Theory article Special Issues

Existence of positive solution for critical Schrödinger-Poisson system on the first Heisenberg group

  • Published: 21 November 2025
  • In this article, we consider a class of critical Schrödinger-Poisson type systems on the first Heisenberg group. We demonstrate that the system admits a positive ground state solution by utilizing the concentration compactness principle and critical point theory. The system has double critical nonlinearity on the Heisenberg group, which is the novelty and peculiarity of this paper. To some extent, we extend some previous results.

    Citation: Xuechun Zheng, Lifeng Guo, Sihua Liang. Existence of positive solution for critical Schrödinger-Poisson system on the first Heisenberg group[J]. Electronic Research Archive, 2025, 33(11): 7052-7064. doi: 10.3934/era.2025311

    Related Papers:

  • In this article, we consider a class of critical Schrödinger-Poisson type systems on the first Heisenberg group. We demonstrate that the system admits a positive ground state solution by utilizing the concentration compactness principle and critical point theory. The system has double critical nonlinearity on the Heisenberg group, which is the novelty and peculiarity of this paper. To some extent, we extend some previous results.



    加载中


    [1] V. Benci, D. Fortunato, An eigenvalue problem for the Schrödinger-Maxwell equations, Topol. Methods Nonlinear Anal., 11 (1998), 283–293.
    [2] A. Ambrosetti, D. Ruiz, Multiple bound states for the Schrödinger-Poisson problem, Commun. Contemp. Math., 10 (2008), 391–404. https://doi.org/10.1142/S021919970800282X doi: 10.1142/S021919970800282X
    [3] V. Benci, D. Fortunato, Solitary waves of the nonlinear Klein-Gordon equation coupled with the Maxwell equations, Rev. Math. Phys., 14 (2002), 409–420. https://doi.org/10.1142/S0129055X02001168 doi: 10.1142/S0129055X02001168
    [4] L. Cherfils, Y. Ilyasov, On the stationary solutions of generalized reaction diffusion equations with $p \& q$-Laplacian, Commun. Pure Appl. Anal., 4 (2005), 9–22. https://doi.org/10.3934/cpaa.2005.4.9 doi: 10.3934/cpaa.2005.4.9
    [5] P. Cartier, Quantum mechanical commutation relations and theta functions, in Algebraic Groups and Discontinuous Subgroups, American Mathematical Society, (1966), 361–383. https://doi.org/10.1090/pspum/009/0216825
    [6] J. Chen, X. Du, E. W. Lentz, D. J. E. Marsh, J. C. Niemeyer, New insights into the formation and growth of boson stars in dark matter halos, Phys. Rev. D, 104 (2021), 083022. https://doi.org/10.1103/PhysRevD.104.083022 doi: 10.1103/PhysRevD.104.083022
    [7] T. Zimmermann, N. Schwersenz, M. Pietroni, S. Wimberger, One-dimensional fuzzy dark matter models: Structure growth and asymptotic dynamics, Phys. Rev. D, 103 (2021), 083018. https://doi.org/10.1103/PhysRevD.103.083018 doi: 10.1103/PhysRevD.103.083018
    [8] Y. An, H. Liu, The Schrödinger-Poisson type system involving a critical nonlinearity on the first Heisenberg group, Isr. J. Math., 235 (2020), 385–411. https://doi.org/10.1007/s11856-020-1961-8 doi: 10.1007/s11856-020-1961-8
    [9] S. Bai, Y. Song, D. D. Repovš, On $p$-Laplacian Kirchhoff-Schrödinger-Poisson type systems with critical growth on the Heisenberg group, Electron. Res. Arch., 31 (2023), 5749–5765. https://doi.org/10.3934/era.2023292 doi: 10.3934/era.2023292
    [10] X. He, D. Wang, Multiple positive bound state solutions for fractional Schrödinger-Poisson system with critical nonlocal term, J. Geom. Anal., 33 (2023), 194. https://doi.org/10.1007/s12220-023-01247-4 doi: 10.1007/s12220-023-01247-4
    [11] W. Jiang, J. Liao, Multiple positive solutions for fractional Schrödinger-Poisson system with doubly critical exponents, Qual. Theory Dyn. Syst., 22 (2023), 25. https://doi.org/10.1007/s12346-022-00726-3 doi: 10.1007/s12346-022-00726-3
