Research article

Hopf bifurcation analysis of a multiple delays stage-structure predator-prey model with refuge and cooperation

  • Received: 22 November 2024 Revised: 18 January 2025 Accepted: 12 February 2025 Published: 24 February 2025
  • In this paper, a multiple delays stage-structure predator-prey model with refuge and cooperation is established. First, the local asymptotic stability of the trivial equilibrium and the predator extinction equilibrium are discussed by analyzing the characteristic equations of the system. Second, taking time delays as the bifurcation parameters, the existence of Hopf bifurcation at the positive equilibrium is given. Next, the direction of Hopf bifurcation and the stability of the periodic solutions are analyzed based on the center manifold theorem and normal form theory. Moreover, the optimal harvesting policy of the system is showed by using Pontryagin's maximum principle. Finally, we give the global sensitivity analysis of some parameters by calculating the partial rank correlation coefficients, and some numerical simulations are performed to verify the correctness and feasibility of the theoretical results by using the MATLAB software.

    Citation: San-Xing Wu, Xin-You Meng. Hopf bifurcation analysis of a multiple delays stage-structure predator-prey model with refuge and cooperation[J]. Electronic Research Archive, 2025, 33(2): 995-1036. doi: 10.3934/era.2025045

    Related Papers:

  • In this paper, a multiple delays stage-structure predator-prey model with refuge and cooperation is established. First, the local asymptotic stability of the trivial equilibrium and the predator extinction equilibrium are discussed by analyzing the characteristic equations of the system. Second, taking time delays as the bifurcation parameters, the existence of Hopf bifurcation at the positive equilibrium is given. Next, the direction of Hopf bifurcation and the stability of the periodic solutions are analyzed based on the center manifold theorem and normal form theory. Moreover, the optimal harvesting policy of the system is showed by using Pontryagin's maximum principle. Finally, we give the global sensitivity analysis of some parameters by calculating the partial rank correlation coefficients, and some numerical simulations are performed to verify the correctness and feasibility of the theoretical results by using the MATLAB software.



    加载中


    [1] A. J. Lotka, Elements of Physical Biology, Williams and Wilkins Company, Baltimore, 1925.
    [2] D. M. Xiao, S. G. Ruan, Multiple bifurcations in a delayed predator-prey system with nonmonotonic functional response, J. Differ. Equations, 176 (2001), 494–510. https://doi.org/10.1006/jdeq.2000.3982 doi: 10.1006/jdeq.2000.3982
    [3] F. T. Wang, R. Z. Yang, X. Zhang, Turing patterns in a predator-prey model with double Allee effect, Math. Comput. Simul., 220 (2024), 170–191. https://doi.org/10.1016/j.matcom.2024.01.015 doi: 10.1016/j.matcom.2024.01.015
    [4] F. T. Wang, R. Z. Yang, Spatial pattern formation driven by the cross-diffusion in a predator-prey model with Holling type functional response, Chaos, Solitons Fractals, 174 (2023), 113890. https://doi.org/10.1016/j.chaos.2023.113890 doi: 10.1016/j.chaos.2023.113890
    [5] J. C. Huang, M. Lu, C. Xiang, L. Zou, Bifurcations of codimension 4 in a Leslie-type predator-prey model with Allee effects, J. Differ. Equations, 414 (2025), 201–241. https://doi.org/10.1016/j.jde.2024.09.009 doi: 10.1016/j.jde.2024.09.009
    [6] S. J. Zhao, W. J. Zhang, H. Wang, Boundedness and stability of a quasilinear three-species predator-prey model with competition mechanism, Z. Angew. Math. Phys., 75 (2024). https://doi.org/10.1007/s00033-024-02197-9
    [7] X. Y. Meng, Y. Feng, Dynamical behaviour of an intraguild predator-prey model with prey refuge and hunting cooperation, J. Biol. Dyn., 17 (2023). https://doi.org/10.1080/17513758.2023.2222142
    [8] D. P. Hu, Y. Y. Li, M. Liu, Y. Z. Bai, Stability and Hopf bifurcation for a delayed predator-prey model with stage structure for prey and Ivlev type functional response, Nonlinear Dyn., 99 (2020), 3323–3350. https://doi.org/10.1007/s11071-020-05467-z doi: 10.1007/s11071-020-05467-z
    [9] X. F. Xu, M. Liu, Global Hopf bifurcation of a general predator-prey system with diffusion and stage structures, J. Differ. Equations, 269 (2020), 8370–8386. https://doi.org/10.1016/j.jde.2020.06.025 doi: 10.1016/j.jde.2020.06.025
    [10] X. Y. Meng, N. N. Qin, H. F. Huo, Dynamics of a food chain model with two infected predators, Int. J. Bifurcation Chaos, 31 (2021), 2150019. https://doi.org/10.1142/S021812742150019X doi: 10.1142/S021812742150019X
    [11] H. F. Xu, J. F. Wang, X. L. Xu, Dynamics and pattern formation in a cross-diffusion model with stage structure for predators, Discrete Contin. Dyn. Syst. Ser. B, 27 (2022), 4473–4489. https://doi.org/10.3934/dcdsb.2021237 doi: 10.3934/dcdsb.2021237
    [12] Y. Y. Mi, C. Song, Z. C. Wang, Global existence of a diffusive predator-prey model with prey-stage structure and prey-taxis, Z. Angew. Math. Phys., 74 (2023). https://doi.org/10.1007/s00033-023-01975-1
    [13] G. L. Wu, Y. Zhang, Q. Xin, Boundedness and stability of a predator-prey system with prey-stage structure and prey-taxis, Discrete Contin. Dyn. Syst. Ser. B, 30 (2025), 360–385. https://doi.org/10.3934/dcdsb.2024092 doi: 10.3934/dcdsb.2024092
    [14] W. G. Aiello, H. Freedman, A time-delay model of single-species growth with stage structure, Math. Biosci., 101 (1990), 139–153. https://doi.org/10.1016/0025-5564(90)90019-U doi: 10.1016/0025-5564(90)90019-U
    [15] R. Xu, Global stability and Hopf bifurcation of a predator-prey model with stage structure and delayed predator response, Nonlinear Dyn., 67 (2012), 1683–1693. https://doi.org/10.1007/s11071-011-0096-1 doi: 10.1007/s11071-011-0096-1
    [16] Y. Song, W. Xiao, X. Y. Qi, Stability and Hopf bifurcation of a predator-prey model with stage structure and time delay for the prey, Nonlinear Dyn., 83 (2016) 1409–1418. https://doi.org/10.1007/s11071-015-2413-6
    [17] N. N. Li, W. X. Sun, S. Q. Liu, A stage-structured predator-prey model with Crowley-Martin functional response, Discrete Contin. Dyn. Syst. Ser. B, 28 (2023), 2463–2489. https://doi.org/10.3934/dcdsb.2022177 doi: 10.3934/dcdsb.2022177
    [18] L. H. Zhu, X. Y. Tao, S. L. Shen, Pattern dynamics in a reaction-diffusion predator-prey model with Allee effect based on network and non-network environments, Eng. Appl. Artif. Intell., 128 (2024), 107491. https://doi.org/10.1016/j.engappai.2023.107491 doi: 10.1016/j.engappai.2023.107491
    [19] X. Y. Song, L. S. Chen, Optimal harvesting and stability for a two-species competitive system with stage structure, Math. Biosci., 170 (2001), 173–186. https://doi.org/10.1016/S0025-5564(00)00068-7 doi: 10.1016/S0025-5564(00)00068-7
    [20] P. Georgescu, Y. Hsieh, Global dynamics of a predator-prey model with stage structure for the predator, SIAM J. Appl. Math. 67 (2007), 1379–1395. https://doi.org/10.1137/060670377
    [21] X. Y. Meng, H. F. Huo, X. B. Zhang, Stability and global Hopf bifurcation in a Leslie-Gower predator-prey model with stage structure for prey, J. Appl. Math. Comput., 60 (2019), 1–25. https://doi.org/10.1007/s12190-018-1201-0 doi: 10.1007/s12190-018-1201-0
    [22] R. Xu, Z. E. Ma, Stability and Hopf bifurcation in a predator-prey model with stage structure for the predator, Nonlinear Anal. Real World Appl., 9 (2008), 1444–1460. https://doi.org/10.1016/j.nonrwa.2007.03.015 doi: 10.1016/j.nonrwa.2007.03.015
    [23] X. Y. Meng, J. G. Wang, Dynamical analysis of a delayed diffusive predator-prey model with schooling behavior and Allee effect, J. Biol. Dyn., 14 (2020), 826–848. https://doi.org/10.1080/17513758.2020.1850892 doi: 10.1080/17513758.2020.1850892
    [24] S. Li, S. L. Yuan, Z. Jin, H. Wang, Bifurcation analysis in a diffusive predator-prey model with spatial memory of prey, Allee effect and maturation delay of predator, J. Differ. Equations, 357 (2023), 32–63. https://doi.org/10.1016/j.jde.2023.02.009 doi: 10.1016/j.jde.2023.02.009
    [25] Y. L. Song, Q. Y. Shi, Stability and bifurcation analysis in a diffusive predator-prey model with delay and spatial average, Math. Methods Appl. Sci., 46 (2023) 5561–5584. https://doi.org/10.1002/mma.8853
    [26] M. Peng, R. Lin, Z. D. Zhang, L. Huang, The dynamics of a delayed predator-prey model with square root functional response and stage structure, Electron. Res. Arch., 32 (2024), 3275–3298. https://doi.org/10.3934/era.2024150 doi: 10.3934/era.2024150
    [27] A. P. Maiti, B. Dubey, A. Chakraborty, Global analysis of a delayed stage structure prey-predator model with Crowley-Martin type functional response, Math. Comput. Simul., 162 (2019), 58–84. https://doi.org/10.1016/j.matcom.2019.01.009 doi: 10.1016/j.matcom.2019.01.009
    [28] Q. Y. Fu, F. Y. Wei, Globally asymptotic stability of a predator-prey model with stage structure incorporating prey refuge, Int. J. Biomath., 9 (2016), 155–168. https://doi.org/10.1142/S1793524516500583 doi: 10.1142/S1793524516500583
    [29] Y. Zhou, W. Sun, Y. F. Song, Z. G. Zheng, J. H. Lu, S. H. Chen, Hopf bifurcation analysis of a predator-prey model with Holling-II type functional response and a prey refuge, Nonlinear Dyn., 97 (2019), 1439–1450. https://doi.org/10.1007/s11071-019-05063-w doi: 10.1007/s11071-019-05063-w
    [30] S. Mondal, G. P. Samanta, Dynamics of an additional food provided predator-prey system with prey refuge dependent on both species and constant harvest in predator, Physica A, 534 (2019), 122301. https://doi.org/10.1016/j.physa.2019.122301 doi: 10.1016/j.physa.2019.122301
    [31] Z. W. Liang, X. Y. Meng, Stability and Hopf bifurcation of a multiple delayed predator-prey system with fear effect, prey refuge and Crowley-Martin function, Chaos, Solitons Fractals, 175 (2023), 113955. https://doi.org/10.1016/j.chaos.2023.113955 doi: 10.1016/j.chaos.2023.113955
    [32] N. Song, J. Li, S. T. Zhu, Dynamics of a discrete one-predator two-prey system with Michaelis-Menten-type prey harvesting and prey refuge, Math. Methods Appl. Sci., 47 (2024), 11565–11601. https://doi.org/10.1002/mma.10144 doi: 10.1002/mma.10144
    [33] S. Kundu, S. Maitra, Dynamics of a delayed predator-prey system with stage structure and cooperation for preys, Chaos, Solitons Fractals, 114 (2018), 453–460. https://doi.org/10.1016/j.chaos.2018.07.013 doi: 10.1016/j.chaos.2018.07.013
    [34] D. Y. Wu, M. Zhao, Qualitative analysis for a diffusive predator-prey model with hunting cooperative, Physica A, 515 (2019), 299–309. https://doi.org/10.1016/j.physa.2018.09.176 doi: 10.1016/j.physa.2018.09.176
    [35] B. Dubey, S. Agarwal, A. Kumar, Optimal harvesting policy of a prey-predator model with Crowley-Martin type functional response and stage structure in the predator, Nonlinear Anal.-Model. Control, 23 (2018), 493–514. https://doi.org/10.15388/NA.2018.4.3 doi: 10.15388/NA.2018.4.3
    [36] X. Y. Meng, Y. Q. Wu, Bifurcation and control in a singular phytoplankton-zooplankton-fish model with nonlinear fish harvesting and taxation, Int. J. Bifurcation Chaos, 28 (2018). https://doi.org/10.1142/S0218127418500426
    [37] X. Y. Meng, J. Li, Dynamical behavior of a delayed prey-predator-scavenger system with fear effect and linear harvesting, Int. J. Biomath., 14 (2021). https://doi.org/10.1142/S1793524521500248
    [38] X. M. Feng, Y. F. Liu, S. G. Ruan, J. S. Yu, Periodic dynamics of a single species model with seasonal Michaelis-Menten type harvesting, J. Differ. Equations, 354 (2023), 237263. https://doi.org/10.1016/j.jde.2023.01.014 doi: 10.1016/j.jde.2023.01.014
    [39] S. X. Wu, Z. C. Wang, S. G. Ruan, Hopf bifurcation in an age-structured predator-prey system with Beddington-DeAngelis functional response and constant harvesting, J. Math. Biol., 88 (2024). https://doi.org/10.1007/s00285-024-02070-3
    [40] M. Bandyopadhyay, S. Banerjee, A stage-structured prey-predator model with discrete time delay, Appl. Math. Comput., 182 (2006), 1385–1398. https://doi.org/10.1016/j.amc.2006.05.025 doi: 10.1016/j.amc.2006.05.025
    [41] Y. L. Song, J. J. Wei, Bifurcation analysis for Chen's system with delayed feedback and its application to control of chaos, Chaos, Solitons Fractals, 22 (2004), 75–91. https://doi.org/10.1016/j.chaos.2003.12.075 doi: 10.1016/j.chaos.2003.12.075
    [42] B. D. Hassard, N. D. Kazarinoff, Y. H. Wan, Theory and Applications of Hopf Bifurcation, Cambridge University Press, Cambridge, 1981.
    [43] Z. D. Zhang, Q. S. Bi, Bifurcation in a piecewise linear circuit with switching boundaries, Int. J. Bifurcat. Chaos, 22 (2012). https://doi.org/10.1142/S0218127412500344
    [44] C. W. Clark, Mathematical Bioeconomics: The Optimal Management of Renewable Resources, John Wiley, New York, 1976.
    [45] M. Peng, Z. D. Zhang, Hopf bifurcation analysis in a predator-prey model with two time delays and stage structure for the prey, Adv. Differ. Equations, 2018 (2018), 251–271. https://doi.org/10.1186/s13662-018-1705-9 doi: 10.1186/s13662-018-1705-9
    [46] A. Wolf, J. B. Swift, H. L. Swinney, J. A. Vastano, Determining Lyapounov exponents from a time series, Physica D, 16 (1985), 285–317. https://doi.org/10.1016/0167-2789(85)90011-9 doi: 10.1016/0167-2789(85)90011-9
    [47] T. Y. Yuan, G. Guan, S. L. Shen, L. H. Zhu, Stability analysis and optimal control of epidemic-like transmission model with nonlinear inhibition mechanism and time delay in both homogeneous and heterogeneous networks, J. Math. Anal. Appl., 526 (2023), 127273. https://doi.org/10.1016/j.jmaa.2023.127273 doi: 10.1016/j.jmaa.2023.127273
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1334) PDF downloads(90) Cited by(7)

Article outline

Figures and Tables

Figures(21)  /  Tables(2)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog