This manuscript researches the optimal portfolio of the defined contribution (DC) pension plan, comprising a stock index and cash within a dynamic model that incorporates uncertainty regarding climate change. The global temperature is supposed to have an impact on the stock index price, with the probability distribution of the global temperature considered uncertain. To address this uncertainty, we apply Girsanov's theorem for measure transformation. The optimal investment strategy under climate uncertainty and stochastic interest rates is derived in closed form. We further demonstrate that climate uncertainty can result in specific losses in returns. We discover through numerical analysis that the investment in the stock index is especially sensitive to climate uncertainty.
Citation: Zihui Wang, Ke Su, Peiguang Wang. Optimal portfolio of defined contribution pension plan with climate risk under model uncertainty[J]. Electronic Research Archive, 2025, 33(11): 7034-7051. doi: 10.3934/era.2025310
This manuscript researches the optimal portfolio of the defined contribution (DC) pension plan, comprising a stock index and cash within a dynamic model that incorporates uncertainty regarding climate change. The global temperature is supposed to have an impact on the stock index price, with the probability distribution of the global temperature considered uncertain. To address this uncertainty, we apply Girsanov's theorem for measure transformation. The optimal investment strategy under climate uncertainty and stochastic interest rates is derived in closed form. We further demonstrate that climate uncertainty can result in specific losses in returns. We discover through numerical analysis that the investment in the stock index is especially sensitive to climate uncertainty.
| [1] |
M. Andersson, P. Bolton, F. Samama, Hedging Climate Risk, Financ. Anal. J., 72 (2016), 13–32. https://doi.org/10.2469/faj.v72.n3.4 doi: 10.2469/faj.v72.n3.4
|
| [2] |
H. Hong, F. W. Li, J. M. Xu, Climate risks and market efficiency, J. Econom., 208 (2019), 265–281. https://doi.org/10.1016/j.jeconom.2018.09.015 doi: 10.1016/j.jeconom.2018.09.015
|
| [3] |
R. F. Engle, S. Giglio, B. Kelly, H. Lee, J. Stroebel, Hedging climate change news, Rev. Financ. Stud., 33 (2020), 1184–1216. https://doi.org/10.1093/rfs/hhz072 doi: 10.1093/rfs/hhz072
|
| [4] |
E. Vigna, S. Haberman, Optimal investment strategy for defined contribution pension schemes, Insur. Math. Econ., 28 (2001), 233–262. https://doi.org/10.1016/S0167-6687(00)00077-9 doi: 10.1016/S0167-6687(00)00077-9
|
| [5] |
R. Gerrard, S. Haberman, E. Vigna, Optimal investment choices post-retirement in a defined contribution pension scheme, Insur. Math. Econ., 35 (2004), 321–342. https://doi.org/10.1016/j.insmatheco.2004.06.002 doi: 10.1016/j.insmatheco.2004.06.002
|
| [6] |
J. F. Boulier, S. J. Huang, G. Taillard, Optimal management under stochastic interest rates: the case of a protected defined contribution pension fund, Insur. Math. Econ., 28 (2001), 173–189. https://doi.org/10.1016/S0167-6687(00)00073-1 doi: 10.1016/S0167-6687(00)00073-1
|
| [7] |
G. Deelstra, M. Grasselli, P. F. Koehl, Optimal investment strategies in the presence of a minimum guarantee, Insur. Math. Econ., 33 (2003), 189–207. https://doi.org/10.1016/S0167-6687(03)00153-7 doi: 10.1016/S0167-6687(03)00153-7
|
| [8] |
G. H. Guan, Z. X. Liang, Optimal management of DC pension plan in a stochastic interest rate and stochastic volatility framework, Insur. Math. Econ., 57 (2014), 58–66. https://doi.org/10.1016/j.insmatheco.2014.05.004 doi: 10.1016/j.insmatheco.2014.05.004
|
| [9] |
L. Zhang, D. P. Li, Y. Z. Lai, Equilibrium investment strategy for a defined contribution pension plan under stochastic interest rate and stochastic volatility, J. Comput. Appl. Math., 368 (2020), 112536. https://doi.org/10.1016/j.cam.2019.112536 doi: 10.1016/j.cam.2019.112536
|
| [10] |
J. Y. Sun, Y. J. Li, L. Zhang, Robust portfolio choice for a defined contribution pension plan with stochastic income and interest rate, Commun. Stat.-Theory Methods, 47 (2018), 4106–4130. https://doi.org/10.1080/03610926.2017.1367815 doi: 10.1080/03610926.2017.1367815
|
| [11] |
P. Wang, Z. F. Li, Robust optimal investment strategy for an AAM of DC pension plans with stochastic interest rate and stochastic volatility, Insur. Math. Econ., 80 (2018), 67–83. https://doi.org/10.1016/j.insmatheco.2018.03.003 doi: 10.1016/j.insmatheco.2018.03.003
|
| [12] |
R. Josa-Fombellida, J. P. Rincón-Zapatero, Optimal asset allocation for aggregated defined benefit pension funds with stochastic interest rates, Eur. J. Oper. Res., 201 (2010), 211–221. https://doi.org/10.1016/j.ejor.2009.02.021 doi: 10.1016/j.ejor.2009.02.021
|
| [13] |
M. Barnett, W. Brock, L. P. Hansen, Pricing uncertainty induced by climate change, Rev. Financ. Stud., 33 (2020), 1024–1066. https://doi.org/10.1093/rfs/hhz144 doi: 10.1093/rfs/hhz144
|
| [14] |
K. Y. Lee, J. Cho, Measuring Chinese climate uncertainty, Int. Rev. Econ. Financ., 88 (2023), 891–901. https://doi.org/10.1016/j.iref.2023.07.004 doi: 10.1016/j.iref.2023.07.004
|
| [15] |
L. P. Ye, The effect of climate news risk on uncertainties, Technol. Forecasting Social Change, 178 (2022), 121586. https://doi.org/10.1016/j.techfore.2022.121586 doi: 10.1016/j.techfore.2022.121586
|
| [16] |
M. L. Weitzman, What is the "damages function" for global warming–-and what difference might it make?, Clim. Change Econ., 1 (2010), 57–69. https://doi.org/10.1142/S2010007810000042 doi: 10.1142/S2010007810000042
|
| [17] |
A. Rubstov, W. Xu, A. Šević, Ž. Šević, Price of climate risk hedging under uncertainty, Technol. Forecasting Social Change, 165 (2021), 120430. https://doi.org/10.1016/j.techfore.2020.120430 doi: 10.1016/j.techfore.2020.120430
|
| [18] |
A. Rubstov, S. Shen, Dynamic portfolio decisions with climate risk and model uncertainty, J. Sustainable Finance Investment, 14 (2024), 344–365. https://doi.org/10.1080/20430795.2022.2045890 doi: 10.1080/20430795.2022.2045890
|
| [19] |
K. D. Daniel, R. B. Litterman, G. Wagner, Declining CO2 price paths, Proc. Natl. Acad. Sci. U.S.A., 116 (2019), 20886–20891. https://doi.org/10.1073/pnas.1817444116 doi: 10.1073/pnas.1817444116
|