Ω

|∇v|2

− hr
∫

Ω

(u − u∗)2

(1 + ru)(1 + ru∗)
−

∫
Ω

v3 −

∫
Ω

uv2 − (u∗ − 1)
∫

Ω

v

:= −
∫

Ω

X2A2XT
2 − hr

∫
Ω

(u − u∗)2

(1 + ru∗)(1 + ru)
− (u∗ − 1)

∫
Ω

v

−

∫
Ω

v3 −

∫
Ω

uv2, (3.6)

where X2 =
(
∇u
u ,∇v

)
and matrix A2 is expressed as

A2 =

(
duu∗ −

χu∗
2

−
χu∗
2 dv

)
.

We can verify that if (3.5) holds, the matrix A2 is positive definite, and hence there is a constant α2 > 0
such that

−

∫
Ω

X2A2XT
2 ≤ −α2

∫
Ω

(
|∇u|2

u2 + |∇v|2
)
. (3.7)

In view of u∗ = h−1
r and h ≥ r + 1, we have

− (u∗ − 1)
∫

Ω

v ≤ 0. (3.8)

Substituting (3.7) and (3.8) into (3.6), we have

d
dt

E2(t) ≤ −α2

∫
Ω

(
|∇u|2

u2 + |∇v|2
)
− hr

∫
Ω

(u − u∗)2

(1 + ru)(1 + ru∗)
−

∫
Ω

v3 ≤ 0,

where “=” holds if and only if (u, v) = (u∗, 0). Then using the LaSalle invariance
principle [29, Theorem 3], we obtain that the solution (u, v) converges to (u∗, 0) as t → ∞ in L∞. This
completes the proof.
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The proof of Theorem 1.4. Theorem 1.4 is a consequence of Lemmas 3.2 and 3.3.

4. Simulation and discussion

4.1. Simulations

First, we consider corresponding ODE system (3.1). First, let h = 1, r = 1, and initial function
(u0, v0) = (0.80, 0.70). Second, there exist only the constant equilibria (0, 0), (0, 1), and (0.62, 0.38)
for the system (3.1). We observe that as time goes by, the numerical solution of (u, v) converges to
(0.62, 0.38) (see Figure 1(a)). Then, we take h = 1.5, r = 1. The initial function remain the same.
Then, there exist the constant equilibria (0, 0), (0, 1), (0.5, 0), and (0.82, 0.18) for the system (3.1). We
observe that as time evolves, the numerical solution of (u, v) converges to positive constant equilibrium
(0.82, 0.18) (see Figure 1(b)). Third, we choose h = 2, r = 1 and the same initial value. Then, there
exist the constant equilibria (0, 0), (0, 1), and (1, 0) for the system (3.1). We observe that the numerical
solution of (u, v) converges to semi-equilibrium (1, 0) (see Figure 1(c)).

(a) (b) (c)

Figure 1. (a) h = 1, r = 1; (b) h = 1.5, r = 1; (c) h = 2, r = 1. The initial data is
(u0, v0) = (0.80, 0.70).

Next, we carry out some numerical analysis about the stability of the constant solution for
system (1.8). We take du = 1, dv = 0.1, h = 1, r = 1, and Ω = (0, 3π). Then, there exist only the
constant equilibria (0, 0), (0, 1), and (0.62, 0.38) for the system (1.8). According to Theorem 1.4,
when χ < 0.5, (0.62, 0.38) is globally asymptotically stable. Let χ = 0.4, 1, and 100, respectively. We
set initial function (u0, v0) = (0.62 + 0.05 sin x, 0.38 + 0.05 cos x), which is a small disturbance near
the constant equilibrium point (0.62, 0.38). We also choose initial functions
(u0, v0) = (0.62 ± 0.5 sin x, 0.38 ± 0.5 cos x). We observe that the numerical solution of (u, v)
converges to (0.62, 0.38) in all cases. Here, we only present numerical simulation pictures when χ = 1
and (u0, v0) = (0.62 + 0.05 sin x, 0.38 + 0.05 cos x) (see Figure 2).

Then, let du = 1, dv = 0.1, h = 1.5, r = 1, and Ω = (0, 3π). There are the constant steady states
(0, 0), (0, 1), (0.5, 0), and (0.82, 0.18) for the system (1.8). From Theorem 1.4, we know that (0.82, 0.18)
is globally asymptotically stable when χ < 0.3. We take χ = 0.2, 1, and 100, and initial function
(u0, v0) = (0.82 ± 0.05 sin x ± 0.5 sin x, 0.18 ± 0.05 cos x ± 0.5 cos x), respectively. We observe that as
time evolves, the numerical solution converges to positive constant steady state (0.82, 0.18) in all cases.
Here, we only present numerical simulation pictures when χ = 1 and (u0, v0) = (0.82+0.05 sin x, 0.18+
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0.05 cos x), as shown in Figure 3(a).
Finally, we choose du = 1, dv = 0.1, h = 2, r = 1, χ = 1, and Ω = (0, 3π). Therefore, there

exist the constant equilibria (0, 0), (0, 1), and (1, 0) for the system (1.8). Let initial function (u0, v0) =

(0.80 + 0.05 sin x, 0.70 + 0.05 cos x). We observe that the numerical solution of (u, v) converges to
semi-equilibrium (1, 0) (see Figure 4).

(a) (b)

Figure 2. du = 1, dv = 0.1, h = 1, r = 1, χ = 1, and Ω = (0, 3π) and initial function
(u0, v0) = (0.62 + 0.05 sin x, 0.38 + 0.05 cos x).

(a) (b)

Figure 3. du = 1, dv = 0.1, h = 1.5, r = 1, χ = 1, and Ω = (0, 3π) and initial function
(u0, v0) = (0.82 + 0.05 sin x, 0.18 + 0.05 cos x).
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(a) (b)

Figure 4. du = 1, dv = 0.1, h = 2, r = 1, χ = 1, and Ω = (0, 3π) and initial function
(u0, v0) = (0.80 + 0.05 sin x, 0.70 + 0.05 cos x)

4.2. Discussion

We investigate the dynamics of a two-component predator-prey model that incorporates taxis
mechanisms and nonlinear growth for the predator population. The main contributions of this paper
are composed of two parts. The first one is the global boundedness of the classical solution in any
dimensions. The second is the influence of the taxis strategies on the pattern formation. Through
rigorous mathematical analysis, we find that the prey-taxis does not lead to pattern formation, and the
results of numerical simulations support our theoretical results. Based on the previous analysis, we
have provided the results on the local and global stability of positive constant equilibria and
semi-equilibria for system (1.8) and its corresponding ODE system (3.1). In this section, we present
some examples to numerically illustrate the stability of constant steady state. On the other hand, we
note that the proof of global boundedness of solutions relies on the validity of Condition (H1), and the
conditions derived for global stability are sufficient but not necessary. These constraints restrict the
applicability of our results to cases where such conditions hold, leaving room for improvement.
Future work could focus on relaxing these conditions.
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