Research article Special Issues

Domain decomposition based physics and equality constrained neural networks for the Helmholtz equation

  • Published: 15 October 2025
  • Overlapping and non-overlapping domain decomposition methods are proposed for the physics and equality constrained neural networks (PECANN) to solve the Helmholtz equation. A coarse component is introduced using a small neural network defined on the whole domain with carefully designed loss functions. This coarse component supplies both function values and normal derivatives on the subdomain interfaces to the local solvers, ensuring the scalability of the algorithms; the number of outer iterations remains nearly constant as the number of subdomains increases. Numerical experiments conducted with a wide range of wavenumbers over both standard and enlarged domains demonstrate the efficiency and scalability of the proposed algorithms.

    Citation: Sungmin Won, Evan Olson, Xuemin Tu. Domain decomposition based physics and equality constrained neural networks for the Helmholtz equation[J]. Electronic Research Archive, 2025, 33(10): 5965-5989. doi: 10.3934/era.2025265

    Related Papers:

  • Overlapping and non-overlapping domain decomposition methods are proposed for the physics and equality constrained neural networks (PECANN) to solve the Helmholtz equation. A coarse component is introduced using a small neural network defined on the whole domain with carefully designed loss functions. This coarse component supplies both function values and normal derivatives on the subdomain interfaces to the local solvers, ensuring the scalability of the algorithms; the number of outer iterations remains nearly constant as the number of subdomains increases. Numerical experiments conducted with a wide range of wavenumbers over both standard and enlarged domains demonstrate the efficiency and scalability of the proposed algorithms.



