This paper examines the controllability of the second-order evolution problems in Banach spaces in the presence of a nonlinear term depending on both the solution and its first derivative, and of a time-dependent linear term. The first goal of the paper is to introduce a definition of controllability for such problems that considers not only the solution but also its derivative at the final point using the same control function. Subsequently, the paper addresses the second goal: Finding conditions that guarantee the solvability of the controllability problem. The main statements of the paper are proved by the combination of Schauder fixed point theorem, approximate solvability, and weak topology. Using the method of approximate solvability allows us to avoid any compactness restrictions, and the results are therefore proved under non restrictive conditions imposed on the fundamental operator as well as on the right-hand side.
Citation: Martina Pavlačková, Valentina Taddei. Controllability of second-order evolution systems in Banach spaces[J]. Electronic Research Archive, 2025, 33(10): 5937-5964. doi: 10.3934/era.2025264
This paper examines the controllability of the second-order evolution problems in Banach spaces in the presence of a nonlinear term depending on both the solution and its first derivative, and of a time-dependent linear term. The first goal of the paper is to introduce a definition of controllability for such problems that considers not only the solution but also its derivative at the final point using the same control function. Subsequently, the paper addresses the second goal: Finding conditions that guarantee the solvability of the controllability problem. The main statements of the paper are proved by the combination of Schauder fixed point theorem, approximate solvability, and weak topology. Using the method of approximate solvability allows us to avoid any compactness restrictions, and the results are therefore proved under non restrictive conditions imposed on the fundamental operator as well as on the right-hand side.
| [1] | A. W. Leung, Systems of Nonlinear Partial Differential Equations: Applications to Biology and Engineering, Springer Science & Business Media, 49 (2013). |
| [2] | T. Li, T. Qin, Physics and Partial Differential Equations, Volume 1, Society for Industrial and Applied Mathematics, 2012. |
| [3] | S. L. Sobolev, Partial Differential Equations of Mathematical Physics: Adiwes International Series in Mathematics, Elsevier, 2014. |
| [4] |
I. Benedetti, S. Ciani, Evolution equations with nonlocal initial conditions and superlinear growth, J. Differ. Equations, 318 (2022), 270–297. https://doi.org/10.1016/j.jde.2022.02.030 doi: 10.1016/j.jde.2022.02.030
|
| [5] | T. Cardinali, G. Duricchi, Further study on second order nonlocal problems monitored by an operator: an approach without compactness, Electron. J. Qual. Theory Differ. Equations, 2023 (2023), 1–34. |
| [6] |
H. R. Henríquez, J. G. Mesquita, H. C. dos Reis, Existence results for abstract functional differential equations with infinite state-dependent delay and applications, Math. Ann., 388 (2024), 1817–1840. https://doi.org/10.1007/s00208-022-02561-y doi: 10.1007/s00208-022-02561-y
|
| [7] |
L. Malaguti, S. Perrotta, Evolution equations with nonlocal multivalued Cauchy problems, Commun. Nonlinear Sci. Numer. Simul., 130 (2024), 107767. https://doi.org/10.1016/j.cnsns.2023.107767 doi: 10.1016/j.cnsns.2023.107767
|
| [8] |
J. Zhang, X. Yang, S. Wang, The ADI difference and extrapolation scheme for high-dimensional variable coefficient evolution equations, Electron. Res. Arch., 33 (2025), 3305–3327. https://doi.org/10.3934/era.2025146 doi: 10.3934/era.2025146
|
| [9] |
J. Andres, L. Malaguti, M. Pavlačková, Dirichlet problem in Banach spaces: the bound sets approach, Boundary Value Probl., 2013 (2013), 1–21. https://doi.org/10.1186/1687-2770-2013-25 doi: 10.1186/1687-2770-2013-25
|
| [10] | J. Andres, L. Malaguti, M. Pavlačková, A Scorza-Dragoni approach to second-order boundary value problems in abstract spaces, Appl. Math. Inf. Sci., 6 (2012), 29–44. |
| [11] | J. Andres, L. Malaguti, M. Pavlačková, Scorza-Dragoni approach to Dirichlet problem in Banach spaces, Boundary Value Probl., 2014 (2014). https://doi.org/10.1186/1687-2770-2014-23 |
| [12] | M. Benchohra, E. Gatsori, S. K. Ntouyas, Existence results for functional semilinear damped integrodifferential equations, Libertas Math., 26 (2006), 97–108. |
| [13] |
X. Hao, L. Liu, Mild solution of second-order impulsive integro-differential evolution equations of Volterra type in Banach spaces, Qual. Theory Dyn. Syst., 19 (2020), 1–18. https://doi.org/10.1007/s12346-020-00345-w doi: 10.1007/s12346-020-00345-w
|
| [14] |
H. L. Tidke, M. B. Dhakne, Global existence of mild solutions of second order nonlinear Volterra integrodifferential equations in Banach spaces, Differ. Equations Dyn. Syst., 17 (2009), 331–342. https://doi.org/10.1007/s12591-009-0024-8 doi: 10.1007/s12591-009-0024-8
|
| [15] |
E. H. Morales, A second-order impulsive Cauchy problem, Int. J. Math. Math. Sci., 31 (2002), 451–461. https://doi.org/10.1155/S0161171202012735 doi: 10.1155/S0161171202012735
|
| [16] |
M. Mursaleen, A. Allahyari, H. A. Kayvanloo, A. S. Haghighi, R. Allahyari, Mild solutions of semilinear evolution equation and their applications in second-order hyperbolic PDE, Math. Methods Appl. Sci., 46 (2023), 10719–10729. https://doi.org/10.1002/mma.9148 doi: 10.1002/mma.9148
|
| [17] | M. Schulz, Control Theory in Physics and Other Fields of Science: Concepts, Tools, and Applications, Springer Science & Business Media, 215 (2006). |
| [18] |
J. Werschnik, E. K. U. Gross, Quantum optimal control theory, J. Phys. B: At. Mol. Opt. Phys., 40 (2007), R175. https://doi.org/10.1088/0953-4075/40/18/R01 doi: 10.1088/0953-4075/40/18/R01
|
| [19] |
M. Li, J. Ma, Approximate controllability of second-order impulsive functional differential system with infinite delay in Banach spaces, J. Appl. Anal. Comput., 6 (2016), 492–514. https://doi.org/10.11948/2016036 doi: 10.11948/2016036
|
| [20] |
M. Pavlačková, V. Taddei, On a new concept of controllability of second-order semilinear differential equations in Banach spaces, Math. Control Relat. Fields, 15 (2025), 1150–1173. https://doi.org/10.3934/mcrf.2025002 doi: 10.3934/mcrf.2025002
|
| [21] |
G. Arthi, K. Balachandran, Controllability of second-order impulsive evolution systems with infinite delay, Nonlinear Anal. Hybrid Syst., 11 (2014), 139–153. https://doi.org/10.1016/j.nahs.2013.08.001 doi: 10.1016/j.nahs.2013.08.001
|
| [22] |
K. Balachandran, D. G. Park, P. Manimegalai, Controllability of second-order integrodifferential evolution systems in Banach spaces, Comput. Math. Appl., 49 (2005), 1623–1642. https://doi.org/10.1016/j.camwa.2005.03.001 doi: 10.1016/j.camwa.2005.03.001
|
| [23] |
V. Vijayakumar, R. Murugesu, Controllability for a class of second-order evolution differential inclusions without compactness, Appl. Anal., 98 (2019), 1367–1385. https://doi.org/10.1080/00036811.2017.1422727 doi: 10.1080/00036811.2017.1422727
|
| [24] | V. Vijayakumar, R. Murugesu, R. Poongodi, S. Dhanalakshmi, Controllability of second-order impulsive nonlocal Cauchy problem via measure of noncompactness, Mediterr. J. Math., 14 (2017). https://doi.org/10.1007/s00009-016-0813-6 |
| [25] |
R. Triggiani, A note on the lack of exact controllability for mild solutions in Banach spaces, SIAM J. Control Optim., 15 (1977), 407–411. https://doi.org/10.1137/0315028 doi: 10.1137/0315028
|
| [26] |
R. Triggiani, Addendum: A note on the lack of exact controllability for mild solutions in Banach spaces, SIAM J. Control Optim., 18 (1980), 98–99. https://doi.org/10.1137/0318007 doi: 10.1137/0318007
|
| [27] |
M. Pavlačková, V. Taddei, The damped vibrating string equation on the positive half-line, Commun. Nonlinear Sci. Numer. Simul., 126 (2023), 107497. https://doi.org/10.1016/j.cnsns.2023.107497 doi: 10.1016/j.cnsns.2023.107497
|
| [28] | E. Zuazua, Exact controllability for the semilinear wave equation, J. Math. Pures Appl., 69 (1990), 1–31. |
| [29] |
E. Zuazua, Exact controllability for semilinear wave equations in one space dimension, Ann. Inst. Henri Poincare C, Anal. Non Lineaire, 10 (1993), 109–129. https://doi.org/10.1016/S0294-1449(16)30221-9 doi: 10.1016/S0294-1449(16)30221-9
|
| [30] | E. Zuazua, D. B. Tudares, Exact Controllability and Stabilization of the Wave Equation, Springer, Cham, 2024. https://doi.org/10.1007/978-3-031-58857-0 |
| [31] | I. Singer, Bases in Banach Spaces I., Springer Verlag, Berlin, Heildelberg, New York, 1970. |
| [32] | J. Lindenstrauss, L. Tzafriri, Classical Banach Spaces Pt. 1. Sequence Spaces. Ergebnisse der Mathematik und ihrer Grenzgebiete, Springer-Verlag, Berlin-New York, 1977. |
| [33] | W. B. Johnson, J. Lindenstrauss, Handbook of the Geometry of Banach Spaces Vol I., North-Holland Publishing Co., Amsterdam, 2001. |
| [34] |
I. Benedetti, N. V. Loi, L. Malaguti, V. Taddei, Nonlocal diffusion second order partial differential equations, J. Differ. Equations, 262 (2017), 1499–1523. https://doi.org/10.1016/j.jde.2016.10.019 doi: 10.1016/j.jde.2016.10.019
|
| [35] |
I. Benedetti, N. V. Loi, V. Taddei, An approximation solvability method for nonlocal semilinear differential problems in Banach spaces, Discrete Contin. Dyn. Syst., 37 (2017), 2977–2998. https://doi.org/10.3934/dcds.2017128 doi: 10.3934/dcds.2017128
|
| [36] |
L. Malaguti, S. Perrotta, V. Taddei, $ L^p $ exact controllability of partial differential equations with nonlocal terms, Evol. Equations Control Theory, 11 (2022), 1533–1564. https://doi.org/10.3934/eect.2021053 doi: 10.3934/eect.2021053
|
| [37] |
T. Kato, Integration of the equation of evolution in a Banach space, J. Math. Soc. Jpn., 5 (1953), 208–234. https://doi.org/10.2969/jmsj/00520208 doi: 10.2969/jmsj/00520208
|
| [38] | M. Kozak, A fundamental solution of a second-order differential equation in a Banach space, Univ. Iagel. Acta Math., 32 (1995), 275–289. |
| [39] | M. Kozak, An abstract linear second-order temporally inhomogeneous differential equation, Univ. Iagel. Acta Math., 31 (1994), 21–30. |
| [40] |
H. R. Henríquez, M. Pierri, V. Rolnik, Pseudo S-asymptotically periodic solutions of second-order abstract Cauchy problems, Appl. Math. Comput., 274 (2016), 590–603. https://doi.org/10.1016/j.amc.2015.11.034 doi: 10.1016/j.amc.2015.11.034
|
| [41] |
E. Ipocoana, V. Taddei, On multiplicative time-dependent perturbations of semigroups and cosine families generators, Discrete Contin. Dyn. Syst. - Ser. S, 18 (2025), 1618–1635. https://doi.org/10.3934/dcdss.2024154 doi: 10.3934/dcdss.2024154
|
| [42] | M. Kamenskii, V. Obukhovskii, P. Zecca, Condensing Multivalued Maps and Semilinear Differential Inclusions in Banach Spaces, de Gruyter, Berlin, 2001. |
| [43] |
S. Bochner, A. E. Taylor, Linear functionals on certain spaces of abstractly-valued functions, Ann. Math., 39 (1938), 913–944. https://doi.org/10.2307/1968472 doi: 10.2307/1968472
|
| [44] |
J. Diestel, W. M. Ruess, W. Schachermayer, Weak compactness in $L^1(\mu, X)$, Proc. Am. Math. Soc., 118 (1993), 447–453. https://doi.org/10.2307/2160321 doi: 10.2307/2160321
|
| [45] |
T. Cardinali, S. Gentili, An existence theorem for a non-autonomous second order nonlocal multivalued problem, Stud. Univ. Babes-Bolyai Math., 62 (2017), 101–117. https://doi.org/10.24193/subbmath.2017.0008 doi: 10.24193/subbmath.2017.0008
|
| [46] |
I. Benedetti, L. Malaguti, V. Taddei, Nonlocal semilinear evolution equations without strong compactness: theory and applications, Boundary Value Probl., 2013 (2013), 60. https://doi.org/10.1186/1687-2770-2013-60 doi: 10.1186/1687-2770-2013-60
|