During a first or second course in number theory, students soon encounter several sets of "number theoretic interest". These include basic sets such as the rational numbers, algebraic numbers, transcendental numbers, and Liouville numbers, as well as more exotic sets such as the constructible numbers, normal numbers, computable numbers, badly approximable numbers, the Mahler sets S, T and U, and sets of irrationality exponent $ m $, among others. Those exposed to some measure theory soon make a curious observation regarding a common property seemingly shared by all these sets: each of the sets has Lebesgue measure equal to zero, or its complement has Lebesgue measure equal to zero. In this expository note, we explain this phenomenon.
Citation: Taboka Prince Chalebgwa, Sidney A. Morris. Number theoretic subsets of the real line of full or null measure[J]. Electronic Research Archive, 2025, 33(2): 1037-1044. doi: 10.3934/era.2025046
During a first or second course in number theory, students soon encounter several sets of "number theoretic interest". These include basic sets such as the rational numbers, algebraic numbers, transcendental numbers, and Liouville numbers, as well as more exotic sets such as the constructible numbers, normal numbers, computable numbers, badly approximable numbers, the Mahler sets S, T and U, and sets of irrationality exponent $ m $, among others. Those exposed to some measure theory soon make a curious observation regarding a common property seemingly shared by all these sets: each of the sets has Lebesgue measure equal to zero, or its complement has Lebesgue measure equal to zero. In this expository note, we explain this phenomenon.
| [1] | D. Angell, Irrationality and Transcendence in Number Theory, CRC Press, 2022. https://doi.org/10.1201/9781003111207 |
| [2] | S. A. Morris, A. Jones, K. R. Pearson, Abstract and Famous Impossibilities, Springer Nature, 2022. https://doi.org/10.1007/978-3-031-05698-7 |
| [3] | I. Niven, Irrational Numbers, Mathematical Association of America, 1967. https://doi.org/10.5948/9781614440116 |
| [4] | Y. Bugeaud, Distribution Modulo one and Diophantine Approximation, Cambridge University Press, 2012. https://doi.org/10.1017/CBO9781139017732 |
| [5] | K. Weihrauch, Computable Analysis: An Introduction, Springer Science & Business Media, 2000. https://dl.acm.org/doi/book/10.5555/2601642 |
| [6] | A. Baker, Transcendental Number Theory, Cambridge University Press, 1975. https://doi.org/10.1017/CBO9780511565977 |
| [7] | J. M. Borwein, P. B. Borwein, Pi and the AGM: A Study in Analytic Number Theory and Computational Complexity, Wiley–Blackwell, 1987. |
| [8] | P. Walters, An Introduction to Ergodic Theory, Springer Verlag, 1982. |
| [9] | R. L. Zimmer, Ergodic Theory and Semisimple Groups, Birkhäuser, 1984. https://link.springer.com/book/10.1007/978-1-4684-9488-4 |
| [10] |
V. A. Androsenko, Irrationality measure of the number $\frac{\pi}{\sqrt{3}}$, Izv. Math., 79 (2015), 1–17. https://doi.org/10.1070/IM2015v079n01ABEH002731 doi: 10.1070/IM2015v079n01ABEH002731
|
| [11] |
V. Becher, Y. Bugeaud, T. A. Slaman, The irrationality exponent of computable numbers, Proc. Am. Math. Soc., 144 (2016), 1509–1521. DOI: https://doi.org/10.1090/proc/12841 doi: 10.1090/proc/12841
|
| [12] |
V. Becher, J. Reimann, T. A. Slaman, Irrationality exponent, Hausdorff, dimension and effectivization, Monatsh. Math., 144 (2018), 167–188. https://doi.org/10.1007/s00605-017-1094-2 doi: 10.1007/s00605-017-1094-2
|
| [13] |
Y. Guo, W. Wu, Z. Wen, On the irrationality exponent of the regular paperfolding numbers, Linear Algebra Appl., 446 (2014), 237–264. https://doi.org/10.1016/j.laa.2013.12.023 doi: 10.1016/j.laa.2013.12.023
|
| [14] | V. Jarnik, Zur Metrischen theorie der diophantischen approximation, Prace Matematyczno-Fizyczne, 36 (1929), 91–106. https://bibliotekanauki.pl/articles/2011815 |
| [15] |
A. Polyanskii, On the irrationality measures of certain numbers, Moscow J. Comb. Number Theory, 1 (2011), 81–91. https://doi.org/10.1134/S0001434618030306 doi: 10.1134/S0001434618030306
|
| [16] |
A. Polyanskii, On the irrationality measures of certain numbers II, Math. Notes, 103 (2018), 626–634. https://doi.org/10.1134/S0001434618030306 doi: 10.1134/S0001434618030306
|
| [17] | J. Beck, Inevitable Randomness in Discrete Mathematics, American Mathematical Society, 2009. |
| [18] | G. Hardy, E. M. Wright, An Introduction to The Theory of Numbers, Oxford University Press, 1954. https://doi.org/10.1093/oso/9780199219858.001.0001 |
| [19] | M. Kac, Statistical Independence in Probability, Analysis and Number Theory, Mathematical Association of America, 1964. : https://doi.org/10.5948/UPO9781614440123 |
| [20] |
G. Martin, Absolutely abnormal numbers, Am. Math. Mon., 108 (2001), 746–754. https://doi.org/DOI:10.2307/2695618 doi: 10.2307/2695618
|
| [21] |
R. V. Nillsen, Normal numbers without measure theory, Am. Math. Mon., 107 (2000), 639–644. https://doi.org/10.2307/2589120 doi: 10.2307/2589120
|
| [22] | D. D. Wall, On Normal Numbers, Ph.D thesis, University of California, Berkeley, 1949. |
| [23] |
E. Borel, Les probabilit'es dénombrables et leurs applications arithmétiques, Rend. Circ. Mat. Palermo, 27 (1909), 247–271. https://doi.org/10.1007/BF03019651 doi: 10.1007/BF03019651
|
| [24] |
P. Szüsz, B. Volkmann, On numbers with given digit distributions, Arch. Math., 52 (1989), 237–-244. https://doi.org/10.1007/BF01194386 doi: 10.1007/BF01194386
|
| [25] | P. Erdős, Representations of real numbers as sums and products of Liouville numbers, Michigan Math. J., 446 (1962), 59–60. |
| [26] |
K. Mahler, Zur approximation der exponential function un des logarithmus I, J. Reine Angew. Math., 166 (1932), 118–136. https://doi.org/10.1515/crll.1932.166.118 doi: 10.1515/crll.1932.166.118
|
| [27] |
K. Mahler, On the approximation of logarithms of algebraic numbers, Philos. Trans. R. Soc. London Ser. A, 245 (1953), 371–398. https://doi.org/10.1098/rsta.1953.0001 doi: 10.1098/rsta.1953.0001
|
| [28] | K. Mahler, On the approximation of $\pi$, in Pi: A Source Book, Springer, New York, 56 (1953), 30–42. https://doi.org/10.1007/978-1-4757-4217-6 |
| [29] |
D. Kleinbock, T. Ly, Badly approximable $S$-numbers and absolute Schmidt games, J. Number Theory, 164 (2016), 13–41. https://doi.org/10.1016/j.jnt.2015.12.014 doi: 10.1016/j.jnt.2015.12.014
|