    加载中


    [1] I. M. Babuška, S. A. Sauter, Is the pollution effect of the FEM avoidable for the Helmholtz equation considering high wave numbers? SIAM J. Numer. Anal., 34 (1997), 2392–2423. https://doi.org/10.1137/S0036142994269186
    [2] W. Chen, Y. Liu, X. Xu, A robust domain decomposition method for the Helmholtz equation with high wave number, ESAIM. Math. Model. Numer. Anal., 50 (2016), 921–944. https://doi.org/10.1051/m2an/2015058 doi: 10.1051/m2an/2015058
    [3] C. Farhat, A. Macedo, M. Lesoinne, A two-level domain decomposition method for the iterative solution of high-frequency exterior Helmholtz problems, Numer. Math., 85 (2000), 283–308. https://doi.org/10.1007/PL00005389 doi: 10.1007/PL00005389
    [4] M. J. Gander, F. Magoulès, F. Nataf, Optimized Schwarz methods without overlap for the Helmholtz equation, SIAM J. Sci. Comput., 24 (2002), 38–60. https://doi.org/10.1137/S1064827501387012 doi: 10.1137/S1064827501387012
    [5] C. Farhat, J. Li, An iterative domain decomposition method for the solution of a class of indefinite problems in computational structural dynamics, Appl. Numer. Math., 54 (2005), 150–166. https://doi.org/10.1016/j.apnum.2004.09.021 doi: 10.1016/j.apnum.2004.09.021
    [6] M. J. Gander, L. Halpern, F. Magoulès, An optimized Schwarz method with two-sided Robin transmission conditions for the Helmholtz equation, Int. J. Numer. Methods Fluids, 55 (2007), 163–175. https://doi.org/10.1002/fld.1433 doi: 10.1002/fld.1433
    [7] J. Li, X. Tu, Convergence analysis of a balancing domain decomposition method for solving a class of indefinite linear systems, Numer. Linear Algebra Appl., 16 (2009), 745–773. https://doi.org/10.1002/nla.639 doi: 10.1002/nla.639
    [8] M. J. Gander, H. Zhang, Optimized Schwarz methods with overlap for the Helmholtz equation, SIAM J. Sci. Comput., 38 (2016), A3195–A3219. https://doi.org/10.1137/15M1021659 doi: 10.1137/15M1021659
    [9] P. Lu, X. Xu, A robust multilevel preconditioner based on a domain decomposition method for the Helmholtz equation, J. Sci. Comput., 81 (2019), 291–311. https://doi.org/10.1007/s10915-019-01015-z doi: 10.1007/s10915-019-01015-z
    [10] Y. Liu, X. Xu, An optimized Schwarz method with relaxation for the Helmholtz equation: the negative impact of overlap, ESAIM. Math. Model. Numer. Anal., 53 (2019), 249–268. https://doi.org/10.1051/m2an/2018061 doi: 10.1051/m2an/2018061
    [11] K. Hornik, M. Stinchcombe, H. White, Multilayer feedforward networks are universal approximators, Neural Networks, 2 (1989), 359–366. https://doi.org/10.1016/0893-6080(89)90020-8 doi: 10.1016/0893-6080(89)90020-8
    [12] M. Raissi, P. Perdikaris, G. E. Karniadakis, Physics-informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations, J. Comput. Phys., 378 (2019), 686–707. https://doi.org/10.1016/j.jcp.2018.10.045 doi: 10.1016/j.jcp.2018.10.045
    [13] S. Cai, Z. Mao, Z. Wang, M. Yin, G. Karniadakis, Physics-informed neural networks (PINNs) for fluid mechanics: a review, Acta Mech. Sin., 37 (2021), 1727–1738. https://doi.org/10.1007/s10409-021-01148-1 doi: 10.1007/s10409-021-01148-1
    [14] S. Cuomo, V. Schiano D. Cola, F. Giampaolo, G. Rozza, M. Raissi, et al., Scientific machine learning through physics-informed neural networks: where we are and what's next, J. Sci. Comput., 92 (2022), 88. https://doi.org/10.1007/s10915-022-01939-z doi: 10.1007/s10915-022-01939-z
    [15] J. Su, G. Tao, R. Li, S. Zhang, Physics-driven deep learning methods and numerically intractable "bad" Jaulent–Miodek equation, Chaos, 35 (2025), 063101. https://doi.org/10.1063/5.0264041 doi: 10.1063/5.0264041
    [16] P. Lan, J. Su, S. Zhang, Surrogate modeling for unsaturated infiltration via the physics and equality-constrained artificial neural networks, J. Rock Mech. Geotech. Eng., 16 (2024), 2282–2295. https://doi.org/10.1016/j.jrmge.2023.09.014 doi: 10.1016/j.jrmge.2023.09.014
    [17] S. Zhang, P. Lan, J. Su, Wave-packet behaviors of the defocusing nonlinear Schrodinger equation based on the modified physics-informed neural networks, Chaos, 31 (2021), 113107. https://doi.org/10.1063/5.0067260 doi: 10.1063/5.0067260
    [18] J. Su, S. Zhang, P. Lan, X. Chen, Explorations of certain nonlinear waves of the Boussinesq and Camassa–Holm equations using physics-informed neural networks, Proc. R. Soc. A, 480 (2024), 20230580. https://doi.org/10.1098/rspa.2023.0580 doi: 10.1098/rspa.2023.0580
    [19] S. Zhang, J. Deng, X. Li, Z. Zhao, J. Wu, W. Li, et al., Solving the one dimensional vertical suspended sediment mixing equation with arbitrary eddy diffusivity profiles using temporal normalized physics-informed neural networks, Phys. Fluids, 36 (2024), 017132. https://doi.org/10.1063/5.0179223 doi: 10.1063/5.0179223
    [20] X. Li, J. Wu, X. Tai, J. Xu, Y. Wang, Solving a class of multi-scale elliptic PDEs by Fourier-based mixed physics informed neural networks, J. Comput. Phys., 508 (2024), 113012. https://doi.org/10.1016/j.jcp.2024.113012 doi: 10.1016/j.jcp.2024.113012
    [21] X. Li, J. Wu, Y. Huang, Z. Ding, X. Tai, L. Liu, et al., Fourier-feature induced physics informed randomized neural network method to solve the biharmonic equation, J. Comput. Appl. Math., 468 (2025), 116635. https://doi.org/10.1016/j.cam.2025.116635 doi: 10.1016/j.cam.2025.116635
    [22] S. Basir, I. Senocak, Physics and equality constrained artificial neural networks: application to forward and inverse problems with multi-fidelity data fusion, J. Comput. Phys., 463 (2022), 111301. https://doi.org/10.1016/j.jcp.2022.111301 doi: 10.1016/j.jcp.2022.111301
    [23] M. J. D. Powell, A method for nonlinear constraints in minimization problems, Optimization, 1969.
    [24] A. Quarteroni, A. Valli, Domain Decomposition Methods for Partial Differential Equations, Oxford University Press, New York, 1999. https://doi.org/10.1093/oso/9780198501787.001.0001
    [25] A. Toselli, O. Widlund, Domain Decomposition Methods - Algorithms and Theory, Springer Verlag, Berlin-Heidelberg-New York, 2005.
    [26] A. D. Jagtap, E. Kharazmi, G. E. Karniadakis, Conservative physics-informed neural networks on discrete domains for conservation laws: applications to forward and inverse problems, Comput. Methods Appl. Mech. Eng., 365 (2020), 113028. https://doi.org/10.1016/j.cma.2020.113028 doi: 10.1016/j.cma.2020.113028
    [27] A. D. Jagtap, G. E. Karniadakis, Extended physics-informed neural networks (XPINNs): a generalized space-time domain decomposition based deep learning framework for nonlinear partial differential equations, Commun. Comput. Phys., 28 (2020), 2002–2041. https://doi.org/10.4208/cicp.OA-2020-0164 doi: 10.4208/cicp.OA-2020-0164
    [28] K. Shukla, A. D. Jagtap, G. Karniadakis, Parallel physics-informed neural networks via domain decomposition, J. Comput. Phys., 447 (2021), 110683. https://doi.org/10.1016/j.jcp.2021.110683 doi: 10.1016/j.jcp.2021.110683
    [29] W. Li, X. Xiang, Y. Xu, Deep domain decomposition method: Elliptic problems, Proc. Mach. Learn. Res., 107 (2020), 269–286. Available from: https://proceedings.mlr.press/v107/li20a.html.
    [30] W. Li, Z. Wang, T. Cui, Y. Xu, X. Xiang, Deep domain decomposition methods: Helmholtz equation, Adv. Appl. Math. Mech., 15 (2023), 118–138. https://doi.org/10.4208/aamm.OA-2021-0305 doi: 10.4208/aamm.OA-2021-0305
    [31] H. J. Yang, H. H. Kim, Iterative algorithms for partitioned neural network approximation to partial differential equations, Comput. Math. Appl., 170 (2024), 237–259. https://doi.org/10.1016/j.camwa.2024.07.007 doi: 10.1016/j.camwa.2024.07.007
    [32] D. Jang, K. Kim, H. H. Kim, Partitioned neural network approximation for partial differential equations enhanced with Lagrange multipliers and localized loss functions, Comput. Methods Appl. Mech. Eng., 429 (2024), 117168. https://doi.org/10.1016/j.cma.2024.117168 doi: 10.1016/j.cma.2024.117168
    [33] V. Dolean, A. Heinlein, S. Mishra, B. Moseley, Multilevel domain decomposition-based architectures for physics-informed neural networks, Comput. Methods Appl. Mech. Eng., 429 (2024), 117116. https://doi.org/10.1016/j.cma.2024.117116 doi: 10.1016/j.cma.2024.117116
    [34] Q. Hu, S. Basir, I. Senocak, Non-overlapping Schwarz-type domain decomposition method for physics and equality constrained artificial neural networks, Comput. Methods Appl. Mech. Eng., 436 (2025), 117706. https://doi.org/10.1016/j.cma.2024.117706 doi: 10.1016/j.cma.2024.117706
    [35] E. Olson, S. Won, X. Tu, Scalable two-level domain decomposition methods for the physics and equality constrained neural networks, Comput. Methods Appl. Mech. Eng., In press.
    [36] M. J. Gander, H. Zhang, A class of iterative solvers for the Helmholtz equation: factorizations, sweeping preconditioners, source transfer, single layer potentials, polarized traces, and optimized Schwarz methods, SIAM Rev., 61 (2019), 3–76. https://doi.org/10.1137/16M109781X doi: 10.1137/16M109781X
    [37] S. Basir, I. Senocak, An adaptive augmented Lagrangian method for training physics and equality constrained artificial neural networks, preprint, arXiv: 2306.04904.
    [38] V. Mercier, S. Gratton, P. Boudier, A coarse space acceleration of deep-DDM, preprint, arXiv: 2112.03732.
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(881) PDF downloads(29) Cited by(0)

Article outline

Figures and Tables

Figures(6)  /  Tables(10)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog