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Abstract: Amid the global challenge of mosquito-borne disease transmission, sterile insect
technology (SIT) has emerged as a promising biological control strategy. Based on the classical
Beverton–Holt model and the assumption of complete cytoplasmic incompatibility (CI), we develop
a discrete-time model with overlapping generations and a corresponding integro-difference equation
(IDE) to investigate the population dynamics under different release strategies for infected male
mosquitoes. For the discrete-time model, we apply stability and bifurcation theory to determine the
existence and stability of equilibria and derive the release threshold r∗ above which the wild mosquito
population is successfully suppressed. Analysis of the IDE model yields a lower release threshold r∗∗

and a critical patch-size L∗. Comparison of the two models demonstrates that spatial diffusion reduces
the required release threshold for achieving population suppression.
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1. Introduction

Many highly pathogenic viruses and parasites that trigger infectious diseases such as malaria,
dengue fever, yellow fever, filariasis, and chikungunya are transmissible via mosquitoes. In the
context of the accelerating pace of globalization, especially the substantial growth in international
travel and trade, the geographical distribution of invasive mosquito species has significantly
expanded. As a result, the mosquito-borne infectious diseases that ensue present a grave threat to
people’s health in endemic areas across the globe [1–4]. However, there are still no effective vaccines
or specific treatments for most mosquito-borne infectious diseases. Therefore, mosquito vector
control remains the main method to limit the spread of mosquito-borne infectious diseases. At
present, the integrated vector management (IVM) strategy is advocated for mosquito vector control,
which emphasizes the priority of environmental control. At the same time, it is emphasized that the
combination of chemical control, biological control, genetic control, and other methods should be
applied to reduce the number of mosquito population and control disease transmission [5, 6].
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It has been found that the most effective biological control measure at present is the application
of SIT to block virus transmission, which mainly involves releasing male mosquitoes infected with
Wolbachia into the wild. A large number of experiments have shown that Wolbachia symbiotic bacteria
can inhibit the replication of mosquito-borne disease viruses in mosquitoes, and thereby reduces the
probability of virus transmission between humans and mosquitoes to some extent. Since Wolbachia is
maternally inherited, its offspring will also be infected as long as the female mosquitoes are infected
with Wolbachia. In addition, Wolbachia can induce cytoplasmic incompatibility (CI) in the host, which
is manifested in the early embryo death if infected male mosquitoes mate with uninfected female
mosquitoes, but the embryo will develop normally in other cases [7, 8]. Based on these characteristics
of Wolbachia, many scientists in China have carried out mosquito population suppression experiments
in the field and achieved a series of remarkable results [9, 10]. Compared with traditional control
measures, the application of Wolbachia is a new and environmentally friendly control method.

In recent years, many mosquito population suppression models with different releasing strategies
have been formulated, such as impulsive differential equation models [11–13], discrete
models [14–18], and reaction-diffusion models [19–21]. In 2022, Zhang et al. [11] proposed a
switching ordinary differential equation model with an assumption that mosquito-borne infectious
diseases exhibit seasonal epidemic pattern. Surprisingly, seasonal switch gives rise to rich dynamics.
This includes the existence of either a unique periodic solution or precisely two periodic solutions,
which are demonstrated by using the qualitative property of the Poincaré map. In view of four release
strategies, early acting bisex (EBS), late acting bisex (LBS), early acting female-killing (EFK), and
late acting female-killing (LFK), Yu and Li [22] recently established four discrete
models, respectively,

EBS : wn+1 =
r0w2

n

ξ1w2
n + wn + c

,

LBS : wn+1 =
r0w2

n

ξ1w2
n + (1 + 2ξ2c)wn + c

,

EFK : wn+1 =
wn−1 + c

(wn + c)(wn−1 + c) + γbcwn−1

r0wn(wn + c)
ξ1w2

n + (1 + ξ2c)wn + c
wn,

and
LFK : wn+1 =

wn−1 + c
(wn + c)(wn−1 + c) + γbcwn−1

r0wn(wn + c)
ξ1w2

n + (1 + 2ξ2c)wn + c
wn,

to investigate the existence and stability of positive equilibria and gave a release threshold value of
sterile mosquitoes for each model. We found that most authors did not consider spatial factors, which
can have a significant impact on mosquito population. To investigate whether diffusion will affect our
release threshold value, we not only build a discrete model but also give the corresponding integro-
difference equation model for comparison.

The following scalar difference equation with Beverton-Holt-type growth function [23],

ut+1 =
but

1 + cut
, (1.1)

is an autonomous discrete system used to describe the recursive relationship between generation t + 1
and t. It was originally proposed in 1957 to model fish stock recruitment. Parameter b > 0 measures
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the birth rate of fish population. Parameter c > 0 is described as the strength of density dependence,
which also can be understood as intraspecific competition coefficient.

By assuming that wild mosquito population is overlapping, we present a discrete model for inhibit-
ing the growth of wild mosquito population by releasing infected Wolbachia males. Let ωt be the den-
sity of wild mosquito population for generation t, then the model can be expressed as

ωt+1 = B(ωt, r) + (1 − d)ωt, (1.2)

where B(·, r) is the mosquito population growth function, r represents the number of released infected
males with r ≥ 0, and d denotes the mortality of mosquito population with 0 < d < 1.

In order to describe the variation of wild mosquito population more accurately, the growth function
that we adopt is the Beverton-Holt function, but it is different from (1.1) because there also exists
interspecific competition between wild mosquitoes and infected males. Furthermore, we introduce the
following two crucial biological assumptions:

(A1) Wild mosquitoes exhibit a uniform sex distribution (i.e., the ratio of males to females is 1:1).
(A2) Infected males possess the same mating competitiveness as wild male mosquitoes.

Therefore, the probability that wild female mosquitoes at generation t mate with infected males is
r

1
2ωt+r

. Besides, as the current experimental data indicate that the infection of a novel Wolbachia strain
in Ae. albopictus in Guangzhou leads to almost complete CI as reported in [24], the birth rate of wild
mosquito population becomes b· ωt

r+ωt
. By modifying (1.1), a new Beverton-Holt function can be derived

as follows:
B(ωt, r) =

bωt

1 + c1r + c2ωt

ωt

r + ωt
, (1.3)

where b > 0 represents the birth rate of wild mosquito population, and c1 > 0 and c2 > 0 represent the
interspecific competition and intraspecific competition, respectively. Since the difference between
interspecific competition and intraspecific competition in mosquito population can be ignored, by
setting c1 = c2 = c, the subsequent model is established:

ωt+1 =
bωt

1 + cr + cωt

ωt

r + ωt
+ (1 − d)ωt. (1.4)

We can reduce the number of parameters by nondimensionalizing the model, letting ωt = cωt and
R = cr ≥ 0. Substituting these into (1.4) yields

ωt+1 =
bωt

1 + R + ωt

ωt

R + ωt
+ (1 − d)ωt. (1.5)

For notational simplicity, the variable is still denoted as ωt. Thus, we can obtain the following nonspa-
tial model

ωt+1 =
bωt

1 + R + ωt

ωt

R + ωt
+ (1 − d)ωt , F(ωt). (1.6)

It should be noted that for any ω > 0, F′(ω) =
bω[2R(1+R+ω)+ω]
(1+R+ω)2(R+ω)2 + (1 − d) > 0, i.e., F(x) is a nonlinear

monotonically increasing function with F(0) = 0.
Furthermore, a key aspect of the insect life cycle involves many species hatching from eggs,

developing through a larval stage, undergoing pupation, and ultimately emerging as adults. These
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adults fly, lay eggs to produce the next generation, and then die. One common feature of such life
cycle is the separation of the growth phase, during which spatial dispersion is negligible, and the
dispersion phase, during which no growth occurs [25]. This holds true for wild mosquitoes.
Integro-difference equations (IDEs) are the best tool to describe the life cycle of these insects. In the
following, we will establish an IDE incorporating the spatial influence to characterize the dynamic
behavior of wild mosquito population. Let ωt(x) be the spatial density of wild mosquito population in
generation t and at location x, then the IDEs model is given by

ωt+1(x) =

∫
Ω

K(x, y)F(ωt(y))dy, (1.7)

where K(x, y) is a dispersal kernel, H(ω) is a growth function, and Ω ⊂ RN is a habitat domain.
An outline of this paper is as follows: We devote Section 2 to a discussion of the nonspatial

dynamics, which includes the stability of equilibria and bifurcation behavior, as well as the release
threshold value r∗ for the success of mosquito suppression. In Section 3, the direction of traveling
waves and critical patch-size for Laplace kernel in integro-difference equation are established.
Numerical simulations to support our theoretical results for two discrete models are presented in
Section 4. Finally, we give some comments about the release threshold value by comparing the
nonspatial and spatial models in Section 5.

2. The case of the difference equation model

In this section, we primarily analyze the dynamics of (1.6) for different release levels of infected
males. The release threshold value of infected males for successful suppression will be given.

2.1. Positivity and boundedness

Lemma 2.1. For any initial value ω0 ≥ 0, the solution ωt of (1.6) is nonnegative and satisfies 0 ≤ ωt ≤
b
d for each t.

Proof. Since all the parameters in (1.6) are nonnegative, the solution ωt must be nonnegative for any
initial value ω0 ≥ 0. We now prove the boundedness of the solution ωt. It follows immediately
from (1.6) that ωt+1 ≤ b + (1 − d)ωt for each t. Letting d1 = 1 − d, we obtain ωt+1 − d1ωt ≤ b. From
this recursive relation, we can get the following inequalities:

ωt − d1ωt−1 ≤ b,

d1ωt−1 − d2
1ωt−2 ≤ d1b,

d2
1ωt−2 − d3

1ωt−3 ≤ d2
1b,

......

dt−1
1 ω1 − dt

1ω0 ≤ dt−1
1 b.

Adding all inequalities above leads to

ωt − dt
1ω0 ≤ b(1 + d1 + d2

1 + · · · + dt−1
1 ) = b

1 − dt
1

1 − d1
. (2.1)
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It is clear from (2.1) that

ωt ≤
b
d

(1 − dt
1) +

b
d

dt
1 =

b
d

so long as ω0 ≤
b
d . Consequently, the solution ωt is bounded, and the positive invariant set of (1.6) is

P = {ωt ∈ R|0 ≤ ωt ≤
b
d
}.

2.2. Equilibria and stability

A significant component of a general dynamic system that has been used to capture the variation
of wild mosquito population is the existence and stability of equilibria. First, we use a lemma to
enumerate the nonnegative equilibria of (1.6).

Lemma 2.2. Let

R∗ =
(b − d)2

4bd
. (2.2)

Then the following statements are true:

(I) If b ≤ d and R ≥ 0, then there exists exactly one equilibrium ω∗0 = 0.
(II) If b > d, then ω∗0 = 0 always exists. Additionally, for the positive equilibria of (1.6), there exist

the following four cases:

(i) If R = 0, then (1.6) admits exactly one positive equilibrium, denoted as ω∗1 = b
d − 1.

(ii) If 0 < R < R∗, then there exist exactly two positive equilibria, denoted as

ω∗1 = −
(2R + 1 − b

d ) +
√
β(R)

2
and ω∗2 =

−(2R + 1 − b
d ) +

√
β(R)

2
,

where β(R) = (2R + 1 − b
d )2 − 4R(R + 1) = −4b

d R + (1 − b
d )2.

(iii) If R = R∗, then there exists exactly one positive equilibrium, denoted as ω∗ = b2−d2

4bd .

(iv) If R > R∗, then (1.6) has no positive equilibria.

Proof. First, note that ω∗0 = 0 is an equilibrium of (1.6). To investigate the existence of other positive
equilibria, we begin with the equation

bω
(1 + R + ω)(R + ω)

= d, (2.3)

which is equivalent to

ω2 +

(
2R + 1 −

b
d

)
ω + R(R + 1) = 0.

Let
h(ω,R) = ω2 + (2R + 1 −

b
d

)ω + R(R + 1). (2.4)

The positive equilibria of (1.6) are given by the positive roots of h(ω,R) = 0.
(I) If b ≤ d and R ≥ 0, we have 2R+1− b

d ≥ 0. This implies that the axis of symmetry is nonpositive.
Therefore, (2.4) has no positive roots.

(II) Suppose that b > d.
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(i) If R = 0, h(ω,R) = ω2 + (1− b
d )ω. Therefore, it is straightforward to know that (2.4) has a positive

root ω∗1 = b
d − 1.

(ii) Notice that if 2R + 1 − b
d < 0, i.e., R < b−d

2d , (2.4) may have positive real roots. Consider the
discriminant

∆ = (2R + 1 −
b
d

)2 − 4R(R + 1) = −
4b
d

R + (1 −
b
d

)2 , β(R), (2.5)

where β(R) is a linear function with respect to R. Setting β(R) = 0, we obtain a critical value
R∗ =

(b−d)2

4bd < b−d
2d . Therefore, β(R) > 0 for 0 < R < R∗. In this case, h(x,R) = 0 has two positive

real roots, denoted by

ω∗1 = −
(2R + 1 − b

d ) +
√
β(R)

2
, ω∗2 =

−(2R + 1 − b
d ) +

√
β(R)

2
,

respectively.
(iii) From the above arguments, it can be seen that (2.4) has exactly one positive real root ω∗ = b2−d2

4bd

if and only if R∗ =
(b−d)2

4bd .
(iv) At last, if R∗ < R < b−d

2d , we have 2R + 1 − b
d < 0 and β(R) < 0, so (2.4) has no positive real roots.

When R ≥ b−d
2d , the same result also holds. As a consequence, (1.6) has no positive equilibria

when R > R∗.

Subsequently, we will analyze the stability of each equilibrium in Lemma 2.2 for different value
ranges of b, d, and R.

Theorem 2.1. Suppose that b ≤ d and R ≥ 0, then (1.6) exists exactly a globally asymptotically stable
equilibrium ω∗0 = 0.

Proof. Lemma 2.1 implies that there exists an equilibrium ω∗0 = 0 for b ≤ d and R ≥ 0. In this case, it
is sufficient to guarantee that

bω
(1 + R + ω)(R + ω)

− d < 0.

Due to |F′(0)| = |1 − d| < 1, we know that the equilibrium ω∗0 = 0 is locally asymptotically stable.
Next, we will establish its global stability. Given any initial value ω0 > 0, we can show that

ω1 − ω
∗
0 =

[ bω2
0

(1 + R + ω0)(R + ω0)
+ (1 − d)ω0

]
−

[ bω∗0
2

(1 + R + ω∗0
2)(R + ω∗0

2)
+ (1 − d)ω0

]
= F(ω0) − F(ω∗0) > 0

by virtue of the fact that F(ω) is a monotonically increasing function. Thus, when ω0 > 0 = ω∗0, we
have ωt > ω

∗
0. It follows from (1.6) that

ωt+1

ωt
= 1 +

bωt

(1 + R + ωt)(R + ωt)
− d < 1,

which means the solution ωt is monotonically decreasing and converges to ω∗0. Consequently, ω∗0 = 0
is globally asymptotically stable.
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However, it is of interest to study the dynamics of wild mosquito population in different release
strategies of infected male mosquitoes. Furthermore, we explore the threshold value above which wild
mosquito population can be successfully suppressed. Within the framework of (1.6), we always assume
b > d.

2.2.1. Case(i): R = 0

We consider the first case where R = 0, which means that there are no infected male mosquitoes
being released. Under these conditions, (1.6) can be simplified to

ωt+1 =
bωt

1 + ωt
+ (1 − d)ωt, (2.6)

i.e., F(ω) = bω
1+ω

+ (1 − d)ω.

Theorem 2.2. Assume that b > d and R = 0. (1.6) has two equilibria, ω∗0 = 0 and ω∗1 = b
d −1, in which

ω∗0 is unstable and ω∗1 is globally asymptotically stable.

Proof. If b > d and R = 0, then it is immediate from (2.6) that

F′(ω) =
b

(1 + ω)2 + 1 − d > 0.

Hence, F(ω) is monotonically increasing. From Lemma 2.2(I)(i), we obtain |F′(ω∗0)| = |1 + b − d| > 1
and |F′(ω∗1)| = | d

2

b + 1 − d| < 1 when b > d. As a consequence, ω∗0 = 0 is unstable, and ω∗1 = b
d − 1 is

locally asymptotically stable. Proceeding as in the proof of Theorem 2.1, given any initial value ω0 > 0
satisfying ω0 > ω

∗
1, we can obtain

ω1 − ω
∗
1 = F(ω0) − F(ω∗1) > 0.

So, we have ωt > ω
∗
1 for each t > 1. Furthermore, it follows from (2.6) that

ωt+1

ωt
=

b
1 + ωt

+ 1 − d <
b

1 + ω∗1
+ 1 − d = 1,

which implies that ωt is monotonically decreasing and converges to ω∗1. A completely analogous
argument can be made when the initial value meets 0 < ω0 < ω

∗
1. So, the dynamics of (1.6) are the same

as Beverton-Holt model (1.1), where ω∗0 is always unstable and ω∗1 is globally asymptotically stable.

2.2.2. Case(ii): 0 < R < R∗

For R > 0, Wolbachia-infected mosquitoes invade wild mosquito population, inducing complex
dynamics in wild population. In this case, ω∗0 = 0 is always an asymptotically stable equilibrium
for (1.6) since |F′(0)| = |1 − d| < 1.

Theorem 2.3. Assume that b > d and 0 < R < R∗. Then it has three nonnegative equilibria, ω∗0 = 0,

ω∗1 = −
(2R+1− b

d )+
√
β(R)

2 , and ω∗2 =
−(2R+1− b

d )+
√
β(R)

2 , in which ω∗0 and ω∗2 are locally asymptotically stable
and ω∗1 is always unstable.
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Proof. Throughout the proof, we always assume that ω is an equilibrium of (1.6). Note that

F′(ω) =
bω[2R(1 + R + ω) + ω]
(1 + R + ω)2(R + ω)2 + (1 − d), (2.7)

and its positive equilibria satisfy (2.3). Then, in combination with (2.7), we get

F′(ω) = d
2R(1 + R + ω) + ω

(1 + R + ω)(R + ω)
+ (1 − d)

= d
( 2R
R + ω

+
d
b

)
+ (1 − d)

= 1 + d
( 2R
R + ω

+
d
b
− 1

)
.

(2.8)

According to the difference equation theory, if |F′(ω)| < 1 holds, or equivalently,

−
2
d
<

2R
R + ω

+
d
b
− 1 < 0, (2.9)

then ω is locally asymptotically stable. However, if the converse holds, ω is unstable for

2R
R + ω

+
d
b
− 1 < −

2
d

or
2R

R + ω
+

d
b
− 1 > 0. (2.10)

Denote a = b
d , and it is evident that a > 1. We are also aware of, by Lemma 2.2(II)(ii), that (1.6) admits

two positive equilibria

ω∗1 = −
(2R + 1 − a) +

√
β(R)

2
, ω∗2 =

−(2R + 1 − a) +
√
β(R)

2
.

Besides, we can rewrite (2.5) as β(R) = −4aR + (1 − a)2 with the range of
√
β(R) ∈ (0, a − 1) if

0 < R < R∗.
Substituting ω∗1 into inequality (2.10) yields

2R
R + ω

+
1
a
− 1 =

2R
R + ω∗1

+
1
a
− 1

=
1
a
− 1 −

4R

1 − a +
√
β(R)

=
(1 − a)

(
1 − a +

√
β(R)

)
− 4Ra

a
(
1 − a +

√
β(R)

)
=

1
a

√
β(R) > 0.

Hence,ω∗1 is unstable. As for the positive equilibriumω∗2, a similar calculation can be made to show that

2R
R + ω

+
1
a
− 1 =

2R
R + ω∗2

+
1
a
− 1

=
2R

R +
−(2R+1−a)+

√
β(R)

2

+
1
a
− 1

=
−β(R) − (a − 1)

√
β(R)

a
(
a − 1 +

√
β(R)

) < 0.
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Besides, if
−β(R) − (a − 1)

√
β(R)

a
(
a − 1 +

√
β(R)

) > −
2
d
,

or alternatively,

β(R) + (a − 1 −
2a
d

)
√
β(R) −

2a(a − 1)
d

< 0,

then ω∗2 is locally asymptotically stable. We define f (
√
β) = β + (a − 1 − 2a

d )
√
β − 2a(a−1)

d ,
√
β(R) ∈

(0, a−1). Since f (0) = −
2a(a−1)

d < 0, f (a−1) = 2(a−1)(a−1− 2a
d ) < 0, the inequality f (

√
β) < 0 holds

for any given
√
β ∈ (0, a− 1). Therefore, ω∗2 is locally asymptotically stable. The proof is complete.

2.2.3. Case(iii): R = R∗

We now shift our focus to the mathematical problem in the scenario where R = R∗ =
(b−d)2

4bd .

Theorem 2.4. Assume that b > d and R = R∗. Then (1.6) admits a locally asymptotically stable trivial
point ω∗0 = 0 and a semi-stable positive equilibrium ω∗ = b2−d2

4bd .

Proof. From the previous analysis, we can deduce that the trivial point ω∗0 = 0 is locally asymptotically
stable. The remaining claim in Theorem 2.4 can be verified in the same manner as demonstrated
previously. First, according to Lemma 2.2(II)(iii), we have h(ω,R∗) > 0, that is,

bω
(1 + R∗ + ω)(R∗ + ω)

− d < 0 (2.11)

when ω ∈ (0, ω∗) ∪ (ω∗,+∞). Given any initial value ω0 > ω
∗, it is easy to see that

ω1 − ω
∗ = F(ω0) − F(ω∗) > 0.

By iterating, we can conclude that ωt > ω
∗ for each t ≥ 1. Using (1.6) and (2.11), we arrive at

ωt+1

ωt
= 1 +

bωt

(1 + R∗ + ωt)(R∗ + ωt)
− d < 1,

which indicates that the solution ωt is monotonically decreasing and

lim
t→+∞

ωt = ω∗.

Hence, ω∗ = b2−d2

4bd is semi-stable, as asserted.

2.2.4. Case(iv): R > R∗

If the number of released infected males is greater than R∗, we can obtain the following result.

Theorem 2.5. Suppose that b > d and R > R∗, then the trivial equilibrium ω∗0 = 0 is globally asymp-
totically stable.

Proof. The proof is trivial, and we omit it here.
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Figure 1. The value range of each parameter in four different cases.

To summarize this part comprehensively, the parameter ranges in four different cases can be more
effectively presented as depicted in Figure 1, where straight line I and III correspond to Case(i) and
Case(iii), respectively, while region II and IV represent Case(ii) and Case(iv).

2.3. Saddle node bifurcation

Recall that

F(ω,R) =
bω

1 + R + ω

ω

R + ω
+ (1 − d)ω = b

(
1 +

R2

ω + R
−

(R + 1)2

ω + R + 1

)
+ (1 − d)ω.

According to the equilibrium equation (2.3), by differentiating F(ω,R) with respect to ω and R, we get
the desired equations

∂2F(ω,R)
∂ω2 =

2b
(R + ω)(R + ω + 1)

−
4bω

(R + ω)(R + ω + 1)2 −
4bω

(R + ω)2(R + ω + 1)

+
2bω2

(R + ω)(R + ω + 1)3 +
2bω2

(R + ω)2(R + ω + 1)2 +
2bω2

(R + ω)3(R + ω + 1)

=
2d
ω

+
2d2

b
+ 2dω

( 1
(R + ω + 1)2 +

1
(R + ω)2

)
− 4d

( 1
R + ω + 1

+
1

R + ω

) (2.12)
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and

∂F(ω,R)
∂R

= −
bω2(R + ω + R + ω + 1)

(R + ω)2(R + ω + 1)2

= −
bω2

(R + ω)(R + ω + 1)2 −
bω2

(R + ω)2(R + ω + 1)

= −dω
( 1
R + ω + 1

+
1

R + ω

)
.

(2.13)

Combining Lemma 2.2(II)(iii) and Eqs (2.8), (2.12), and (2.13), we see that F(ω∗,R∗) = 0,

∂F(ω∗,R∗)
∂ω

= 1 + d
( 2R∗

R∗ + ω∗
+

d
b
− 1

)
= 1 + d

( 2 (b−d)2

4bd
(b−d)2

4bd + b2−d2

4bd

+
d
b
− 1

)
= 1 + d

( 2(b − d)2

(b − d)2 + b2 − d2 +
d
b
− 1

)
= 1,

∂2F(ω∗,R∗)
∂ω2 =

2d
ω∗

+
2d2

b
+ 2dω∗

( 1
(R∗ + ω∗ + 1)2 +

1
(R∗ + ω∗)2

)
− 4d

( 1
R∗ + ω∗ + 1

+
1

R∗ + ω∗

)
=

2d
b2−d2

4bd

+
2d2

b
+ 2d

b2 − d2

4bd

( 1

( (b−d)2

4bd + b2−d2

4bd + 1)2
+

1

( (b−d)2

4bd + b2−d2

4bd )2

)
− 4d

( 1
(b−d)2

4bd + b2−d2

4bd + 1
+

1
(b−d)2

4bd + b2−d2

4bd

)
=

8bd2

b2 − d2 +
2d2

b
+

2d2

b

(b − d
b + d

+
b + d
b − d

)
−

16bd2

b2 − d2

=
2d2

b

(
1 +

2(b2 + d2)
b2 − d2

)
−

8bd2

b2 − d2

=
2d2(3b2 + d2)

b(b2 − d2)
−

8bd2

b2 − d2

= −
2d2(b2 − d2)
b(b2 − d2)

= −
2d2

b
< 0,

∂F(ω∗,R∗)
∂R

= −dω∗
( 1
R∗ + ω∗ + 1

+
1

R∗ + ω∗

)
= −d

b2 − d2

4bd

( 1
(b−d)2

4bd + b2−d2

4bd + 1
+

1
(b−d)2

4bd + b2−d2

4bd

)
= −d

b2 − d2

4bd

( 2d
b + d

+
2d

b − d

)
= −d < 0,

which imply that (1.6) will undergo a saddle-node bifurcation at the positive equilibrium (ω∗,R∗). It
means there exists δ > 0 such that (1.6) has two equilibria, ω∗1 and ω∗2, in the neighborhood of ω = ω∗
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when −δ + R∗ < R < R∗, where ω∗1 < ω∗ is unstable and ω2
∗ > ω∗ is locally asymptotically stable.

Otherwise, (1.6) has no equilibrium in the neighborhood of ω = ω∗ when R∗ < R < R∗ + δ. The result
of this bifurcation for b = 4 and d = 0.2 is presented in Figure 2, where the solid line indicates stability
and dashed line indicates instability.

Figure 2. The schematic diagram of saddle-node bifurcation for Model (1.6).

3. The case of the IDE model

In Section 2, we explicitly calculated the release threshold of infected males for a difference
equation model with a monotonically increasing growth function. However, our previous analysis
overlooked the influence of spatial factors on population dynamics. To address this gap, we use the
framework of IDEs to simulate the mosquito population suppression. In the following work, we
consider the IDE model corresponding to Case(ii). That is, (1.7) can be converted into

ωt+1(x) =

∫
Ω

K(x, y)F(ωt(y))dy, (3.1)

where F is defined in (1.6) and b > d, 0 < R < R∗. Up to now, most studies have assumed that
the dispersal kernel depends only on the distance of movement. In this case, K(x, y) is assumed to
be K̃(|x − y|) describing the distribution of dispersal distances. It is implicitly assumed that dispersal
is isotropic, meaning it is the same in all directions. There are several assumptions regarding the
kernel function:

(i) K̃(x) ≥ 0. If B1 = inf{x : K̃(x) > 0}, B2 = sup{x : K̃(x) > 0}, then K̃(x) > 0 in (B1, B2). B1 = −∞

or B2 = +∞ is allowed so that K̃(x) need not have compact support.
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(ii) K̃(x) is continuous in R except possibly at B1, B2, where limx→B+
1

K̃(x) = p1, limx→B−2
K̃(x) = p2.

Also, K̃(x) may be written in the form

K̃(x) = K̃a(x) − p1χ(−∞,B1] − p2χ[B2,∞),

where K̃a(x) is absolutely continuous and χS is the indicator function of the set S .
(iii) K̃(x) is even and satisfies

∫
R

K̃(x)dx = 1.
(iv) K̃(x) is exponentially bounded, i.e.,

∫
R

eµxK̃(x)dx < +∞ for µ , 0.

We are interested in two cases: Ω = R and Ω = [−L, L], where L is a positive real number. For
the former case, we study the relationship between the number of releasing infected males and the
direction of traveling front, and for the latter, we investigate the critical patch size for persistence.

3.1. Traveling wave solutions to (3.1)

In this section, our aim is to discuss the traveling wave solutions of (3.1) in an unbounded domain.
That is,

ωt+1(x) =

∫ +∞

−∞

K̃(|x − y|)
[ bωt(y)
1 + R + ωt(y)

ωt(y)
R + ωt(y)

+ (1 − d)ωt(y)
]
dy. (3.2)

Based on the previous analysis, (1.6) admits three nonnegative equilibria if b > d, 0 < R < R∗. It
is a typical bistable structure where the equilibria satisfy F′(0) < 1, F′(ω∗1) > 1, and F′(ω∗2) < 1,
respectively. To determine the direction of traveling wave solution, we introduce the following result.

Lemma 3.1. [26] Assume that K̃(|x − y|) meets the conditions (i)–(iv), then there exists a unique
nonincreasing traveling wave solution ωt(x) = W(x− st) of (3.2) such that W(−∞) = ω∗2 and W(+∞) =

0, and s is the only spreading speed for which a nonincreasing traveling wave with value ω∗2 at −∞
and 0 at∞ can exist.

The proof of Lemma 3.1 has already been guaranteed in Theorem 5 and Corollary 1 of [26], and
details will not be repeated here. Now, according to Theorem 2.1 in [27], the direction of spreading
speed s of traveling wave is determined by the sign of∫ ω∗2

0
(F(ω) − ω)dω.

The following theorem deals with the issue proposed above.

Theorem 3.1. Let s be the spreading speed for (3.2). Then there exists a threshold R∗∗ ∈ (0,R∗) such
that the following statements hold.

(i). s > 0 if and only if R ∈ (0,R∗∗);
(ii). s = 0 if and only if R = R∗∗;

(iii). s < 0 if and only if R ∈ (R∗∗,R∗).

Proof. Let

G(R) =

∫ ω∗2(R)

0
(F(R, ω) − ω)dω.

Electronic Research Archive Volume 33, Issue 12, 7528–7550.



7541

To prove Theorem 3.1, we first need to demonstrate that G(R) is monotonically decreasing with R.
Taking the derivative of G(R) with respect to R yields

G′(R) = [F(ω∗2,R) − ω∗2]
dω∗2
dR

+

∫ ω∗2(R)

0

∂[F(R, ω) − ω]
∂R

dω.

From (2.3), we have

F(ω∗2,R) − ω∗2 =

(
bω∗2

(1 + R + ω∗2)(R + ω∗2)
− d

)
ω∗2 = 0

and
∂[F(R, ω) − ω]

∂R
= −

bω2(2R + 2ω + 1)
[(1 + R + ω)(R + ω)]2 < 0.

Therefore, G′(R) < 0. Besides, we can calculate that

G(R) =

∫ ω∗2

0

[ bω
1 + R + ω

ω

R + ω
− dω

]
dω

=

∫ ω∗2

0

[
b
(
1 −

(2R + 1)ω + R(R + 1)
(1 + R + ω)(R + ω)

)
− dω

]
dω

=

∫ ω∗2

0

[
b
(
1 +

R2

ω + R
−

(R + 1)2

ω + R + 1

)
− dω

]
dω

= g(ω∗2) − g(0),

(3.3)

where
g(ω) = b

(
ω + R2 ln(ω + R) − (R + 1)2 ln(ω + R + 1)

)
−

d
2
ω2. (3.4)

Next, it follows from Lemma 2.2 that

lim
R→0

G(R) = lim
R→0

∫ ω∗2

0
(F(ω) − ω)dω

= lim
R→0

(
g
(
b
d
− 1

)
− g(0)

)
= b

(
b
d
− ln

b
d
− 1

)
−

d
2

(
b
d
− 1

)2

.

Let ϕ = b
(

b
d − ln b

d − 1
)
− d

2

(
b
d − 1

)2
and z = b

d . From the condition b > d, we have z > 1 and

ϕ

d
= z(z − ln z − 1) −

(z − 1)2

2
, m(z).

Differentiating m(z) once, we get m′(z) = z − ln z − 1 > 0 for any z > 1. Thus, limz→1 m(z) = 0 and
m(z) > 0 for any z > 1, which implies limR→0 G(R) > 0. Similarly, we have

lim
R→R∗

G(R) =

∫ b2−d2
4bd

0
(F(ω) − ω)dω

= g
(
b2 − d2

4bd

)
− g(0) < 0.
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Consequently, there exists a threshold R∗∗ ∈ (0,R∗) such that G(R∗∗) =
∫ ω∗2

0
(F(ω) − ω)dω = 0, or

equivalently, s = 0. If R ∈ (0,R∗∗), G(R) =
∫ ω∗2

0
(F(ω) − ω)dω > 0, or equivalently, s > 0; if not, s < 0

when R ∈ (R∗∗,R∗). Hence, the statements are proved.

3.2. Critical patch-size for the Laplace kernel in a bounded domain

In this section, we consider (3.1) with the interval Ω = [−L, L] and the Laplace kernel K̃(x − y) =
a
2e−a|x−y|. Hence, (3.1) can be rewritten as

ωt+1(x) =

∫ L

−L

a
2

e−a|x−y|
[ bωt(y)
1 + R + ωt(y)

ωt(y)
R + ωt(y)

+ (1 − d)ωt(y)
]
dy. (3.5)

Clearly, (3.5) has a trivial equilibrium ω∗0(x) = 0. We will investigate the critical patch-size, denoted
by L∗, for (3.5) in this section. If the patch is shorter than L∗, then dispersal loss exceeds reproductive
gain in the patch, and the population will die out. If the patch is longer than L∗, then the situation is
reversed, and the population can persist.

Let ω(x) be a positive equilibrium of (3.5), that is,

ω(x) =

∫ L

−L

a
2

e−a|x−y|
[ bω(y)
1 + R + ω(y)

ω(y)
R + ω(y)

+ (1 − d)ω(y)
]
dy

=
a
2

[ ∫ x

−L
e−a(x−y)

( bω(y)
1 + R + ω(y)

ω(y)
R + ω(y)

+ (1 − d)ω(y)
)
dy

−

∫ x

L
ea(x−y)

( bω(y)
1 + R + ω(y)

ω(y)
R + ω(y)

+ (1 − d)ω(y)
)
dy

]
.

(3.6)

By differentiating (3.6), we have

ω′(x) = −
a2

2

[ ∫ x

−L
e−a(x−y)

( bω(y)
1 + R + ω(y)

ω(y)
R + ω(y)

+ (1 − d)ω(y)
)
dy

+

∫ x

L
ea(x−y)

( bω(y)
1 + R + ω(y)

ω(y)
R + ω(y)

+ (1 − d)ω(y)
)
dy

]
.

(3.7)

Differentiating (3.7) again, we obtain

ω′′(x) = −a2
[

bω(x)
1 + R + ω(x)

ω(x)
R + ω(x)

+ (1 − d)ω(x)
]

+
a3

2

∫ L

−L
e−a|x−y|

[ bω(y)
1 + R + ω(y)

ω(y)
R + ω(y)

+ (1 − d)ω(y)
]
dy. (3.8)

Substituting (3.6) into (3.8) and rearranging the terms, we obtain the nonlinear differential equation

ω′′ = a2
[
dω −

bω
1 + R + ω

ω

R + ω

]
, x ∈ [−L, L]

with mixed boundary conditions

ω′(−L) = aω(−L), ω′(L) = −aω(L),
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which are obtained by evaluating (3.7) at the boundary points. As a result, the existence of steady
state for (3.5) is equivalent to the existence of equilibrium of a second-order differential equation with
mixed boundary conditions.

Lemmas 4.1–4.3 in [28] and Theorem 3.1 indicate that if R ∈ (0,R∗∗), or equivalently,
∫ ω∗2

0
(F(ω) −

ω)dω > 0, then there exists a critical patch-size L∗ for (3.5). Next, we will employ phase-plane
methods to seek out the critical patch-size L∗. Now, suppose that ω̂ = ω′. Then we have

dω
dx = ω̂,
dω̂
dx = a2[dω − bω

1+R+ω
ω

R+ω

]
,

ω̂(−L) = aω(−L), ω̂(L) = −aω(L).

(3.9)

Obviously, (3.9) has three steady states, (0, 0), (ω∗1, 0), and (ω∗2, 0). It follows from (3.9) that

dω̂
dω

=
a2[dω − bω

1+R+ω
ω

R+ω

]
ω̂

. (3.10)

Integrating both sides of (3.10) yields two solution trajectories on the plane ω − ω̂:S 0 : ω̂2 = 2a2
∫ ω

0

[
dν − bν

1+R+ν
ν

R+ν

]
dν = 2a2(g(0) − g(ω)

)
, ω = 0⇒ ω̂ = 0,

S 1 : ω̂2 = 2a2
∫ ω∗2
ω

[ bν
1+R+ν

ν
R+ν
− dν

]
dν = 2a2(g(ω∗2) − g(ω)

)
, ω = ω∗2 ⇒ ω̂ = 0,

(3.11)

where g(ω) is given by (3.4). Clearly, the curves S 0 and S 1 are symmetric about the horizontal axis of
ω. From the Theorem 3.1, we obtain that if R ∈ (0,R∗∗),

∫ ω∗2
0

(F(ω)−ω)dω > 0 and
∫ ω∗1

0
(F(ω)−ω)dω <

0. Thus, there exists a positive value p0 ∈ (ω∗1, ω
∗
2) such that∫ p0

0
(F(ν) − ν)dν = 0.

For the case where 0 < ω < p0, S 0 does not intersect with S 1; otherwise, there exists ω̃ satisfying
0 < ω̃ < p0 such that 2a2(g(0) − g(ω̃)

)
= 2a2(g(ω∗2) − g(ω̃)

)
. This implies that g(ω∗2) − g(0) = 0, which

contradicts the fact that g(ω∗2) − g(0) > 0. Furthermore, from the expression of S 0, it is easy to see that

ω̂2 = 2a2
∫ ω

0
(ν − F(ν))dν ≤ 2a2

∫ ω

0
νdν = a2ω2.

This inequality shows that S 0 is located between the boundary lines of ω̂ = aω and ω̂ = −aω.
The trajectory S 1 has a point intersecting with the boundary condition ω̂ = aω due to

ω̂2 = 2a2(g(ω∗2) − g(0)
)
> 0. Denote the intersecting point as q. Then q satisfies

ω2 = 2
(
g(ω∗2) − g(ω)

)
. (3.12)

For every q ∈ (0, q), the trajectory (noted as S ) starting at (q, aq) and located between S 0 and S 1

corresponds to the equilibrium ω(x) of (3.9). Integrating both sides of (3.10) with ω ranging from q to
ω and ω̂ ranging from aq to ω̂, S is given by

ω̂2 = 2a2
∫ ω

q

(
ν − F(ν)

)
dν + a2q2 = 2a2[g(q) − g(ω)] + a2q2. (3.13)
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Let p(q) be the intersection point of trajectory S and the ω horizontal axis, as shown in Figure 3. Then
ω = p(q) satisfies the following equation:

2[g(q) − g(ω)] + q2 = 0.

Figure 3. Analysis of ω − ω̂ phase plane. S 0, S 1, and S are the trajectories for (3.11)
and (3.13), respectively. p0, ω∗2, and p(q) are, respectively, the intersection points of the
trajectories S 0, S 1, and S with the ω-axis.

Combining (3.12) and the first equation of (3.9), we have

dω
dx

= a
√

2[g(q) − g(ω)] + q2. (3.14)

If q < ω < p(q), −L < x < 0, then integrating (3.14) leads to

L(q) =

∫ p(q)

q

1

a
√

2[g(q) − g(ω)] + q2
dω. (3.15)

Here, L is defined as a function of q for 0 < q < q.
To establish our claim that (3.5) admits a critical patch-size, we now proceed to sequentially verify

the properties of L(q). As q→ q, p(q)→ ω∗2. It follows from (3.15) that

lim
q→q

L(q) =

∫ ω∗2

q

1

a
√

2[g(q) − g(ω)] + q2
dω.
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Take f (ω) = 2[g(q) − g(ω)] + q2 and expand f (ω) around ω = ω∗2:

f (ω) = f (ω∗2) +
∂ f (ω∗2)
∂ω

(ω − ω∗2) +
1
2!
∂2 f (ω∗2)
∂ω2 (ω − ω∗2)2 + ... .

Furthermore, the definition of q indicates that f (ω∗2) = 0 and f ′(ω∗2) = −2g′(ω∗2) = 0, from which the
order of zero of f (ω) for ω = ω∗2 is at least 2, and consequently, as q → q, L(q) → ∞. So, the similar
conclusion that limq→0 = ∞ can be obtained.

Arguing as before, it can be concluded that minimum patch-size

L∗ = inf
0<q<q

∫ p(q)

q

1

a
√

2[g(q) − g(ω)] + q2
dω, (3.16)

is always well defined, and there are at least two different corresponding values for q in (3.14) when
L > L∗. This implies that (3.5) admits at least two positive equilibria, and we denote the largest one as
ω∗(x).

Now, we have the following theorem regarding the positive steady ω∗(x).

Theorem 3.2. The following statements hold:

i. Suppose that R ∈ (0,R∗∗). Then (3.5) has a critical patch-size L∗ such that:

(a) If L > L∗, there exists a positive steady state ω∗(x) for (3.5) such that if ω∗(x) ≤ ω0(x) ≤ ω∗2,
then

lim
t→∞

ωt(x) = ω∗(x), x ∈ [−L, L];

(b) If L < L∗, there is no positive steady state, and the solutionωt(x) of (3.5) with 0 ≤ ω0(x) ≤ ω∗2
has a property that

lim
t→∞

ωt(x) = 0, x ∈ [−L, L];

ii. Suppose that R ∈ (R∗∗,R∗). Then for any L, there is no positive steady state for (3.5), and in this
case, for 0 ≤ ω0(x) ≤ ω∗2, we have

lim
t→∞

ωt(x) = 0, x ∈ [−L, L].

Proof. (i) If R ∈ (0,R∗∗), then from the previous discussion, we get
∫ ω∗2

0
(F(ω) − ω)dω > 0 and a

critical patch-size L∗ as shown in (3.16). By applying Theorem 4.1 in [28], the result is easy
to obtain.

(ii) A similar proof process can also lead to this result.

4. Numerical simulation

To numerically validate the results of (1.6), we set the following parameter values: b = 4, c = 1,
and d = 0.2. So, r∗ =

(b−d)2

4bcd = 4.5125 can be derived from (2.2).
In Case(i), wild mosquito population is unaffected by infected males. Figure 4(A) shows that the

number of wild mosquito population will eventually converge to the globally asymptotically stable
state ω∗1 = 19 for any initial value.
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If wild mosquito population is affected by the Wolbachia-infected males and the complete CI effect
occurs, the system exhibits complex dynamical behavior. In Case(ii), numerical simulations
demonstrate that (1.6) admits three equilibria, ω∗0 = 0, ω∗1 ≈ 0.4113, and ω∗2 ≈ 14.5888, when
r = 2 ∈ (0, r∗). As illustrated in Figure 4(B), the system displays a bistable structure with a critical
initial value threshold at ω∗1, above which (1.6) has an asymptotically stable positive equilibrium ω∗2
and below which (1.6) has a locally asymptotically stable zero equilibrium point. This result implies
that when the initial population of wild mosquito is relatively small, releasing a small number of
infected male mosquitoes can also successfully suppress them. In Case(iii), when r = r∗ = 4.5125, the
system exhibits two equilibria, ω∗0 = 0 and ω∗ = 4.9875. Figure 4(C) illustrates the corresponding
wild mosquito population trajectory ωt, demonstrating the local asymptotic stability of both
equilibria. Similar to Case(iv), the population dynamics depend critically on the initial wild mosquito
population. If the release number r = 6 ∈ (r∗,+∞) > r∗, (1.6) has a globally asymptotically extinction
state ω∗0 = 0; see Figure 4(D). The biological meaning of this is that whatever the initial value of wild
mosquito population is, it will eventually be suppressed by infected males if the release value r is
large enough.

Figure 4. (A)− (D) show the variation of ωt under four different conditions of Case(i)− (iv).

As for (3.5), we conduct numerical simulations by using the Laplace kernel K̃(x) with a = 1 and the
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growth function F(x) with b = 4, c = 1, and d = 0.2. According to Theorem 3.1, we obtain the critical
release threshold r∗∗ = R∗∗ ≈ 4.2697. When r ∈ (0, 4.2697), it has

∫ ω∗2
0

(F(ω) − ω)dω > 0. By selecting
r = 2 ∈ (0, r∗∗), we depict L with respect to q in Figure 5 based on Eq (3.15). In this case, the critical
patch-size L∗ ≈ 0.1954. If the habitat patch of wild mosquito population L exceeds L∗ ≈ 0.1954,
Theorem 3.2 asserts that (3.5) has a positive equilibrium, which implies that the suppression of infected
males fails. If not, the mosquito population suppression is successful.

Figure 5. q-L as determined by (3.15).

5. Concluding remarks

In this paper, we formulate an overlapping generation discrete model for the mosquito population
suppression. Under different release strategies, we have derived the threshold value r∗ for the releasing
of infected males. If r is greater than, equal to, or less than r∗, there may be zero, one, or two positive
equilibria in (1.6). It also means whether the wild mosquito population can be successfully suppressed
or not. By applying bifurcation theory, we have demonstrated that (1.6) undergoes a saddle-node
bifurcation at r = r∗. At last, if the birth rate b increases or the competition coefficient c decreases, the
releasing threshold r∗ will become larger. That is, more infected males need to be released to inhibit
the growth of wild mosquito population.

However, different from the previous discrete model, we also formulate an integro-difference
equation to predict the dynamics of wild mosquito population in both an unbounded and bounded
habitat patch. The results of the spatial model have shown that if the habitat patch of wild mosquito
population is considered as a one-dimensional unbounded domain, i.e., Ω = (−∞,+∞), then there
exists a nonincreasing traveling wave solution ωt(x) = W(x − st) with a spreading speed c such that
W(−∞) = ω∗2 and W(+∞) = 0. The speed of the traveling wave solution is related to the number of
infected males. We can prove that (3.2) possesses a threshold value r∗∗ ∈ (0, r∗), which determines the
direction of traveling waves. For r ∈ (0, r∗∗), (3.2) has a traveling wave solution moving rightward,
and for r ∈ (r∗∗, r∗), it has a traveling wave solution moving leftward. As for the bounded habitat
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patch Ω = [−L, L], if the number of infected males r ∈ (0, r∗∗), then (3.5) admits a critical patch-size
L∗, above which a locally attracting positive equilibrium ω∗(x) emerges for a suitable choice of initial
distribution and the Wolbachia invasion fails, and below which all the solution converges to zero and
the Wolbachia invasion is guaranteed to be successful. If r∗∗ < r < r∗, then all solutions of (3.5) tend
to zero for all L > 0. In contrast to the difference equation model, our analysis reveals two key
findings. One is that diffusion is beneficial to reduce the release threshold value of the infected males
in mosquito population suppression. The other is that if the release quantity of infected males is less
than r∗∗, the habitat of wild mosquito population needs to remain below the critical patch size L∗ for
the successful suppression.
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4. J. Kronen, M. Leuchner, T. Küpper, Zika and chikungunya in Europe 2100-a GIS
based model for risk estimation, Travel Med. Infect. Dis., 60 (2024), 102737.
https://doi.org/10.1016/j.tmaid.2024.102737

5. M. B. Thomas, Biological control of human disease vectors: a perspective on challenges and
opportunities, BioControl, 63 (2018), 61–69. https://doi.org/10.1007/s10526-017-9815-y

6. H. A. Flores, S. L. O’Neill, Controlling vector-borne diseases by releasing modified mosquitoes,
Nat. Rev. Microbiol., 16 (2018), 508–518. https://doi.org/10.1038/s41579-018-0025-0

7. I. Iturbe-Ormaetxe, T. Walker, S. L. O’Neill, Wolbachia and the biological control of mosquito-
borne disease, EMBO Rep., 12 (2011), 508–518. https://doi:10.1038/embor.2011.84

Electronic Research Archive Volume 33, Issue 12, 7528–7550.

https://dx.doi.org/https://doi.org/10.1093/femsle/fnx244
https://dx.doi.org/https://doi.org/10.1007/s00436-012-3226-x
https://dx.doi.org/https://doi.org/10.1186/s13071-022-05505-2
https://dx.doi.org/https://doi.org/10.1016/j.tmaid.2024.102737
https://dx.doi.org/https://doi.org/10.1007/s10526-017-9815-y
https://dx.doi.org/https://doi.org/10.1038/s41579-018-0025-0
https://dx.doi.org/https://doi:10.1038/embor.2011.84


7549

8. J. H. Yen, A. R. Barr, New hypothesis of the cause of cytoplasmic incompatibility in culex pipiens
L., Nature, 232 (1971), 657–658. https://doi.org/10.1038/232657a0

9. X. Zheng, D. Zhang, Y. Li, C. Yang, Y. Wu, X. Liang, et al., Incompatible and
sterile insect techniques combined eliminate mosquitoes, Nature, 572 (2019), 56–61.
https://doi.org/10.1038/s41586-019-1407-9

10. Y. Li, L. A. Baton, D. Zhang, J. Bouyer, A. G. Parker, A. A. Hoffmann, et al., Reply to:
Issues with combining incompatible and sterile insect techniques, Nature, 590 (2021), E3–E5.
https://doi.org/10.1038/s41586-020-03165-9

11. Z. Zhang, L. Chang, Q. Huang, R. Yan, B. Zheng, A mosquito population suppression model
with a saturated Wolbachia release strategy in seasonal succession, J. Math. Biol., 86 (2023), 51.
https://doi.org/10.1007/s00285-023-01888-7

12. B. Zheng, J. Yu, At most two periodic solutions for a switching mosquito population suppression
model, J. Dyn. Differ. Equations, 35 (2023), 2997–3009. https://doi.org/10.1007/s10884-021-
10125-y

13. Y. Li , X. Liu, A sex-structured model with birth pulse and release strategy for
the spread of Wolbachia in mosquito population, J. Theor. Biol., 448 (2018), 53–65.
https://doi.org/10.1016/j.jtbi.2018.04.001

14. R. Jiang, Z. Guo, Dynamics of discrete Ricker models on mosquito population suppression, Math.
Methods Appl. Sci., 47 (2024), 4821–4839. https://doi.org/10.1002/mma.9840

15. B. Zheng, J. Yu, Existence and uniqueness of periodic orbits in a discrete model on Wolbachia
infection frequency, Adv. Nonlinear Anal., 11 (2022), 212–224. https://doi.org/10.1515/anona-
2020-0194

16. J. Yu, J. Li, Discrete-time models for interactive wild and sterile mosquitoes with general time
steps, Math. Biosci., 346 (2022), 108797. https://doi.org/10.1016/j.mbs.2022.108797

17. Y. Li, J. Li, Discrete-time models for releases of sterile mosquitoes with Beverton-Holt-type of
survivability, Ric. Mat., 67 (2018), 141–162. https://doi.org/10.1007/s11587-018-0361-4

18. Q. Chen, Z. Teng, F. Wang, Fold-flip and strong resonance bifurcations of a
discrete-time mosquito model, Chaos, Solitons Fractals, 144 (2021), 110704.
https://doi.org/10.1016/j.chaos.2021.110704

19. Y. Liu, Z. Guo, M. S. El, L. Wang, A Wolbachia infection model with free boundary, J. Biol. Dyn.,
14 (2020), 515–542. https://doi.org/10.1080/17513758.2020.1784474

20. K. Wang, H. Wang, H. Zhao, On the role of advection in a spatial epidemic
model with general boundary conditions, J. Differ. Equations, 386 (2024), 45–79.
https://doi.org/10.1016/j.jde.2023.12.016

21. K. Wang, H. Wang, H. Zhao, Global threshold dynamics of a spatial chemotactic mosquito-borne
disease model, IMA J. Appl. Math., 88 (2023), 354–377. https://doi.org/10.1093/imamat/hxad009

22. J. Yu, J. Li, Discrete-time models for interactive wild and transgenic sterile mosquitoes, J. Differ.
Equations Appl., 30 (2024), 1590–1609. https://doi.org/10.1080/10236198.2024.2325485

23. R. J. H. Beverton, S. J. Holt, On the Dynamics of Exploited Fish Populations, 1st edition, Springer
Netherlands, London, 2012. https://doi.org/10.1007/978-94-011-2106-4

Electronic Research Archive Volume 33, Issue 12, 7528–7550.

https://dx.doi.org/https://doi.org/10.1038/232657a0
https://dx.doi.org/https://doi.org/10.1038/s41586-019-1407-9
https://dx.doi.org/https://doi.org/10.1038/s41586-020-03165-9
https://dx.doi.org/https://doi.org/10.1007/s00285-023-01888-7
https://dx.doi.org/https://doi.org/10.1007/s10884-021-10125-y
https://dx.doi.org/https://doi.org/10.1007/s10884-021-10125-y
https://dx.doi.org/https://doi.org/10.1016/j.jtbi.2018.04.001
https://dx.doi.org/https://doi.org/10.1002/mma.9840
https://dx.doi.org/https://doi.org/10.1515/anona-2020-0194
https://dx.doi.org/https://doi.org/10.1515/anona-2020-0194
https://dx.doi.org/https://doi.org/10.1016/j.mbs.2022.108797
https://dx.doi.org/https://doi.org/10.1007/s11587-018-0361-4
https://dx.doi.org/https://doi.org/10.1016/j.chaos.2021.110704
https://dx.doi.org/https://doi.org/10.1080/17513758.2020.1784474
https://dx.doi.org/https://doi.org/10.1016/j.jde.2023.12.016
https://dx.doi.org/https://doi.org/10.1093/imamat/hxad009
https://dx.doi.org/https://doi.org/10.1080/10236198.2024.2325485
https://dx.doi.org/https://doi.org/10.1007/978-94-011-2106-4


7550

24. D. Zhang, R. S. Lees, Z. Xi, J. R. L. Gilles, K. Bourtzis, Combining the sterile insect technique
with Wolbachia-based approaches: II-a safer approach to Aedes albopictus population suppression
programmes, designed to minimize the consequences of inadvertent female release, PLoS One, 10
(2015), e0135194. https://doi.org/10.1371/journal.pone.0135194

25. F. Lutscher, Integrodifference Equations in Spatial Ecology, 1st edition, Springer, Cham, 2019.
https://doi.org/10.1007/978-3-030-29294-2

26. R. Lui, Existence and stability of travelling wave solutions of a nonlinear integral operator, J.
Math. Biol., 16 (1983), 199–220. https://doi.org/10.1007/BF00276502

27. M. H. Wang, M. Kot, M. G. Neubert, Integrodifference equations, Allee effects, and invasions, J.
Math. Biol., 44 (2002), 150–168. https://doi.org/10.1007/s002850100116

28. B. Li, G. Otto, Wave speed and critical patch size for integro-difference equations with a strong
Allee effect, J. Math. Biol., 85 (2022), 59. https://doi.org/10.1007/s00285-022-01814-3

c© 2025 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(https://creativecommons.org/licenses/by/4.0)

Electronic Research Archive Volume 33, Issue 12, 7528–7550.

https://dx.doi.org/https://doi.org/10.1371/journal.pone.0135194
https://dx.doi.org/https://doi.org/10.1007/978-3-030-29294-2
https://dx.doi.org/https://doi.org/10.1007/BF00276502
https://dx.doi.org/https://doi.org/10.1007/s002850100116
https://dx.doi.org/https://doi.org/10.1007/s00285-022-01814-3
https://creativecommons.org/licenses/by/4.0

	Introduction
	The case of the difference equation model
	Positivity and boundedness
	Equilibria and stability
	Case(i): R=0
	Case(ii): 0<R<R*
	Case(iii): R=R*
	Case(iv): R>R*

	Saddle node bifurcation

	The case of the IDE model
	Traveling wave solutions to (3.1)
	Critical patch-size for the Laplace kernel in a bounded domain

	Numerical simulation
	Concluding remarks