    [12] J. Lan, X. He, On a fractional Schrödinger-Poisson system with doubly critical growth and a steep potential well, J. Geom. Anal., 33 (2023), 187. https://doi.org/10.1007/s12220-023-01238-5 doi: 10.1007/s12220-023-01238-5
    [13] Y. Meng, X. He, Multiplicity of normalized solutions for the fractional Schrödinger-Poisson system with doubly critical growth, Acta Math. Sci., 44 (2024), 997–1019. https://doi.org/10.1007/s10473-024-0313-x doi: 10.1007/s10473-024-0313-x
    [14] Y. Meng, X. He, Normalized solutions for the Schrödinger-Poisson system with doubly critical growth, Topol. Methods Nonlinear Anal., 62 (2023), 509–534. https://doi.org/10.12775/TMNA.2022.075 doi: 10.12775/TMNA.2022.075
    [15] Z. Guo, Q. Shi, A Schrödinger-Poisson system with the critical growth on the first Heisenberg group, J. Contemp. Math. Anal., 58 (2023), 196–207. https://doi.org/10.3103/S1068362323030056 doi: 10.3103/S1068362323030056
    [16] N. Garofalo, E. Lanconelli, Frequency functions on the Heisenberg group, the uncertainty principle and unique continuation, Ann. Inst. Fourier, 40 (1990), 313–356. https://doi.org/10.5802/aif.1215 doi: 10.5802/aif.1215
    [17] S. Liang, P. Pucci, X. Sun, Normalized solutions for critical Schrödinger-Poisson system involving the $p$-subLaplacian in the Heisenberg group, Appl. Math. Lett., 158 (2024), 109245. https://doi.org/10.1016/j.aml.2024.109245 doi: 10.1016/j.aml.2024.109245
    [18] S. Liang, P. Pucci, X. Sun, Schrödinger-Poisson systems with the double critical growth on the first Heisenberg group, Appl. Math. Lett., 172 (2026), 109696. https://doi.org/10.1016/j.aml.2025.109696 doi: 10.1016/j.aml.2025.109696
    [19] S. P. Ivanov, D. N. Vassilev, Extremals for the Sobolev Inequality and the Quaternionic Contact Yamabe Problem, World Scientific, 2011. https://doi.org/10.1142/7647
    [20] A. Loiudice, Improved Sobolev inequalities on the Heisenberg group, Nonlinear Anal. Theory Methods Appl., 62 (2005), 953–962. https://doi.org/10.1016/j.na.2005.04.015 doi: 10.1016/j.na.2005.04.015
    [21] G. P. Leonardi, S. Masnou, On the isoperimetric problem in the Heisenberg group $\mathbb{H}^n$, Ann. Mat. Pura Appl., 184 (2005), 533–553. https://doi.org/10.1007/s10231-004-0127-3 doi: 10.1007/s10231-004-0127-3
    [22] D. Jerison, J. M. Lee, Intrinsic CR normal coordinates and the CR Yamabe problem, J. Differ. Geom., 29 (1989), 303–343. https://doi.org/10.4310/jdg/1214442877 doi: 10.4310/jdg/1214442877
    [23] G. B. Folland, E. M. Stein, Estimates for the $\bar{\partial}_b$ complex and analysis on the Heisenberg group, Commun. Pure Appl. Math., 27 (1974), 429–522. https://doi.org/10.1002/cpa.3160270403 doi: 10.1002/cpa.3160270403
    [24] P. L. Lions, The concentration-compactness principle in the calculus of variations. The limit case, Part 1, Rev. Mat. Iberoam., 1 (1985), 145–201. https://doi.org/10.4171/rmi/6 doi: 10.4171/rmi/6
    [25] P. H. Rabinowitz, Minimax methods in critical point theory with applications to differential equations, 1986. Available from: https://api.semanticscholar.org/CorpusID: 120749030.
    [26] X. Sun, Y. Song, S. Liang, On the critical Choquard-Kirchhoff problem on the Heisenberg group, Adv. Nonlinear Anal., 12 (2023), 210–236. https://doi.org/10.1515/anona-2022-0270 doi: 10.1515/anona-2022-0270
    [27] I. Ekeland, On the variational principle, J. Math. Anal. Appl., 47 (1974), 324–353. https://doi.org/10.1016/0022-247X(74)90025-0
    [28] J. M. Bony, Principe du Maximum, Inégalité de Harnack et unicité du problème de Cauchy pour les opérateurs elliptiques dégénérés, Ann. Inst. Fourier, 19 (1969), 277–304. https://doi.org/10.5802/aif.319 doi: 10.5802/aif.319
    [29] I. Brindelli, A. Cutri, A semi-linear problem for the Heisenberg Laplacian, Rend. Semin. Mat. Univ. Padova, 94 (1995), 137–153. Available from: https://www.numdam.org/item/RSMUP_1995__94__137_0/.
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(173) PDF downloads(23) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog