Research article

Dynamic analysis and optimal control of a fractional order predator-prey model with economic threshold

  • Received: 04 June 2025 Revised: 15 July 2025 Accepted: 31 July 2025 Published: 06 August 2025
  • In this paper, a fractional order differential algebraic predator-prey system with Holling type functional response was presented. The dynamic behavior of populations under the influence of economic benefits was thoroughly investigated. Specifically, with economic benefit as the bifurcation parameter, the existence of singularity-induced bifurcation was analyzed based on the theory of differential algebraic system. After that, a state feedback controller was designed to eliminate the singularity induced bifurcation and stabilize the system near the corresponding interior equilibrium. Furthermore, an optimal control problem was formulated, and the necessary conditions were derived. In addition, the validity of the theoretical results was confirmed through extensive numerical simulations.

    Citation: Wenjun Gao, Xiaoyan Tian, Ruiqing Shi. Dynamic analysis and optimal control of a fractional order predator-prey model with economic threshold[J]. Electronic Research Archive, 2025, 33(8): 4529-4558. doi: 10.3934/era.2025205

    Related Papers:

  • In this paper, a fractional order differential algebraic predator-prey system with Holling type functional response was presented. The dynamic behavior of populations under the influence of economic benefits was thoroughly investigated. Specifically, with economic benefit as the bifurcation parameter, the existence of singularity-induced bifurcation was analyzed based on the theory of differential algebraic system. After that, a state feedback controller was designed to eliminate the singularity induced bifurcation and stabilize the system near the corresponding interior equilibrium. Furthermore, an optimal control problem was formulated, and the necessary conditions were derived. In addition, the validity of the theoretical results was confirmed through extensive numerical simulations.



    加载中


    [1] G. Zhang, L. Zhu, B, Chen, Hopf bifurcation and stability for a differential-algebraic biological economic system, Appl. Math. Comput., 217 (2010), 330–338. https://doi.org/10.1016/j.amc.2010.05.065 doi: 10.1016/j.amc.2010.05.065
    [2] M. Elettreby, Two-prey one-predator model, Chaos Solitons Fractals, 39 (2009), 2018–2027. https://doi.org/10.1016/j.chaos.2007.06.058
    [3] S. Mallak, D. Farekh, B. Attili, Numerical investigation of fuzzy predator-prey model with a functional response of the form arctan(ax), Mathematics, 9 (2021), 1919. http://doi.org/10.3390/math91611919 doi: 10.3390/math91611919
    [4] J. Huang, S. Ruan, J. Song, Bifurcations in a predator-prey system of Leslie type with generalized Holling type III functional response, J. Differ. Equations, 257 (2014), 1721–1752. https://doi.org/10.1016/j.jde.2014.04.024 doi: 10.1016/j.jde.2014.04.024
    [5] X. Zhang, Y. Huang, P. Weng, Permanence and stability of a diffusive predator-prey model with disease in the prey, Comput. Math. Appl., 68 (2014), 1431–1445. https://doi.org/10.1016/j.camwa.2014.09.011 doi: 10.1016/j.camwa.2014.09.011
    [6] H. Shi, Y. Li, Global asymptotic stability of a diffusive predator-prey model with ratio-dependent functional response, Appl. Math. Comput., 250 (2015), 71–77. https://doi.org/10.1016/j.amc.2014.10.116 doi: 10.1016/j.amc.2014.10.116
    [7] H. Alsakaji, S. Kundu, F. Rihan, Delay differential model of one-predator two-prey system with Monod-Haldane and Holling type II functional responses, Appl. Math. Comput., 397 (2021), 125919. https://doi.org/10.1016/j.amc.2020.125919 doi: 10.1016/j.amc.2020.125919
    [8] M. Almatrafi, M. Berkal, Bifurcation analysis and chaos control for fractional predator-prey model with Gompertz growth of prey population, Mod. Phys. Lett. B, 39 (2025), 2550103. https://doi.org/10.1142/S0217984925501039 doi: 10.1142/S0217984925501039
    [9] M. Almatrafi, M. Berkal, Bifurcation analysis and chaos control for prey-predator model with Allee effect, Int. J. Anal. Appl., 21 (2023), 131. https://doi.org/10.28924/2291-8639-21-2023-131 doi: 10.28924/2291-8639-21-2023-131
    [10] F. Rihan, S. Lakshmanan, A. Hashish, R. Rakkiyappan, E. Ahmed, Fractional-order delayed predator-prey systems with Holling type-II functional response, Nonlinear Dyn., 80 (2015), 777–789. https://doi.org/10.1007/s11071-015-1905-8 doi: 10.1007/s11071-015-1905-8
    [11] T. Kar, A. Batabyal, Persistence and stability of a two prey one predator system, Int. J. Eng. Sci. Technol., 2 (2010), 174–190. https://doi.org/10.4314/ijest.v2i2.59164 doi: 10.4314/ijest.v2i2.59164
    [12] S. Roy, B. Roy, Analysis of prey-predator three species fishery model with harvesting including prey refuge and migration, Int. J. Bifurcation Chaos, 26 (2016), 1650022. https://doi.org/10.1142/S021812741650022X doi: 10.1142/S021812741650022X
    [13] A. Jana, S. Roy, Behavioural analysis of two prey-two predator model, Ecol. Complexity, 47 (2021), 100942. https://doi.org/10.1016/j.ecocom.2021.100942 doi: 10.1016/j.ecocom.2021.100942
    [14] S. Khajanchi, Modeling the dynamics of stage-structure predator-prey system with Monod-Haldane type response function, Appl. Math. Comput., 302 (2017), 122–143. https://doi.org/10.1016/j.amc.2017.01.019 doi: 10.1016/j.amc.2017.01.019
    [15] S. Khajanchi, S. Banerjee, Role of constant prey refuge on stage structure predator-prey model with ratio dependent functional response, Appl. Math. Comput., 314 (2017), 193–198. https://doi.org/10.1016/j.amc.2017.07.017 doi: 10.1016/j.amc.2017.07.017
    [16] F. Rihan, H. Alsakaji, C. Rajivganthi, Stability and Hopf bifurcation of three-species prey-predator system with time delays and Allee effect, Complexity, 2020 (2020), 7306412. https://doi.org/10.1155/2020/7306412 doi: 10.1155/2020/7306412
    [17] M. Javidi, N. Nyamoradi, Dynamic analysis of a fractional order prey-predator interaction with harvesting, Appl. Math. Model., 37 (2013), 8946–8956. https://doi.org/10.1016/j.apm.2013.04.024 doi: 10.1016/j.apm.2013.04.024
    [18] M. Rivero, J. Trujillo, L. Vázquez, M. Velasco, Fractional dynamics of populations, Appl. Math. Comput., 218 (2011), 1089–1095. https://doi.org/10.1016/j.amc.2011.03.017 doi: 10.1016/j.amc.2011.03.017
    [19] C. Li, F. Zhang, A survey on the stability of fractional differential equations, Eur. Phys. J. Spec. Top., 193 (2011), 27–47. https://doi.org/10.1140/epjst/e2011-01379-1 doi: 10.1140/epjst/e2011-01379-1
    [20] X. Meng, J. Jiao, L. Chen, The dynamics of an age structured predator-prey model with disturbing pulse and time delays, Nonlinear Anal. Real World Appl., 9 (2008), 547–561. https://doi.org/10.1016/j.nonrwa.2006.12.001 doi: 10.1016/j.nonrwa.2006.12.001
    [21] Y. Xia, J. Cao, S. Cheng, Multiple periodic solutions of a delayed stage-structured predator-prey model with non-monotone functional responses, Appl. Math. Model., 31 (2007), 1947–1959. https://doi.org/10.1016/j.apm.2006.08.012 doi: 10.1016/j.apm.2006.08.012
    [22] J. Zhang, Bifurcation analysis of a modified Holling-Tanner predator-prey model with time delay, Appl. Math. Model., 36 (2012), 1219–1231. https://doi.org/10.1016/j.apm.2011.07.071 doi: 10.1016/j.apm.2011.07.071
    [23] K. Ramesh, G. Kumar, K. Nisar, K. Lakshminarayan, K. Rao, W. Albalawi, et al., Study on a fractional order delayed predator-prey model including prey refuge and type II functional response, Partial Differ. Equations Appl. Math., 8 (2023), 100555. https://doi.org/10.1016/j.padiff.2023.100555 doi: 10.1016/j.padiff.2023.100555
    [24] M. Almatrafi, M. Berkal, Stability and bifurcation analysis of predator-prey model with Allee effect using conformable derivatives, J. Math. Comput. Sci., 36 (2025), 299–316. https://dx.doi.org/10.22436/jmcs.036.03.05 doi: 10.22436/jmcs.036.03.05
    [25] K. Chakraborty, M. Chakraborty, T. Kar, Optimal control of harvest and bifurcation of a prey-predator model with stage structure, Appl. Math. Comput., 217 (2011), 8778–8792. https://doi.org/10.1016/j.amc.2011.03.139 doi: 10.1016/j.amc.2011.03.139
    [26] K. Chakraborty, M. Chakraborty, T. Kar, Bifurcation and control of a bioeconomic model of a prey-predator system with a time delay, Nonlinear Anal. Hybrid Syst., 5 (2011), 613–625. https://doi.org/10.1016/j.nahs.2011.05.004 doi: 10.1016/j.nahs.2011.05.004
    [27] X. Zhang, Q. Zhang, Bifurcation analysis and control of a class of hybrid biological economic models, Nonlinear Anal. Hybrid Syst., 3 (2009), 578–587. https://doi.org/10.1016/j.nahs.2009.04.009 doi: 10.1016/j.nahs.2009.04.009
    [28] W. Liu, C. Fu, B. Chen, Hopf bifurcation for a predator-prey biological economic system with Holling type II functional response, J. Franklin Inst., 348 (2011), 1114–1127. https://doi.org/10.1016/j.jfranklin.2011.04.019 doi: 10.1016/j.jfranklin.2011.04.019
    [29] G. Zhang, Y. Shen, B. Chen, Hopf bifurcation of a predator-prey system with predator harvesting and two delays, Nonlinear Dyn., 73 (2013), 2119–2131. https://doi.org/10.1007/s11071-013-0928-2 doi: 10.1007/s11071-013-0928-2
    [30] W. Gao, X. Jia, R. Shi, Dynamic analysis and optimal control of a fractional order fishery model with refuge and protected area, Axioms, 13 (2024), 642. https://doi.org/10.3390/axioms13090642 doi: 10.3390/axioms13090642
    [31] C. Liu, N. Lu, Q. Zhang, J. Li, P. Liu, Modeling and analysis in a prey-predator system with commercial harvesting and double time delays, Appl. Math. Comput., 281 (2016), 77–101. https://doi.org/10.1016/j.amc.2016.01.039 doi: 10.1016/j.amc.2016.01.039
    [32] K. Nosrati, M. Shafiee, Dynamic analysis of fractional-order singular Holling type-II predator-prey system, Appl. Math. Comput., 313 (2017), 159–179. https://doi.org/10.1016/j.amc.2017.05.067 doi: 10.1016/j.amc.2017.05.067
    [33] L. Xia, G. Chen, T. Wu, Y. Gao, A. Mohammadzadeh, E. Ghaderpour, Optimal intelligent control for doubly fed induction generators, Mathematics, 11 (2023), 20. https://doi.org/10.3390/math11010020 doi: 10.3390/math11010020
    [34] S. Sabermahani, Y. Ordokhani, P. Rahimkhani, Application of generalized Lucas wavelet method for solving nonlinear fractal-fractional optimal control problems, Chaos Solitons Fractals, 170 (2023), 113348. https://doi.org/10.1016/j.chaos.2023.113348 doi: 10.1016/j.chaos.2023.113348
    [35] N. Demo, M. Strazzullo, G. Rozza, An extended physics informed neural network for preliminary analysis of parametric optimal control problems, Comput. Math. Appl., 143 (2023), 383–396. https://doi.org/10.1016/j.camwa.2023.05.004 doi: 10.1016/j.camwa.2023.05.004
    [36] Z. Peng, G. Zhang, S. Migórski, Sensitivity analysis of optimal control problems for differential hemivariational inequalities in steady thermistor problem, Commun. Nonlinear Sci. Numer. Simul., 142 (2025), 108532. https://doi.org/10.1016/j.cnsns.2024.108532 doi: 10.1016/j.cnsns.2024.108532
    [37] W. Gao, X. Jia, R. Shi, Dynamics and optimal harvesting for fishery models with reserved areas, Symmetry, 16 (2024), 800. https://doi.org/10.3390/sym16070800 doi: 10.3390/sym16070800
    [38] X. Liu, Q. Huang, Analysis of optimal harvesting of a predator-prey model with Holling type IV functional response, Ecol. Complexity, 42 (2020), 100816. https://doi.org/10.1016/j.ecocom.2020.100816 doi: 10.1016/j.ecocom.2020.100816
    [39] S. Alshammari, M. Alshammari, M. Alabedalhadi, M. Al-Sawalha, M. Al-Smadi, Numerical investigation of a fractional model of a tumor-immune surveillance via Caputo operator, Alexandria Eng. J., 86 (2024), 525–536. https://doi.org/10.1016/j.aej.2023.11.026 doi: 10.1016/j.aej.2023.11.026
    [40] H. Gordon, The economic theory of a common property resource: The fishery, J. Polit. Econ., 62 (1954), 124–142. https://doi.org/10.1086/257497
    [41] T. Kaczorek, Reduced-order fractional descriptor observers for a class of fractional descriptor continuous-time nonlinear systems, Int. J. Appl. Math. Comput. Sci., 26 (2016), 277–283. https://doi.org/10.1515/amcs-2016-0019 doi: 10.1515/amcs-2016-0019
    [42] C. Yang, Q. Zhang, L. Zhou, Stability Analysis and Design for Nonlinear Singular Systems, Springer-Verlag, Berlin, 2013. https://doi.org/10.1007/978-3-642-32144-3
    [43] I. Petras, Fractional-Order Nonlinear Systems: Modeling, Analysis and Simulation, Springer-Verlag, Berlin, 2011. https://doi.org/10.1007/978-3-642-18101-6
    [44] V. Venkatasubramanian, H. Schattler, J. Zaborszky, Local bifurcations and feasibility regions in differential-algebraic systems, IEEE Trans. Autom. Control, 40 (1995), 1992–2013. https://doi.org/10.1109/9.478226 doi: 10.1109/9.478226
    [45] L. Dai, Singular Control Systems, Springer-Verlag, Berlin, 1989. https://doi.org/10.1007/BFb0002475
    [46] M. Kot, M. Kot, Elements of Mathematical Ecology, Cambridge University Press, Cambridge, 2001. https://doi.org/10.1017/CBO9780511608520
    [47] M. Kamien, N. Schwartz, Dynamic Optimization: The Calculus of Variations and Optimal Control in Economics and Management, Elsevier Science, New York, 1991.
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(521) PDF downloads(38) Cited by(0)

Article outline

Figures and Tables

Figures(15)  /  Tables(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog