Research article

Global existence and exponential stability of a fractionally damped plate equation with past history

  • Published: 30 July 2025
  • This paper is an extension of our earlier research[1]. In this article, we discussed the fractionally damped plate equation with infinite memory. We proved that solutions are global under different initial and boundary conditions. Subsequently, we investigated the exponential stability of the solutions through Lyapunov functionals in order to establish stability conditions sufficient for stability analysis.

    Citation: Muhammad Fahim Aslam, Jianghao Hao, Salah Boulaaras, Luqman Bashir. Global existence and exponential stability of a fractionally damped plate equation with past history[J]. Electronic Research Archive, 2025, 33(7): 4363-4381. doi: 10.3934/era.2025199

    Related Papers:

  • This paper is an extension of our earlier research[1]. In this article, we discussed the fractionally damped plate equation with infinite memory. We proved that solutions are global under different initial and boundary conditions. Subsequently, we investigated the exponential stability of the solutions through Lyapunov functionals in order to establish stability conditions sufficient for stability analysis.



    加载中


    [1] M. F. Aslam, J. Hao, S. Boulaaras, L. Bashir, Blow-up of solutions in a fractionally damped plate equation with infinite memory and logarithmic nonlinearity, Axioms, 14 (2025), 80. https://doi.org/10.3390/axioms14020080 doi: 10.3390/axioms14020080
    [2] E. Blanc, G. Chiavassa, B. Lombard, Boit-JKD model: Simulation of 1D transient poroelastic waves with fractional derivative, J. Comput. Phys., 237 (2013), 1–20. https://doi.org/10.1016/j.jcp.2012.12.003 doi: 10.1016/j.jcp.2012.12.003
    [3] J. U. Choi, R. C. Maccamy, Fractional order Volterra equations with applications to elasticity, J. Math. Anal. Appl., 139 (1989), 448–464. https://doi.org/10.1016/0022-247x(89)90120-0 doi: 10.1016/0022-247x(89)90120-0
    [4] R. L. Magin, Fractional Calculus in Bioengineering, Begell House: Redding, CT, USA, 2006.
    [5] V. E. Tarasov, Fractional Dynamics: Applications of Fractional Calculus to Dynamics of Particles, Fields and Media, Springer Science & Business Media: Berlin/Heidelberg, Germany, 2011.
    [6] D. Valerio, J. A. T. Machado, V. Kiryakova, Some pioneers of the applications of fractional calculus, Fract. Calc. Appl. Anal., 17 (2014), 552–578.
    [7] J. F. G. Aguilar, D. Baleanu, Solutions of the telegraph equations using a fractional calculus approach, Proc. Rom. Acad. Ser. A, 15 (2014), 27–34.
    [8] J. A. T. Machado, A. M. Lopes, Analysis of natural and artificial phenomena using signal processing and fractional calculus, Fract. Calc. Appl. Anal., 18 (2015), 459–478.
    [9] A. Benaissa, H. Benkhedda, Global existence and energy decay of solutions to a wave equation with a dynamic boundary dissipation of fractional derivative type, Z. Anal. Anwend., 37 (2018), 315–339. https://doi.org/10.4171/ZAA/1616 doi: 10.4171/ZAA/1616
    [10] R. Aounallah, S. Boulaaras, A. Zarai, B. Cherif, General decay and blow-up of solutions for a nonlinear wave equation with a fractional boundary damping, Math. Methods Appl. Sci., 43 (2020), 7175–7193. https://doi.org/10.1002/mma.6455 doi: 10.1002/mma.6455
    [11] S. Boulaaras, F. Kamache, Y. Bouizem, R. Guefaifia, General decay and blow-up of solutions for a nonlinear wave equation with memory and fractional boundary damping terms, Bound. Value Probl., 2020 (2020). https://doi.org/10.1186/s13661-020-01470-w
    [12] B. Mbodje, Wave energy decay under fractional derivative controls, IMA J. Math. Control Inf., 23 (2006), 237–257. https://doi.org/10.1093/imamci/dni056 doi: 10.1093/imamci/dni056
    [13] N. Doudi, S. Boulaaras, N. Mezouar, R. Jan, Global existence, general decay and blow-up for a nonlinear wave equation with logarithmic source term and fractional boundary dissipation, Discret. Contin. Dyn. Syst.—S, 16 (2023), 1323–1345. http://dx.doi.org/10.3934/dcdss.2022106 doi: 10.3934/dcdss.2022106
    [14] R. Aounallah, A. Benaissa, A. Zarai, Blow-up and asymptotic behavior for a wave equation with a time delay condition of fractional type, in Rendiconti del Circolo Matematico di Palermo Series 2, Springer: Berlin/Heidelberg, Germany, 2020. https://doi.org/10.1007/s12215-020-00545-y
    [15] M. F. Aslam, J. Hao, Nonlinear logarithmic wave equations: Blow-up phenomena and the influence of fractional damping, infinite memory, and strong dissipation, Evol. Equ. Control Theory, 13 (2024), 1423–1435. https://doi.org/10.3934/eect.2024034 doi: 10.3934/eect.2024034
    [16] M. F. Aslam, J. Hao, Z. Hajjej, L. Bashir, On the global existence, exponential decay and blow-up of a nonlinear wave equation subject to a boundary fractional damping and time-varying delay, Discrete Contin. Dyn. Syst. - Ser. S, 2025 (2025). https://doi.org/10.3934/dcdss.2025038
    [17] Z. Hajjej, A suspension bridges with a fractional time delay: Asymptotic behavior and Blow-up in finite time, AIMS Math., 9 (2024), 22022–22040. http://dx.doi.org/2010.3934/math.20241070
    [18] J. Lagnese, Asymptotic energy estimates for Kirchhoff plates subject to weak viscoelastic damping, Int. Ser. Numer. Math., 1989 (1989), 211–236.
    [19] J. M. Rivera, E. C. Lapa, R. Barreto, Decay rates for viscoelastic plates with memory, J. Elast., 44 (1996), 61–87. https://doi.org/10.1007/BF00042192 doi: 10.1007/BF00042192
    [20] V. Komornik, On the nonlinear boundary stabilization of Kirchhoff plates, NoDEA, 1 (1994), 323–337. https://doi.org/10.1007/BF01194984 doi: 10.1007/BF01194984
    [21] S. A. Messaoudi, Global existence and nonexistence in a system of Petrovsky, J. Math. Anal. Appl., 265 (2002), 296–308. https://doi.org/10.1006/jmaa.2001.7697 doi: 10.1006/jmaa.2001.7697
    [22] W. Chen, Y. Zhou, Global nonexistence for a semilinear Petrovsky equation, Nonlinear Anal. A, 70 (2009), 3203–3208. https://doi.org/10.1016/j.na.2008.04.024 doi: 10.1016/j.na.2008.04.024
    [23] S. A. Messaoudi, S. E. Mukiawa, Existence and decay of solutions to a viscoelastic plate equation, Electron. J. Differ. Equations, 2016 (2016), 1–14.
    [24] M. Cavalcanti, M. Domingos, V. N. Cavalcanti, J. Ferreira, Existence and uniform decay for nonlinear viscoelastic equation with strong damping, Math. Methods Appl. Sci., 24 (2001), 1043–1053. https://doi.org/10.1002/mma.250 doi: 10.1002/mma.250
    [25] S. E. Mukiawa, Decay result for a delay viscoelastic plate equation, Bull. Braz. Math. Soc., 51 (2020), 333–356. https://doi.org/10.1007/s00574-019-00155-y doi: 10.1007/s00574-019-00155-y
    [26] M. I. Mustafa, M. Kafini, Decay rates for memory-type plate system with delay and source term, Math. Methods Appl. Sci., 40 (2017), 883–895. https://doi.org/10.1002/mma.4015 doi: 10.1002/mma.4015
    [27] M. M. Al-Gharabli, A. Guesmia, S. A. Messaoudi, Some existence and exponential stability results for a plate equation with strong damping and a logarithmic source term, in Differential Equations and Dynamical Systems, Springer: Berlin/Heidelberg, Germany, (2022), 1–15. https://doi.org/10.1007/s12591-022-00625-8
    [28] M. M. Al-Gharabli, Stability results for a system of nonlinear viscoelastic plate equations with nonlinear frictional damping and logarithmic source terms, J. Dyn. Control. Syst., 30 (2024), 3. https://doi.org/10.1007/s10883-023-09676-8 doi: 10.1007/s10883-023-09676-8
    [29] M. M. Al-Gharabli, A. M. Almahdi, M. Noor, J. D. Audu, Numerical and theoretical stability study of a viscoelastic plate equation with nonlinear frictional damping term and a logarithmic source term, Math. Comput. Appl., 27 (2022), 10. https://doi.org/10.3390/mca27010010 doi: 10.3390/mca27010010
    [30] M. M. Al-Gharabli, A. M. Al-Mahdi, Existence and stability results of a plate equation with nonlinear damping and source term, Electron. Res. Arch., 30 (2022), 4038–4065. http://dx.doi.org/10.3934/era.2022205 doi: 10.3934/era.2022205
    [31] M. D'Abbicco, L. G. Longen, The interplay between fractional damping and nonlinear memory for the plate equation, Math. Methods Appl. Sci., 45 (2022), 6951–6981. https://doi.org/10.1002/mma.8219 doi: 10.1002/mma.8219
    [32] J. E. M. Rivera, H. D. F. Sare, Stability of Timoshenko systems with past history, J. Math. Anal. Appl., 339 (2008), 482–502. https://doi.org/10.1016/j.jmaa.2007.07.012 doi: 10.1016/j.jmaa.2007.07.012
    [33] P. X. Pamplona, J. E. M. Rivera, R. Quintanilla, On the decay of solutions for porous-elastic systems with history, J. Math. Anal. Appl., 379 (2011), 682–705. https://doi.org/10.1016/j.jmaa.2011.01.045 doi: 10.1016/j.jmaa.2011.01.045
    [34] Q. Peng, Z. Zhang, Stabilization and blow-up in an infinite memory wave equation with logarithmic nonlinearity and acoustic boundary conditions, J. Syst. Sci. Complexity, 37 (2024), 1368–1391. https://doi.org/10.1007/s11424-024-3132-1 doi: 10.1007/s11424-024-3132-1
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(661) PDF downloads(50) Cited by(0)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog