The purpose of this paper was to discuss the existence of a random exponential attractor for non-autonomous coupled Klein-Gordon-Schrödinger (KGS) lattice equations with multiplicative noise. We employed the method of estimation on the tails of solutions to prove the existence of a random attractor for a continuous cocycle generated by the random KGS lattice equations on an infinite-dimensional sequence space, and used this abstract result to prove the Lipschitz continuity of the continuous cocycle. Then, we verified the existence of a random exponential attractor for the investigated system according to a known criterion.
Citation: Ailing Ban. Random exponential attractor for a class of non-autonomous stochastic lattice systems[J]. Electronic Research Archive, 2025, 33(7): 4382-4397. doi: 10.3934/era.2025200
The purpose of this paper was to discuss the existence of a random exponential attractor for non-autonomous coupled Klein-Gordon-Schrödinger (KGS) lattice equations with multiplicative noise. We employed the method of estimation on the tails of solutions to prove the existence of a random attractor for a continuous cocycle generated by the random KGS lattice equations on an infinite-dimensional sequence space, and used this abstract result to prove the Lipschitz continuity of the continuous cocycle. Then, we verified the existence of a random exponential attractor for the investigated system according to a known criterion.
| [1] |
B. Wang, R. Wang, Asymptotic behavior of stochastic Schrödinger lattice systems driven by nonlinear noise, Stochastic Anal. Appl., 38 (2020), 213–237. http://doi.org/10.1080/07362994.2019.1679646 doi: 10.1080/07362994.2019.1679646
|
| [2] |
P. W. Bates, H. Lisei, K. Lu, Attractors for stochastic lattice dynamical systems, Stochastics Dyn., 6 (2006), 1–21. https://doi.org/10.1142/S0219493706001621 doi: 10.1142/S0219493706001621
|
| [3] |
P. W. Bates, K. Lu, B. Wang, Attractors of non-autonomous stochastic lattice systems in weighted spaces, Phys. D: Nonlinear Phenom., 289 (2014), 32–50. http://doi.org/10.1016/j.physd.2014.08.004 doi: 10.1016/j.physd.2014.08.004
|
| [4] |
T. Caraballo, F. Morillas, J. Valero, Attractors of stochastic lattice dynamical systems with a multiplicative noise and non-Lipschitz nonlinearities, J. Differ. Equations, 253 (2012), 667–693. http://doi.org/10.1016/j.jde.2012.03.020 doi: 10.1016/j.jde.2012.03.020
|
| [5] |
X. Fan, Attractors for a damped stochastic wave equation of Sine-Gordon type with sublinear multiplicative noise, Stochastic Anal. Appl., 24 (2006), 767–793. http://doi.org/10.1080/07362990600751860 doi: 10.1080/07362990600751860
|
| [6] | L. Arnold, Random Dynamical Systems, Springer, 1998. https://doi.org/10.1007/978-3-662-12878-7 |
| [7] | X. Fan, Random attractors for damped stochastic wave equations with multiplicative noise, Int. J. Math., 19 (2008), 421–437. https://doi.org/10.1142/S0129167X08004741 |
| [8] |
B. Wang, Sufficient and necessary criteria for existence of pullback attractors for non-compact random dynamical systems, J. Differ. Equations, 253 (2012), 1544–1583. http://doi.org/10.1016/j.jde.2012.05.015 doi: 10.1016/j.jde.2012.05.015
|
| [9] |
A. Shirikyan, S. Zelik, Exponential attractors for random dynamical systems and applications, Stochastic Partial Differ. Equations: Anal. Comput., 1 (2013), 241–281. https://doi.org/10.1007/s40072-013-0007-1 doi: 10.1007/s40072-013-0007-1
|
| [10] |
T. Caraballo, S. Sonner, Random pullback exponential attractors: General existence results for random dynamical systems in Banach spaces, Discrete Contin. Dyn. Syst., 37 (2017), 6383–6403. http://doi.org/10.3934/dcds.2017277 doi: 10.3934/dcds.2017277
|
| [11] |
S. Zhou, Random exponential attractor for cocycle and application to non-autonomous stochastic lattice systems with multiplicative white noise, J. Differ. Equations, 263 (2017), 2247–2279. http://doi.org/10.1016/j.jde.2017.03.044 doi: 10.1016/j.jde.2017.03.044
|
| [12] |
H. Su, S. Zhou, L. Wu, Random exponential attractor for second-order nonautonomous stochastic lattice systems with multiplicative white noise, Stochastics Dyn., 19 (2019), 1950044. http://doi.org/10.1142/S0219493719500448 doi: 10.1142/S0219493719500448
|
| [13] |
X. Tan, F. Yin, G. Fan, Random exponential attractor for stochastic discrete long wave-short wave resonance equation with multiplicative white noise, Discrete Contin. Dyn. Syst. Ser. B, 25 (2020), 3153–3170. http://doi.org/10.3934/dcdsb.2020055 doi: 10.3934/dcdsb.2020055
|
| [14] |
P. Biler, Attractors for the system of Schrödinger and Klein-Gordon equations with Yukawa coupling, SIAM J. Math. Anal., 21 (1990), 1190–1212. http://doi.org/10.1137/0521065 doi: 10.1137/0521065
|
| [15] |
K. Lu, B. Wang, Global attractors for the Klein-Gordon-Schrödinger equation in unbounded domains, J. Differ. Equations, 170 (2001), 281–316. http://doi.org/10.1006/jdeq.2000.3827 doi: 10.1006/jdeq.2000.3827
|
| [16] |
A. Y. Abdallah, Asymptotic behavior of the Klein-Gordon-Schrödinger lattice dynamical systems, Commun. Pure. Appl. Anal., 5 (2006), 55–69. http://doi.org/10.3934/cpaa.2006.5.55 doi: 10.3934/cpaa.2006.5.55
|
| [17] |
S. Missaoui, Regularity of the attractor for a coupled Klein-Gordon-Schrödinger system in $\mathbb{R}^{3}$ nonlinear KGS system, Commun. Pure. Appl. Anal., 21 (2022), 567–584. http://doi.org/10.3934/cpaa.2021189 doi: 10.3934/cpaa.2021189
|
| [18] |
W. Yan, S. Ji, Y. Li, Random attractors for stochastic discrete Klein-Gordon-Schrödinger equations, Phys. Lett. A, 373 (2009), 1268–1275. https://doi.org/10.1016/j.physleta.2009.02.019 doi: 10.1016/j.physleta.2009.02.019
|
| [19] |
J. Shu, Random attractors for stochastic discrete Klein-Gordon-Schrödinger equations driven by fractional Brownian motions, Discrete Contin. Dyn. Syst. Ser. B, 22 (2017), 1587–1599. http://doi.org/10.3934/dcdsb.2017077 doi: 10.3934/dcdsb.2017077
|
| [20] | A. Ban, K. Zhou, Asymptotic behavior of solutions of a stochastic lattice systems, Acta Math. Appl. Sin., 45 (2022), 821–837. |
| [21] | I. Chueshov, Monotone Random systems Theory and Applications, Springer, 2002. https://doi.org/10.1007/b83277 |