Research article

Dynamic analysis and validation of a prey-predator model based on fish harvesting and discontinuous prey refuge effect in uncertain environments

  • Received: 10 December 2024 Revised: 04 February 2025 Accepted: 10 February 2025 Published: 24 February 2025
  • Dynamic modeling, analysis, and control of fish ecosystems are important for promoting the sustainable development of fish stocks. The objective of this study is to analyze the dynamic behavior of prey-predator systems with discontinuous prey refuge effect and different types of harvesting activities in an uncertain environment. Initially, a Filippov-type prey-predator model with fuzzy parameters is formulated and the positivity and bounded-ness of the solutions and the dynamic properties of Filippov prey-predator system are discussed. Next, from the perspective of effective exploitation and utilization of fish resources, a state linearly dependent fishing strategy is adopted into the system and a fishing model based on threshold feedback is established, as well as an analysis on the complex dynamics of the control system. Finally, to illustrate the theoretical results, computer simulations are presented step by step with an explanation on the practical significance. This study provides a reference for in-depth understanding of the development dynamics of fish resources and scientific planning of fishery resources exploitation.

    Citation: Yuan Tian, Hua Guo, Wenyu Shen, Xinrui Yan, Jie Zheng, Kaibiao Sun. Dynamic analysis and validation of a prey-predator model based on fish harvesting and discontinuous prey refuge effect in uncertain environments[J]. Electronic Research Archive, 2025, 33(2): 973-994. doi: 10.3934/era.2025044

    Related Papers:

  • Dynamic modeling, analysis, and control of fish ecosystems are important for promoting the sustainable development of fish stocks. The objective of this study is to analyze the dynamic behavior of prey-predator systems with discontinuous prey refuge effect and different types of harvesting activities in an uncertain environment. Initially, a Filippov-type prey-predator model with fuzzy parameters is formulated and the positivity and bounded-ness of the solutions and the dynamic properties of Filippov prey-predator system are discussed. Next, from the perspective of effective exploitation and utilization of fish resources, a state linearly dependent fishing strategy is adopted into the system and a fishing model based on threshold feedback is established, as well as an analysis on the complex dynamics of the control system. Finally, to illustrate the theoretical results, computer simulations are presented step by step with an explanation on the practical significance. This study provides a reference for in-depth understanding of the development dynamics of fish resources and scientific planning of fishery resources exploitation.



    加载中


    [1] F. Wang, R. Yang, Dynamics of a delayed reaction-diffusion predator-prey model with nonlocal competition and double Allee effect in prey, Int. J. Biomath., 18 (2025), 2350097. https://doi.org/10.1142/S1793524523500973 doi: 10.1142/S1793524523500973
    [2] Y. Ma, R. Yang, Hopf-Hopf bifurcation in a predator-prey model with nonlocal competition and refuge in prey, Discrete Contin. Dyn. Syst.-Ser. B, 29 (2024), 2582–2609. https://doi.org/10.3934/dcdsb.2023193 doi: 10.3934/dcdsb.2023193
    [3] A. J. Lotka, Elements of Physical Biology, Williams and Wilkins Company, Baltimore, 1925.
    [4] V. Volterra, Fluctuations in the abundance of a species considered mathematically, Nature, 119 (1927), 12–13. https://doi.org/10.1038/119012b0 doi: 10.1038/119012b0
    [5] C. S. Holling, The functional response of predators to prey density and its role in mimicry and population regulation, Mem. Entomol. Soc. Can., 97 (1965), 5–60. https://doi.org/10.4039/entm9745fv doi: 10.4039/entm9745fv
    [6] Y. Kuang, E. Beretta, Global qualitative analysis of a ratio-dependent predator-prey system, J. Math. Biol., 36 (1998), 389–406. https://doi.org/10.1007/s002850050105 doi: 10.1007/s002850050105
    [7] J. Smith, Models in Ecology, Cambridge University Press, Cambridge, 1974.
    [8] Z Ma, W. Li, Y. Zhao, W. Wang, H. Zhang, Z. Li, Effects of prey refuges on a predator-prey model with a class of functional responses: The role of refuges, Math. Biosci., 218 (2009), 73–79. https://doi.org/10.1016/j.mbs.2008.12.008 doi: 10.1016/j.mbs.2008.12.008
    [9] D. Barman, J. Roy, S. Alam, Modelling hiding behaviour in a predator-prey system by both integer order and fractional order derivatives, Ecol. Inf., 67 (2022), 101483. https://doi.org/10.1016/j.ecoinf.2021.101483 doi: 10.1016/j.ecoinf.2021.101483
    [10] S. Tang, J. Liang, Global qualitative analysis of a non-smooth Gause predator-prey model with a refuge, Nonlinear Anal. Theory Methods Appl., 76 (2013), 165–180. https://doi.org/10.1016/j.na.2012.08.013 doi: 10.1016/j.na.2012.08.013
    [11] X. Chen, L. Huang, A Filippov system describing the effect of prey refuge use on a ratio-dependent predator-prey model, J. Math. Anal. Appl., 428 (2015), 817–837. https://doi.org/10.1016/j.jmaa.2015.03.045 doi: 10.1016/j.jmaa.2015.03.045
    [12] W. Li, L. Huang, J. Wang, Global dynamics of Filippov-type plant disease models with an interaction ratio threshold, Math. Methods Appl. Sci., 43 (2020), 6995–7008. https://doi.org/10.1002/mma.6450 doi: 10.1002/mma.6450
    [13] W. Li, Y. Chen, L. Huang, J. Wang, Global dynamics of a filippov predator-prey model with two thresholds for integrated pest management, Chaos Solitons Fractals, 157 (2022), 111881. https://doi.org/10.1016/j.chaos.2022.111881 doi: 10.1016/j.chaos.2022.111881
    [14] D. Pal, G. S. Mahapatra, G. P. Samanta, Optimal harvesting of prey-predator system with interval biological parameters: A bioeconomic model, Math. Biosci., 241 (2013), 181-187. https://doi.org/10.1016/j.mbs.2012.11.007 doi: 10.1016/j.mbs.2012.11.007
    [15] X. Zhang, H. Zhao, Bifurcation and optimal harvesting of a diffusive predator-prey system with delays and interval biological parameters, J. Theor. Biol. 363 (2014), 390-403. https://doi.org/10.1016/j.jtbi.2014.08.031 doi: 10.1016/j.jtbi.2014.08.031
    [16] D. Pal, G. S. Mahapatra, G. P. Samanta, Stability and bionomic analysis of fuzzy parameter based prey-predator harvesting model using UFM, Nonlinear Dyn., 79 (2015), 1939–1955. https://doi.org/10.1007/s11071-014-1784-4 doi: 10.1007/s11071-014-1784-4
    [17] D. Pal, G. S. Mahapatra, G. P. Samanta, Stability and bionomic analysis of fuzzy prey-predator harvesting model in presence of toxicity: A dynamic approach, Bull. Math. Biol. 78 (2016), 1493-1519. https://doi.org/10.1007/s11538-016-0192-y doi: 10.1007/s11538-016-0192-y
    [18] Q. Xiao, B. Dai, L. Wang, Analysis of a competition fishery model with interval-valued parameters: Extinction, coexistence, bionomic equilibria and optimal harvesting policy, Nonlinear Dyn., 80 (2015), 1631–1642. https://doi.org/10.1007/s11071-015-1967-7 doi: 10.1007/s11071-015-1967-7
    [19] Q. Wang, Z. Liu, X. Zhang, R. A. Cheke, Incorporating prey refuge into a predator-prey system with imprecise parameter estimates, Comput. Appl. Math., 36 (2017), 1067–1084. https://doi.org/10.1007/s40314-015-0282-8 doi: 10.1007/s40314-015-0282-8
    [20] X. Yu, S. Yuan, T. Zhang, About the optimal harvesting of a fuzzy predator-prey system: A bioeconomic model incorporating prey refuge and predator mutual interference, Nonlinear Dyn., 94 (2018), 2143–2160. https://doi.org/10.1007/s11071-018-4480-y doi: 10.1007/s11071-018-4480-y
    [21] X. Meng, Y. Wu, Dynamical analysis of a fuzzy phytoplankton-zooplankton model with refuge, fishery protection and harvesting, J. Appl. Math. Comput., 63 (2020), 361–389. https://doi.org/10.1007/s12190-020-01321-y doi: 10.1007/s12190-020-01321-y
    [22] Q. Wang, S. Zhai, Q. Liu, Z. Liu, Stability and optimal harvesting of a predator-prey system combining prey refuge with fuzzy biological parameters, Math. Biosci. Eng., 18 (2021), 9094–9120. http://doi.org/10.3934/mbe.2021448 doi: 10.3934/mbe.2021448
    [23] M. Chen, Q. Zheng, Diffusion-driven instability of a predator-prey model with interval biological coefficients, Chaos Solitons Fractals, 172 (2023), 113494. https://doi.org/10.1016/j.chaos.2023.113494 doi: 10.1016/j.chaos.2023.113494
    [24] J. Xu, S. Yuan, T. Zhang, Optimal harvesting of a fuzzy water hyacinth-fish model with Kuznets curve effect, Int. J. Biomath., 16 (2023), 2250082. https://doi.org/10.1142/S1793524522500826 doi: 10.1142/S1793524522500826
    [25] H. Guo, Y Tian, K. Sun, X. Song, Dynamic analysis of two fishery capture models with a variable search rate and fuzzy biological parameters, Math. Biosci. Eng., 20 (2023), 21049–21074. http://doi.org/10.3934/mbe.2023931 doi: 10.3934/mbe.2023931
    [26] X. Cao, Q. Wang, J. Liu, Hopf bifurcation in a predator-prey model under fuzzy parameters involving prey refuge and fear effects, AIMS Math., 9 (2024), 23945–23970. http://doi.org/10.3934/math.20241164 doi: 10.3934/math.20241164
    [27] Y. Kwon, M. Bae, S. Hwang, S. Kim, Y. Park, Predicting potential impacts of climate change on freshwater fish in Korea, Ecol. Inf., 29 (2015), 156–165. https://doi.org/10.1016/j.ecoinf.2014.10.002 doi: 10.1016/j.ecoinf.2014.10.002
    [28] Y. Tian, C. Li, J. Liu, Complex dynamics and optimal harvesting strategy of competitive harvesting models with interval-valued imprecise parameters, Chaos Solitons Fractals, 167 (2023), 113084. https://doi.org/10.1016/j.chaos.2022.113084 doi: 10.1016/j.chaos.2022.113084
    [29] Q. Zhang, S. Tang, X. Zou, Rich dynamics of a predator-prey system with state-dependent impulsive controls switching between two means, J. Differ. Equations, 364 (2023), 336–377. https://doi.org/10.1016/j.jde.2023.03.030 doi: 10.1016/j.jde.2023.03.030
    [30] L. Nie, Z. Teng, H. Lin, J. Peng, The dynamics of a Lotka-Volterra predator-prey model with state dependent impulsive harvest for predator, Biosystems, 98 (2009), 67–72. https://doi.org/10.1016/j.biosystems.2009.06.001 doi: 10.1016/j.biosystems.2009.06.001
    [31] Q. Zhang, S. Tang, Bifurcation analysis of an ecological model with nonlinear state-dependent feedback control by poincaré map defined in phase set, Commun. Nonlinear Sci. Numer. Simul., 108 (2022) 106212. https://doi.org/10.1016/j.cnsns.2021.106212 doi: 10.1016/j.cnsns.2021.106212
    [32] Y. Tian, Y. Gao, K. Sun, A fishery predator-prey model with anti-predator behavior and complex dynamics induced by weighted fishing strategies, Math. Biosci. Eng., 20 (2023), 1558–1579. https://doi.org/10.3934/mbe.2023071 doi: 10.3934/mbe.2023071
    [33] W. Li, J. Ji, L. Huang, Global dynamic behavior of a predator-prey model under ratio-dependent state impulsive control, Appl. Math. Modell., 77 (2020), 1842–1859. https://doi.org/10.1016/j.apm.2019.09.033 doi: 10.1016/j.apm.2019.09.033
    [34] L. A. Cherkas, A. A. Grin', Bendixson-Dulac criterion and reduction to global uniqueness in the problem of estimating the number of limit cycles, Differ. Equations 46 (2010), 61–69. https://doi.org/10.1134/S0012266110010076 doi: 10.1134/S0012266110010076
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1011) PDF downloads(52) Cited by(3)

Article outline

Figures and Tables

Figures(7)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog