This paper is an extension of our earlier research[
Citation: Muhammad Fahim Aslam, Jianghao Hao, Salah Boulaaras, Luqman Bashir. Global existence and exponential stability of a fractionally damped plate equation with past history[J]. Electronic Research Archive, 2025, 33(7): 4363-4381. doi: 10.3934/era.2025199
This paper is an extension of our earlier research[
| [1] |
M. F. Aslam, J. Hao, S. Boulaaras, L. Bashir, Blow-up of solutions in a fractionally damped plate equation with infinite memory and logarithmic nonlinearity, Axioms, 14 (2025), 80. https://doi.org/10.3390/axioms14020080 doi: 10.3390/axioms14020080
|
| [2] |
E. Blanc, G. Chiavassa, B. Lombard, Boit-JKD model: Simulation of 1D transient poroelastic waves with fractional derivative, J. Comput. Phys., 237 (2013), 1–20. https://doi.org/10.1016/j.jcp.2012.12.003 doi: 10.1016/j.jcp.2012.12.003
|
| [3] |
J. U. Choi, R. C. Maccamy, Fractional order Volterra equations with applications to elasticity, J. Math. Anal. Appl., 139 (1989), 448–464. https://doi.org/10.1016/0022-247x(89)90120-0 doi: 10.1016/0022-247x(89)90120-0
|
| [4] | R. L. Magin, Fractional Calculus in Bioengineering, Begell House: Redding, CT, USA, 2006. |
| [5] | V. E. Tarasov, Fractional Dynamics: Applications of Fractional Calculus to Dynamics of Particles, Fields and Media, Springer Science & Business Media: Berlin/Heidelberg, Germany, 2011. |
| [6] | D. Valerio, J. A. T. Machado, V. Kiryakova, Some pioneers of the applications of fractional calculus, Fract. Calc. Appl. Anal., 17 (2014), 552–578. |
| [7] | J. F. G. Aguilar, D. Baleanu, Solutions of the telegraph equations using a fractional calculus approach, Proc. Rom. Acad. Ser. A, 15 (2014), 27–34. |
| [8] | J. A. T. Machado, A. M. Lopes, Analysis of natural and artificial phenomena using signal processing and fractional calculus, Fract. Calc. Appl. Anal., 18 (2015), 459–478. |
| [9] |
A. Benaissa, H. Benkhedda, Global existence and energy decay of solutions to a wave equation with a dynamic boundary dissipation of fractional derivative type, Z. Anal. Anwend., 37 (2018), 315–339. https://doi.org/10.4171/ZAA/1616 doi: 10.4171/ZAA/1616
|
| [10] |
R. Aounallah, S. Boulaaras, A. Zarai, B. Cherif, General decay and blow-up of solutions for a nonlinear wave equation with a fractional boundary damping, Math. Methods Appl. Sci., 43 (2020), 7175–7193. https://doi.org/10.1002/mma.6455 doi: 10.1002/mma.6455
|
| [11] | S. Boulaaras, F. Kamache, Y. Bouizem, R. Guefaifia, General decay and blow-up of solutions for a nonlinear wave equation with memory and fractional boundary damping terms, Bound. Value Probl., 2020 (2020). https://doi.org/10.1186/s13661-020-01470-w |
| [12] |
B. Mbodje, Wave energy decay under fractional derivative controls, IMA J. Math. Control Inf., 23 (2006), 237–257. https://doi.org/10.1093/imamci/dni056 doi: 10.1093/imamci/dni056
|
| [13] |
N. Doudi, S. Boulaaras, N. Mezouar, R. Jan, Global existence, general decay and blow-up for a nonlinear wave equation with logarithmic source term and fractional boundary dissipation, Discret. Contin. Dyn. Syst.—S, 16 (2023), 1323–1345. http://dx.doi.org/10.3934/dcdss.2022106 doi: 10.3934/dcdss.2022106
|
| [14] | R. Aounallah, A. Benaissa, A. Zarai, Blow-up and asymptotic behavior for a wave equation with a time delay condition of fractional type, in Rendiconti del Circolo Matematico di Palermo Series 2, Springer: Berlin/Heidelberg, Germany, 2020. https://doi.org/10.1007/s12215-020-00545-y |
| [15] |
M. F. Aslam, J. Hao, Nonlinear logarithmic wave equations: Blow-up phenomena and the influence of fractional damping, infinite memory, and strong dissipation, Evol. Equ. Control Theory, 13 (2024), 1423–1435. https://doi.org/10.3934/eect.2024034 doi: 10.3934/eect.2024034
|
| [16] | M. F. Aslam, J. Hao, Z. Hajjej, L. Bashir, On the global existence, exponential decay and blow-up of a nonlinear wave equation subject to a boundary fractional damping and time-varying delay, Discrete Contin. Dyn. Syst. - Ser. S, 2025 (2025). https://doi.org/10.3934/dcdss.2025038 |
| [17] | Z. Hajjej, A suspension bridges with a fractional time delay: Asymptotic behavior and Blow-up in finite time, AIMS Math., 9 (2024), 22022–22040. http://dx.doi.org/2010.3934/math.20241070 |
| [18] | J. Lagnese, Asymptotic energy estimates for Kirchhoff plates subject to weak viscoelastic damping, Int. Ser. Numer. Math., 1989 (1989), 211–236. |
| [19] |
J. M. Rivera, E. C. Lapa, R. Barreto, Decay rates for viscoelastic plates with memory, J. Elast., 44 (1996), 61–87. https://doi.org/10.1007/BF00042192 doi: 10.1007/BF00042192
|
| [20] |
V. Komornik, On the nonlinear boundary stabilization of Kirchhoff plates, NoDEA, 1 (1994), 323–337. https://doi.org/10.1007/BF01194984 doi: 10.1007/BF01194984
|
| [21] |
S. A. Messaoudi, Global existence and nonexistence in a system of Petrovsky, J. Math. Anal. Appl., 265 (2002), 296–308. https://doi.org/10.1006/jmaa.2001.7697 doi: 10.1006/jmaa.2001.7697
|
| [22] |
W. Chen, Y. Zhou, Global nonexistence for a semilinear Petrovsky equation, Nonlinear Anal. A, 70 (2009), 3203–3208. https://doi.org/10.1016/j.na.2008.04.024 doi: 10.1016/j.na.2008.04.024
|
| [23] | S. A. Messaoudi, S. E. Mukiawa, Existence and decay of solutions to a viscoelastic plate equation, Electron. J. Differ. Equations, 2016 (2016), 1–14. |
| [24] |
M. Cavalcanti, M. Domingos, V. N. Cavalcanti, J. Ferreira, Existence and uniform decay for nonlinear viscoelastic equation with strong damping, Math. Methods Appl. Sci., 24 (2001), 1043–1053. https://doi.org/10.1002/mma.250 doi: 10.1002/mma.250
|
| [25] |
S. E. Mukiawa, Decay result for a delay viscoelastic plate equation, Bull. Braz. Math. Soc., 51 (2020), 333–356. https://doi.org/10.1007/s00574-019-00155-y doi: 10.1007/s00574-019-00155-y
|
| [26] |
M. I. Mustafa, M. Kafini, Decay rates for memory-type plate system with delay and source term, Math. Methods Appl. Sci., 40 (2017), 883–895. https://doi.org/10.1002/mma.4015 doi: 10.1002/mma.4015
|
| [27] | M. M. Al-Gharabli, A. Guesmia, S. A. Messaoudi, Some existence and exponential stability results for a plate equation with strong damping and a logarithmic source term, in Differential Equations and Dynamical Systems, Springer: Berlin/Heidelberg, Germany, (2022), 1–15. https://doi.org/10.1007/s12591-022-00625-8 |
| [28] |
M. M. Al-Gharabli, Stability results for a system of nonlinear viscoelastic plate equations with nonlinear frictional damping and logarithmic source terms, J. Dyn. Control. Syst., 30 (2024), 3. https://doi.org/10.1007/s10883-023-09676-8 doi: 10.1007/s10883-023-09676-8
|
| [29] |
M. M. Al-Gharabli, A. M. Almahdi, M. Noor, J. D. Audu, Numerical and theoretical stability study of a viscoelastic plate equation with nonlinear frictional damping term and a logarithmic source term, Math. Comput. Appl., 27 (2022), 10. https://doi.org/10.3390/mca27010010 doi: 10.3390/mca27010010
|
| [30] |
M. M. Al-Gharabli, A. M. Al-Mahdi, Existence and stability results of a plate equation with nonlinear damping and source term, Electron. Res. Arch., 30 (2022), 4038–4065. http://dx.doi.org/10.3934/era.2022205 doi: 10.3934/era.2022205
|
| [31] |
M. D'Abbicco, L. G. Longen, The interplay between fractional damping and nonlinear memory for the plate equation, Math. Methods Appl. Sci., 45 (2022), 6951–6981. https://doi.org/10.1002/mma.8219 doi: 10.1002/mma.8219
|
| [32] |
J. E. M. Rivera, H. D. F. Sare, Stability of Timoshenko systems with past history, J. Math. Anal. Appl., 339 (2008), 482–502. https://doi.org/10.1016/j.jmaa.2007.07.012 doi: 10.1016/j.jmaa.2007.07.012
|
| [33] |
P. X. Pamplona, J. E. M. Rivera, R. Quintanilla, On the decay of solutions for porous-elastic systems with history, J. Math. Anal. Appl., 379 (2011), 682–705. https://doi.org/10.1016/j.jmaa.2011.01.045 doi: 10.1016/j.jmaa.2011.01.045
|
| [34] |
Q. Peng, Z. Zhang, Stabilization and blow-up in an infinite memory wave equation with logarithmic nonlinearity and acoustic boundary conditions, J. Syst. Sci. Complexity, 37 (2024), 1368–1391. https://doi.org/10.1007/s11424-024-3132-1 doi: 10.1007/s11424-024-3132-1
|