In this article, we refine the modification theorem for a compact solvmanifold given in 2006 and completely solve the problem of finding the cohomology ring on compact solvmanifolds.
Citation: Daniel Guan. Modification and the cohomology groups of compact solvmanifolds Ⅱ[J]. Electronic Research Archive, 2025, 33(2): 931-937. doi: 10.3934/era.2025042
In this article, we refine the modification theorem for a compact solvmanifold given in 2006 and completely solve the problem of finding the cohomology ring on compact solvmanifolds.
| [1] |
G. D. Mostow, Cohomology of topological groups and solvmanifolds, Ann. Math., 73 (1961), 20–48. https://doi.org/10.2307/1970281 doi: 10.2307/1970281
|
| [2] | M. S. Raghunathan, Discrete Subgroups of Lie Groups, Springer, Belin, 1972. |
| [3] |
D. Guan, Modification and the cohomology groups of compact solvmanifolds, Electron. Res. Announce. Am. Math. Soc., 13 (2007), 74–81. http://doi.org/10.1090/S1079-6762-07-00176-X doi: 10.1090/S1079-6762-07-00176-X
|
| [4] |
D. Guan, Classification of compact complex homogeneous manifolds with pseudo-kählerian structures, J. Algebra, 324 (2010), 2010–2024. https://doi.org/10.1016/j.jalgebra.2010.06.013 doi: 10.1016/j.jalgebra.2010.06.013
|
| [5] | A. L. Onishchik, E. B. Vinberg, Lie Groups and Lie algebras III: Structure of Lie Groups and Lie Algebras, Springer, Berlin, 1994. |
| [6] | A. Hattori, Spectral sequences in the de rham cohomology of the fiber bundles, J. Fac. Sci. Univ. Tokyo, 8 (1960), 289–331. |
| [7] |
T. Yamada, A pseudo-kähler structure on a nontoral compact complex parallelizable solvmanifold, Geom. Dedicata, 112 (2005), 115–122. https://doi.org/10.1007/s10711-004-3397-4 doi: 10.1007/s10711-004-3397-4
|
| [8] |
D. Guan, Toward a classification of real compact solvmanifolds with real symplectic structures, J. Algebra, 379 (2013), 144–155. https://doi.org/10.1016/j.jalgebra.2013.01.011 doi: 10.1016/j.jalgebra.2013.01.011
|
| [9] | C. Benson, C. S. Gordon, Kähler structures on compact solvmanifolds, Proc. Am. Math. Soc. 108 (1990), 971–980. |
| [10] | S. Console, A. Fino, On the de Rham cohomology of solvmanifolds, Ann. Sc. Norm. Super. Pisa-Cl. Sci., 10 (2011), 801–818. |
| [11] |
D. Witte, Superrigidity of lattices in solvable Lie groups, Invent. Math., 122 (1995), 147–193. https://doi.org/10.1007/BF01231442 doi: 10.1007/BF01231442
|
| [12] |
D. Witte, Archimedean superrigidity of solvable $S$-Arithmetic groups, J. Algebra, 187 (1997), 268–288. https://doi.org/10.1006/jabr.1997.6785 doi: 10.1006/jabr.1997.6785
|
| [13] |
H. Kasuya, Cohomologically symplectic solvmanifolds are symplectic, J. Symplect. Geom., 9 (2011), 429–434. http://doi.org/10.4310/JSG.2011.v9.n4.a1 doi: 10.4310/JSG.2011.v9.n4.a1
|
| [14] |
H. Kasuya, Minimal models, formality, and hard Lefschetz properties of solvmanifolds with local systems, J. Differ. Geom., 93 (2013), 267–297. https://doi.org/10.4310/jdg/1361800867 doi: 10.4310/jdg/1361800867
|
| [15] | N. Dungey, A. F. M. Elst, D. W. Robinson, Analysis on Lie Groups with Polynomial Growth, Birkhäuser, Boston, 2003. https://doi.org/10.1007/978-1-4612-2062-6 |
| [16] | R. Azencott, E. N. Wilso, Homogeneous Manifolds with Negative Curvatures, Part II, American Mathematical Society, Rhode Island, 1976. |
| [17] |
V. V. Gorbatservich, Plesiocompact homogeneous spaces, Sib. Math. J., 30 (1989), 217–226. https://doi.org/10.1007/BF00971376 doi: 10.1007/BF00971376
|
| [18] |
J. Dorfmeister, Homogeneous kähler manifolds admitting a transitive solvable group of automorphisms, Ann. Sci. Ec. Norm. Super., 18 (1985), 143–180. https://doi.org/10.24033/asens.1487 doi: 10.24033/asens.1487
|
| [19] |
J. Dorfmeister, Quasi Clans, Abh. Math. Semin. Univ. Hambg., 50 (1980), 178–187. https://doi.org/10.1007/BF02941427 doi: 10.1007/BF02941427
|