Research article Special Issues

Modification and the cohomology groups of compact solvmanifolds Ⅱ

  • Received: 02 September 2024 Revised: 28 December 2024 Accepted: 08 January 2025 Published: 20 February 2025
  • In this article, we refine the modification theorem for a compact solvmanifold given in 2006 and completely solve the problem of finding the cohomology ring on compact solvmanifolds.

    Citation: Daniel Guan. Modification and the cohomology groups of compact solvmanifolds Ⅱ[J]. Electronic Research Archive, 2025, 33(2): 931-937. doi: 10.3934/era.2025042

    Related Papers:

  • In this article, we refine the modification theorem for a compact solvmanifold given in 2006 and completely solve the problem of finding the cohomology ring on compact solvmanifolds.



    加载中


    [1] G. D. Mostow, Cohomology of topological groups and solvmanifolds, Ann. Math., 73 (1961), 20–48. https://doi.org/10.2307/1970281 doi: 10.2307/1970281
    [2] M. S. Raghunathan, Discrete Subgroups of Lie Groups, Springer, Belin, 1972.
    [3] D. Guan, Modification and the cohomology groups of compact solvmanifolds, Electron. Res. Announce. Am. Math. Soc., 13 (2007), 74–81. http://doi.org/10.1090/S1079-6762-07-00176-X doi: 10.1090/S1079-6762-07-00176-X
    [4] D. Guan, Classification of compact complex homogeneous manifolds with pseudo-kählerian structures, J. Algebra, 324 (2010), 2010–2024. https://doi.org/10.1016/j.jalgebra.2010.06.013 doi: 10.1016/j.jalgebra.2010.06.013
    [5] A. L. Onishchik, E. B. Vinberg, Lie Groups and Lie algebras III: Structure of Lie Groups and Lie Algebras, Springer, Berlin, 1994.
    [6] A. Hattori, Spectral sequences in the de rham cohomology of the fiber bundles, J. Fac. Sci. Univ. Tokyo, 8 (1960), 289–331.
    [7] T. Yamada, A pseudo-kähler structure on a nontoral compact complex parallelizable solvmanifold, Geom. Dedicata, 112 (2005), 115–122. https://doi.org/10.1007/s10711-004-3397-4 doi: 10.1007/s10711-004-3397-4
    [8] D. Guan, Toward a classification of real compact solvmanifolds with real symplectic structures, J. Algebra, 379 (2013), 144–155. https://doi.org/10.1016/j.jalgebra.2013.01.011 doi: 10.1016/j.jalgebra.2013.01.011
    [9] C. Benson, C. S. Gordon, Kähler structures on compact solvmanifolds, Proc. Am. Math. Soc. 108 (1990), 971–980.
    [10] S. Console, A. Fino, On the de Rham cohomology of solvmanifolds, Ann. Sc. Norm. Super. Pisa-Cl. Sci., 10 (2011), 801–818.
    [11] D. Witte, Superrigidity of lattices in solvable Lie groups, Invent. Math., 122 (1995), 147–193. https://doi.org/10.1007/BF01231442 doi: 10.1007/BF01231442
    [12] D. Witte, Archimedean superrigidity of solvable $S$-Arithmetic groups, J. Algebra, 187 (1997), 268–288. https://doi.org/10.1006/jabr.1997.6785 doi: 10.1006/jabr.1997.6785
    [13] H. Kasuya, Cohomologically symplectic solvmanifolds are symplectic, J. Symplect. Geom., 9 (2011), 429–434. http://doi.org/10.4310/JSG.2011.v9.n4.a1 doi: 10.4310/JSG.2011.v9.n4.a1
    [14] H. Kasuya, Minimal models, formality, and hard Lefschetz properties of solvmanifolds with local systems, J. Differ. Geom., 93 (2013), 267–297. https://doi.org/10.4310/jdg/1361800867 doi: 10.4310/jdg/1361800867
    [15] N. Dungey, A. F. M. Elst, D. W. Robinson, Analysis on Lie Groups with Polynomial Growth, Birkhäuser, Boston, 2003. https://doi.org/10.1007/978-1-4612-2062-6
    [16] R. Azencott, E. N. Wilso, Homogeneous Manifolds with Negative Curvatures, Part II, American Mathematical Society, Rhode Island, 1976.
    [17] V. V. Gorbatservich, Plesiocompact homogeneous spaces, Sib. Math. J., 30 (1989), 217–226. https://doi.org/10.1007/BF00971376 doi: 10.1007/BF00971376
    [18] J. Dorfmeister, Homogeneous kähler manifolds admitting a transitive solvable group of automorphisms, Ann. Sci. Ec. Norm. Super., 18 (1985), 143–180. https://doi.org/10.24033/asens.1487 doi: 10.24033/asens.1487
    [19] J. Dorfmeister, Quasi Clans, Abh. Math. Semin. Univ. Hambg., 50 (1980), 178–187. https://doi.org/10.1007/BF02941427 doi: 10.1007/BF02941427
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(792) PDF downloads(45) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog