Research article

Random exponential attractor for a class of non-autonomous stochastic lattice systems

  • Published: 30 July 2025
  • The purpose of this paper was to discuss the existence of a random exponential attractor for non-autonomous coupled Klein-Gordon-Schrödinger (KGS) lattice equations with multiplicative noise. We employed the method of estimation on the tails of solutions to prove the existence of a random attractor for a continuous cocycle generated by the random KGS lattice equations on an infinite-dimensional sequence space, and used this abstract result to prove the Lipschitz continuity of the continuous cocycle. Then, we verified the existence of a random exponential attractor for the investigated system according to a known criterion.

    Citation: Ailing Ban. Random exponential attractor for a class of non-autonomous stochastic lattice systems[J]. Electronic Research Archive, 2025, 33(7): 4382-4397. doi: 10.3934/era.2025200

    Related Papers:

  • The purpose of this paper was to discuss the existence of a random exponential attractor for non-autonomous coupled Klein-Gordon-Schrödinger (KGS) lattice equations with multiplicative noise. We employed the method of estimation on the tails of solutions to prove the existence of a random attractor for a continuous cocycle generated by the random KGS lattice equations on an infinite-dimensional sequence space, and used this abstract result to prove the Lipschitz continuity of the continuous cocycle. Then, we verified the existence of a random exponential attractor for the investigated system according to a known criterion.



    加载中


    [1] B. Wang, R. Wang, Asymptotic behavior of stochastic Schrödinger lattice systems driven by nonlinear noise, Stochastic Anal. Appl., 38 (2020), 213–237. http://doi.org/10.1080/07362994.2019.1679646 doi: 10.1080/07362994.2019.1679646
    [2] P. W. Bates, H. Lisei, K. Lu, Attractors for stochastic lattice dynamical systems, Stochastics Dyn., 6 (2006), 1–21. https://doi.org/10.1142/S0219493706001621 doi: 10.1142/S0219493706001621
    [3] P. W. Bates, K. Lu, B. Wang, Attractors of non-autonomous stochastic lattice systems in weighted spaces, Phys. D: Nonlinear Phenom., 289 (2014), 32–50. http://doi.org/10.1016/j.physd.2014.08.004 doi: 10.1016/j.physd.2014.08.004
    [4] T. Caraballo, F. Morillas, J. Valero, Attractors of stochastic lattice dynamical systems with a multiplicative noise and non-Lipschitz nonlinearities, J. Differ. Equations, 253 (2012), 667–693. http://doi.org/10.1016/j.jde.2012.03.020 doi: 10.1016/j.jde.2012.03.020
    [5] X. Fan, Attractors for a damped stochastic wave equation of Sine-Gordon type with sublinear multiplicative noise, Stochastic Anal. Appl., 24 (2006), 767–793. http://doi.org/10.1080/07362990600751860 doi: 10.1080/07362990600751860
    [6] L. Arnold, Random Dynamical Systems, Springer, 1998. https://doi.org/10.1007/978-3-662-12878-7
    [7] X. Fan, Random attractors for damped stochastic wave equations with multiplicative noise, Int. J. Math., 19 (2008), 421–437. https://doi.org/10.1142/S0129167X08004741
    [8] B. Wang, Sufficient and necessary criteria for existence of pullback attractors for non-compact random dynamical systems, J. Differ. Equations, 253 (2012), 1544–1583. http://doi.org/10.1016/j.jde.2012.05.015 doi: 10.1016/j.jde.2012.05.015
    [9] A. Shirikyan, S. Zelik, Exponential attractors for random dynamical systems and applications, Stochastic Partial Differ. Equations: Anal. Comput., 1 (2013), 241–281. https://doi.org/10.1007/s40072-013-0007-1 doi: 10.1007/s40072-013-0007-1
    [10] T. Caraballo, S. Sonner, Random pullback exponential attractors: General existence results for random dynamical systems in Banach spaces, Discrete Contin. Dyn. Syst., 37 (2017), 6383–6403. http://doi.org/10.3934/dcds.2017277 doi: 10.3934/dcds.2017277
    [11] S. Zhou, Random exponential attractor for cocycle and application to non-autonomous stochastic lattice systems with multiplicative white noise, J. Differ. Equations, 263 (2017), 2247–2279. http://doi.org/10.1016/j.jde.2017.03.044 doi: 10.1016/j.jde.2017.03.044
    [12] H. Su, S. Zhou, L. Wu, Random exponential attractor for second-order nonautonomous stochastic lattice systems with multiplicative white noise, Stochastics Dyn., 19 (2019), 1950044. http://doi.org/10.1142/S0219493719500448 doi: 10.1142/S0219493719500448
    [13] X. Tan, F. Yin, G. Fan, Random exponential attractor for stochastic discrete long wave-short wave resonance equation with multiplicative white noise, Discrete Contin. Dyn. Syst. Ser. B, 25 (2020), 3153–3170. http://doi.org/10.3934/dcdsb.2020055 doi: 10.3934/dcdsb.2020055
    [14] P. Biler, Attractors for the system of Schrödinger and Klein-Gordon equations with Yukawa coupling, SIAM J. Math. Anal., 21 (1990), 1190–1212. http://doi.org/10.1137/0521065 doi: 10.1137/0521065
    [15] K. Lu, B. Wang, Global attractors for the Klein-Gordon-Schrödinger equation in unbounded domains, J. Differ. Equations, 170 (2001), 281–316. http://doi.org/10.1006/jdeq.2000.3827 doi: 10.1006/jdeq.2000.3827
    [16] A. Y. Abdallah, Asymptotic behavior of the Klein-Gordon-Schrödinger lattice dynamical systems, Commun. Pure. Appl. Anal., 5 (2006), 55–69. http://doi.org/10.3934/cpaa.2006.5.55 doi: 10.3934/cpaa.2006.5.55
    [17] S. Missaoui, Regularity of the attractor for a coupled Klein-Gordon-Schrödinger system in $\mathbb{R}^{3}$ nonlinear KGS system, Commun. Pure. Appl. Anal., 21 (2022), 567–584. http://doi.org/10.3934/cpaa.2021189 doi: 10.3934/cpaa.2021189
    [18] W. Yan, S. Ji, Y. Li, Random attractors for stochastic discrete Klein-Gordon-Schrödinger equations, Phys. Lett. A, 373 (2009), 1268–1275. https://doi.org/10.1016/j.physleta.2009.02.019 doi: 10.1016/j.physleta.2009.02.019
    [19] J. Shu, Random attractors for stochastic discrete Klein-Gordon-Schrödinger equations driven by fractional Brownian motions, Discrete Contin. Dyn. Syst. Ser. B, 22 (2017), 1587–1599. http://doi.org/10.3934/dcdsb.2017077 doi: 10.3934/dcdsb.2017077
    [20] A. Ban, K. Zhou, Asymptotic behavior of solutions of a stochastic lattice systems, Acta Math. Appl. Sin., 45 (2022), 821–837.
    [21] I. Chueshov, Monotone Random systems Theory and Applications, Springer, 2002. https://doi.org/10.1007/b83277
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(493) PDF downloads(54) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog