We investigated an observer-based fault diagnosis method for the high altitude airship (HAA). The nonlinear kinematics and dynamics model, which considers model uncertainties and external disturbances, were obtained. The nonliear portion of the model was re-expressed to the linear parameter varying frame mathematically with an auxiliary design. Subsequently, in order to realize fault detection, isolation, and reconstruction, diverse types of robust were observers designed, respectively. Furthermore, all these mentioned observers were achieved via the linear matrix inequation framework. The effectiveness of the proposed method was verified by different fault cases in an HAA simulation system.
Citation: Jichen Hu, Ming Zhu, Tian Chen. The nonlinear observer-based fault diagnosis method for the high altitude airship[J]. Electronic Research Archive, 2025, 33(2): 907-930. doi: 10.3934/era.2025041
We investigated an observer-based fault diagnosis method for the high altitude airship (HAA). The nonlinear kinematics and dynamics model, which considers model uncertainties and external disturbances, were obtained. The nonliear portion of the model was re-expressed to the linear parameter varying frame mathematically with an auxiliary design. Subsequently, in order to realize fault detection, isolation, and reconstruction, diverse types of robust were observers designed, respectively. Furthermore, all these mentioned observers were achieved via the linear matrix inequation framework. The effectiveness of the proposed method was verified by different fault cases in an HAA simulation system.
| [1] |
Z. Zuo, J. Song, Z. Zheng, Q. Han, A survey on modelling, control and challenges of stratospheric airships, Control Eng. Pract., 119 (2022), 104979. https://doi.org/10.1016/j.conengprac.2021.104979 doi: 10.1016/j.conengprac.2021.104979
|
| [2] |
T. Chen, M. Zhu, Z. Zheng, Asymmetric error-constrained path-following control of a stratospheric airship with disturbances and actuator saturation, Mech. Syst. Signal Process., 119 (2019), 501–522. https://doi.org/10.1016/j.ymssp.2018.10.003 doi: 10.1016/j.ymssp.2018.10.003
|
| [3] |
J. Yuan, M. Zhu, X. Guo, W. Lou, Finite-time trajectory tracking control for a stratospheric airship with full-state constraint and disturbances, J. Franklin Inst., 358 (2021), 1499–1528. https://doi.org/10.1016/j.jfranklin.2020.12.010 doi: 10.1016/j.jfranklin.2020.12.010
|
| [4] |
J. Yuan, X. Guo, Z. Zheng, M. Zhu, H. Gou, Error-constrained fixed-time trajectory tracking control for a stratospheric airship with disturbances, Aerosp. Sci. Technol., 118 (2021), 107055. https://doi.org/10.1016/j.ast.2021.107055 doi: 10.1016/j.ast.2021.107055
|
| [5] |
S. Liang, S. Zhang, Y. Huang, X. Zheng, J. Cheng, S. Wu, Data-driven fault diagnosis of FW-UAVs with consideration of multiple operation conditions, ISA Trans., 126 (2022), 472–485. https://doi.org/10.1016/j.isatra.2021.07.043 doi: 10.1016/j.isatra.2021.07.043
|
| [6] |
T. Thanaraj, K. H. Low, B. F. Ng, Actuator fault detection and isolation on multi-rotor UAV using extreme learning neuro-fuzzy systems, ISA Trans., 138 (2023), 168–185. https://doi.org/10.1016/j.isatra.2023.02.026 doi: 10.1016/j.isatra.2023.02.026
|
| [7] |
J. J. Gertler, M. M. Kunwer, Optimal residual decoupling for robust fault diagnosis, Int. J. Control, 61 (1995), 395–421. https://doi.org/10.1080/00207179508921908 doi: 10.1080/00207179508921908
|
| [8] |
A. Khan, W. Xie, B. Zhang, L. Liu, A survey of interval observers design methods and implementation for uncertain systems, J. Franklin Inst., 358 (2021), 3077–3126. https://doi.org/10.1016/j.jfranklin.2021.01.041 doi: 10.1016/j.jfranklin.2021.01.041
|
| [9] |
S. Meng, F. Meng, F. Zhang, Q. Li, Y. Zhang, A. Zemouche, Observer design method for nonlinear generalized systems with nonlinear algebraic constraints with applications, Automatica, 162 (2024), 111512. https://doi.org/10.1016/j.automatica.2024.111512 doi: 10.1016/j.automatica.2024.111512
|
| [10] |
F. Nemati, S. M. S. Hamami, A. Zemouche, A nonlinear observer-based approach to fault detection, isolation and estimation for satellite formation flight application, Automatica, 107 (2019), 474–482. https://doi.org/10.1016/j.automatica.2019.06.007 doi: 10.1016/j.automatica.2019.06.007
|
| [11] |
G. Zogopoulos-Papaliakos, K. J. Kyriakopoulos, An efficient approach for graph-based fault diagnosis in UAVs, J. Intell. Rob. Syst., 97 (2020), 553–576. https://doi.org/10.1007/s10846-019-01061-7 doi: 10.1007/s10846-019-01061-7
|
| [12] |
R. Falcón, H. Ríos, A. Dzul, A robust fault diagnosis for quad-rotors: A sliding-mode observer approach, IEEE/ASME Trans. Mechatron., 27 (2022), 4487–4496. https://doi.org/10.1109/TMECH.2022.3156854 doi: 10.1109/TMECH.2022.3156854
|
| [13] |
L. Shang, G. Liu, Sensor and actuator fault detection and isolation for a high performance aircraft engine bleed air temperature control system, IEEE Trans. Control Syst. Technol., 19 (2011), 1260–1268. https://doi.org/10.1109/TCST.2010.2076353 doi: 10.1109/TCST.2010.2076353
|
| [14] |
Y. Wei, J. Qiu, P. Shi, L. Wu, A piecewise-markovian lyapunov approach to reliable output feedback control for fuzzy-affine systems with time-delays and actuator faults, IEEE Trans. Cybern., 48 (2018), 2723–2735. https://doi.org/10.1109/TCYB.2017.2749239 doi: 10.1109/TCYB.2017.2749239
|
| [15] |
S. Li, H. Wang, A. Aitouche, Y. Tian, N. Christov, Actuator fault and disturbance estimation using the T-S fuzzy model, IFAC-PapersOnLine, 50 (2017), 15722–15727. https://doi.org/10.1016/j.ifacol.2017.08.2414 doi: 10.1016/j.ifacol.2017.08.2414
|
| [16] |
H. Ma, Y. Liu, T. Li, G. Yang, Nonlinear high-gain observer-based diagnosis and compensation for actuator and sensor faults in a quadrotor unmanned aerial vehicle, IEEE Trans. Ind. Inf., 15 (2019), 550–562. https://doi.org/10.1109/TII.2018.2865522 doi: 10.1109/TII.2018.2865522
|
| [17] |
R. C. Avram, X. Zhang, J. Muse, Quadrotor actuator fault diagnosis and accommodation using nonlinear adaptive estimators, IEEE Trans. Control Syst. Technol., 25 (2017), 2219–2226. https://doi.org/10.1109/TCST.2016.2640941 doi: 10.1109/TCST.2016.2640941
|
| [18] |
W. Chua, J. C. L. Chan, C. P. Tan, E. K. P. Chong, S. Saha, Robust fault reconstruction for a class of nonlinear systems, Automatica, 113 (2020), 108718. https://doi.org/10.1016/j.automatica.2019.108718 doi: 10.1016/j.automatica.2019.108718
|
| [19] |
F. Zhu, Y. Tang, Z. Wang, Interval-observer-based fault detection and isolation design for T-S fuzzy system based on zonotope analysis, IEEE Trans. Fuzzy Syst., 30 (2022), 945–955. https://doi.org/10.1109/TFUZZ.2021.3050854 doi: 10.1109/TFUZZ.2021.3050854
|
| [20] |
M. Zhang, Z. Wang, Y. Wang, J. H. Park, Z. Ji, Interval observer filtering-based fault diagnosis method for linear discrete-time systems with dual uncertainties, J. Franklin Inst., 359 (2022), 1626–1648. https://doi.org/10.1016/j.jfranklin.2021.11.018 doi: 10.1016/j.jfranklin.2021.11.018
|
| [21] |
S. Li, H. Wang, A. Aitouche, N. Christov, Sliding mode observer design for fault and disturbance estimation using takagi-sugeno model, Eur. J. Control, 44 (2018), 114–122. https://doi.org/10.1016/j.ejcon.2018.09.006 doi: 10.1016/j.ejcon.2018.09.006
|
| [22] |
A. N. Zhirabok, A. E. Shumsky, A. V. Zuev, Fault diagnosis in linear systems via sliding mode observers, Int. J. control, 94 (2021), 327–335. https://doi.org/10.1080/00207179.2019.1590738 doi: 10.1080/00207179.2019.1590738
|
| [23] |
R. Zhou, J. Li, Z. Yang, Y. Xu, Z. Yu, Y. Zhang, Fractional-order sliding-mode fault-tolerant control of unmanned airship against actuator faults, IFAC-PapersOnLine, 55 (2022), 617–622. https://doi.org/10.1016/j.ifacol.2022.07.196 doi: 10.1016/j.ifacol.2022.07.196
|
| [24] |
H. Hamdi, M. Rodrigues, C. Mechmeche, N. B. Braiek, Fault diagnosis based on sliding mode observer for LPV descriptor systems, Asian J. Control, 21 (2019), 89–98. https://doi.org/10.1002/asjc.2022 doi: 10.1002/asjc.2022
|
| [25] |
T. Chen, M. Zhu, Z. Zheng, Adaptive path following control of a stratospheric airship with full-state constraint and actuator saturation, Aerosp. Sci. Technol., 95 (2019), 105457. https://doi.org/10.1016/j.ast.2019.105457 doi: 10.1016/j.ast.2019.105457
|