Energy consumption accounting and prediction in the medium and thick plate rolling process are crucial for controlling costs, improving production efficiency, optimizing equipment management, and enhancing the market competitiveness of enterprises. Starting from the perspective of integrating process mechanism and industrial big data, we overcame the difficulties brought by complex and highly nonlinear coupling of process variables, proposed a rolling power consumption accounting algorithm based on time slicing method, and gave a calculation method for the additional power consumption of the main motor for rough rolling and finishing rolling (auxiliary system power consumption, power loss, main motor power consumption deviation); with the help of SIMS model, forward recursion, and reverse recursion pass rolling force estimation strategies are proposed, and the rated power consumption of the main motor was predicted. Furthermore, a random forest regression model of additional power consumption based on data was established, and then a prediction algorithm for the comprehensive power consumption of billet rolling was given. Experiments showed the effectiveness of the proposed method.
Citation: Qiang Guo, Zimeng Zhou, Jie Li, Fengwei Jing. Mechanism- and data-driven algorithms of electrical energy consumption accounting and prediction for medium and heavy plate rolling[J]. Electronic Research Archive, 2025, 33(1): 381-408. doi: 10.3934/era.2025019
[1] | Fengrong Zhang, Ruining Chen . Spatiotemporal patterns of a delayed diffusive prey-predator model with prey-taxis. Electronic Research Archive, 2024, 32(7): 4723-4740. doi: 10.3934/era.2024215 |
[2] | Xin Du, Quansheng Liu, Yuanhong Bi . Bifurcation analysis of a two–dimensional p53 gene regulatory network without and with time delay. Electronic Research Archive, 2024, 32(1): 293-316. doi: 10.3934/era.2024014 |
[3] | Miao Peng, Rui Lin, Zhengdi Zhang, Lei Huang . The dynamics of a delayed predator-prey model with square root functional response and stage structure. Electronic Research Archive, 2024, 32(5): 3275-3298. doi: 10.3934/era.2024150 |
[4] | Rui Ma, Xin-You Meng . Dynamics of an eco-epidemiological model with toxicity, treatment, time-varying incubation. Electronic Research Archive, 2025, 33(5): 3074-3110. doi: 10.3934/era.2025135 |
[5] | Rina Su . Dynamic analysis for a class of hydrological model with time delay under fire disturbance. Electronic Research Archive, 2022, 30(9): 3290-3319. doi: 10.3934/era.2022167 |
[6] | Mengting Sui, Yanfei Du . Bifurcations, stability switches and chaos in a diffusive predator-prey model with fear response delay. Electronic Research Archive, 2023, 31(9): 5124-5150. doi: 10.3934/era.2023262 |
[7] | Yujia Xiang, Yuqi Jiao, Xin Wang, Ruizhi Yang . Dynamics of a delayed diffusive predator-prey model with Allee effect and nonlocal competition in prey and hunting cooperation in predator. Electronic Research Archive, 2023, 31(4): 2120-2138. doi: 10.3934/era.2023109 |
[8] | Yuan Xue, Jinli Xu, Yuting Ding . Dynamics analysis of a diffusional immunosuppressive infection model with Beddington-DeAngelis functional response. Electronic Research Archive, 2023, 31(10): 6071-6088. doi: 10.3934/era.2023309 |
[9] | Wenbin Zhong, Yuting Ding . Spatiotemporal dynamics of a predator-prey model with a gestation delay and nonlocal competition. Electronic Research Archive, 2025, 33(4): 2601-2617. doi: 10.3934/era.2025116 |
[10] | Xiaowen Zhang, Wufei Huang, Jiaxin Ma, Ruizhi Yang . Hopf bifurcation analysis in a delayed diffusive predator-prey system with nonlocal competition and schooling behavior. Electronic Research Archive, 2022, 30(7): 2510-2523. doi: 10.3934/era.2022128 |
Energy consumption accounting and prediction in the medium and thick plate rolling process are crucial for controlling costs, improving production efficiency, optimizing equipment management, and enhancing the market competitiveness of enterprises. Starting from the perspective of integrating process mechanism and industrial big data, we overcame the difficulties brought by complex and highly nonlinear coupling of process variables, proposed a rolling power consumption accounting algorithm based on time slicing method, and gave a calculation method for the additional power consumption of the main motor for rough rolling and finishing rolling (auxiliary system power consumption, power loss, main motor power consumption deviation); with the help of SIMS model, forward recursion, and reverse recursion pass rolling force estimation strategies are proposed, and the rated power consumption of the main motor was predicted. Furthermore, a random forest regression model of additional power consumption based on data was established, and then a prediction algorithm for the comprehensive power consumption of billet rolling was given. Experiments showed the effectiveness of the proposed method.
Fractional difference calculus is a tool used to explain many phenomena in physics, control problems, modeling, chaotic dynamical systems, and various fields of engineering and applied mathematics. In this direction, different kinds of methods and techniques, including numerical and analytical methods, have been utilized by researchers to discuss given fractional discrete and continuous mathematical models and boundary value problems (BVPs) [1,2,3,4]. For some recent developments on the existence, uniqueness, and stability of solutions for fractional differential equations, see, for example, [5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23] and the references therein.
Discrete fractional calculus and difference equations open a new study context for mathematicians. For this reason, they have received increasing attention in recent years. Some real-world processes and phenomena are analyzed with the aid of discrete fractional operators, since such operators provide an accurate tool to describe memory. A large number of research articles dealing with difference equations and discrete fractional boundary value problems (FBVPs) can be found in [24,25,26,27,28,29,30,31,32].
In 2020, Selvam et al. [33] proved the existence of a solution to a discrete fractional difference equation formulated as
{cΔϱξχ(ξ)=Φ(ξ+ϱ−1,χ(ξ+ϱ−1)),1<ϱ≤2,Δχ(ϱ−2)=M1,χ(ϱ+T)=M2, | (1.1) |
for ξ∈[0,T]N0=[0,1,2,…,T], T∈N, η∈[ϱ−1,T+ϱ−1]Nϱ−1, M1 and M2 constants, Φ:[ϱ−2,ϱ+T]Nϱ−2×R⟶R continuous, and where cΔϱξ denotes the ϱth-Caputo difference. Here, motivated by the discrete model (1.1), we shall consider two generalized discrete problems.
Our first goal consists to study existence and uniqueness of solutions to the following discrete fractional equation that involves Caputo discrete derivatives:
{cΔϱξχ(ξ)=Φ(ξ+ϱ−1,χ(ξ+ϱ−1)),2<ϱ≤3,Δχ(ϱ−3)=A1,χ(ϱ+T)=λΔ−βχ(η+β),Δ2χ(ϱ−3)=A2, | (1.2) |
for 0<β≤1, ξ∈[0,T]N0=[0,1,2,…,T], T∈N, η∈[ϱ−1,T+ϱ−1]Nϱ−1, λ, A1 and A2 constants, and where Φ:[ϱ−3,ϱ+T]Nϱ−3×R⟶R is continuous.
The second goal is to study the stability of solutions to the discrete Riemann-Liouville fractional problem
{RLΔϱξχ(ξ)=Φ(ξ+ϱ−1,χ(ξ+ϱ−1)),2<ϱ≤3,Δχ(ϱ−3)=A1,χ(ϱ+T)=λΔ−βχ(η+β),Δ2χ(ϱ−3)=A2, | (1.3) |
for 0<β≤1, ξ∈[0,T]N0=[0,1,2,…,T] and η∈[ϱ−1,T+ϱ−1]Nϱ−1, where RLΔϱξ is the Riemann-Liouville difference operator.
The organization of the paper is as follows. In Section 2, we collect some fundamental definitions available from the literature. In Section 3, we prove the existence and uniqueness results for the discrete FBVP (1.2). Hyers-Ulam and Hyers-Ulam-Rassias stability of the solution for the FBVP (1.3) is established in Section 4. In Section 5, two examples are given to illustrate the obtained results. We end with Section 6 of conclusions.
We begin by recalling some necessary definitions and essential lemmas that will be used throughout the paper.
Definition 2.1. (See [27]) Let ϱ>0. The ϱ-order fractional sum of Φ is defined by
Δ−ϱξΦ(ξ)=1Γ(ϱ)ξ−ϱ∑l=a(ξ−l−1)(ϱ−1)Φ(l), | (2.1) |
where ξ∈Na+ϱ:={a+ϱ,a+ϱ+1,…} and ξ(ϱ):=Γ(ξ+1)Γ(ξ+1−ϱ).
Definition 2.2. (See [27]) Let ϱ>0 and Φ be defined on Na. The ϱ-order Caputo fractional difference of Φ is defined by
CaΔϱξΦ(ξ)=Δ−(n−ϱ)(ΔnΦ(ξ))=1Γ(n−ϱ)ξ−(n−ϱ)∑l=a(ξ−l−1)(n−ϱ−1)ΔnΦ(l), | (2.2) |
while the Riemann-Liouville fractional difference of Φ is defined by
RLaΔϱξΦ(ξ)=ΔnΔ−(n−ϱ)Φ(ξ), | (2.3) |
where ξ∈Na+n−ϱ and n−1<ϱ≤n.
Lemma 2.1. (See [24,27]) For ϱ>0,
Δ−ϱCaΔϱξΦ(ξ)=Φ(ξ)+C0+C1ξ+⋯+CN−1ξ(N−1), | (2.4) |
where Ci∈R, i=1,2,…,N−1, Φ is defined on Na, and 0≤N−1<ϱ≤N.
Lemma 2.2. (See ([32]) Let 0≤N−1<ϱ≤N and Φ be defined on Na. Then,
Δ−ϱRL0ΔϱξΦ(ξ)=Φ(ξ)+B1ξϱ−1+B2ξ(ϱ−2)+⋯+BNξ(ϱ−N), | (2.5) |
for B1,…,BN∈R.
Lemma 2.3. (See [31]) Let ϱ and ξ be any arbitrary real numbers. Then,
(1)ξ−ϱ∑l=0(ξ−l−1)(ϱ−1)=Γ(ξ+1)ϱΓ(ξ−ϱ+1),(2)L∑l=0(ξ−L−l−1)(ϱ−1)=Γ(ϱ+L+1)ϱΓ(L+1). |
Lemma 2.4. (See [31]) For ζ∈R∖(Z−∖{0}), we have
Δ−ϱξ(ζ)=Γ(ζ+1)Γ(ζ+ϱ+1)ξ(ζ+ϱ). |
In this section, we prove the existence and uniqueness of solution for the Caputo three-point discrete fractional problem (1.2). To accomplish this, we denote by C(Nϱ−3,ϱ+T,R) the collection of all continuous functions χ with the norm
‖χ‖=max{|χ(ξ)|:ξ∈Nϱ−3,ϱ+T}. |
Lemma 3.1. Let 2<ϱ≤3 and Φ:[ϱ−3,ϱ+T]Nϱ−3⟶R. A function χ(ξ) (ξ∈[ϱ−3,ϱ+T]Nϱ−3) that satisfies the discrete FBVP
{cΔϱξχ(ξ)=Φ(ξ+ϱ−1),2<ϱ≤3,Δχ(ϱ−3)=A1,χ(ϱ+T)=λΔ−βχ(η+β),Δ2χ(ϱ−3)=A2,0<β≤1, | (3.1) |
is given by
χ(ξ)=1Γ(ϱ)ξ−ϱ∑l=0(ξ−ρ(l))(ϱ−1)Φ(l+ϱ−1)−λK1Γ(ϱ)η∑l=ϱl−ϱ∑ξ=0(η+β−ρ(l))(β−1)(l−ρ(ξ))(ϱ−1)Φ(ξ+ϱ−1)+Γ(β)K1Γ(ϱ)T∑l=0(ϱ+T−ρ(l))(ϱ−1)Φ(l+ϱ−1)+K2+[A1−A2(ϱ−3)]ξ(1)+A22ξ(2), | (3.2) |
with
K1=λη∑l=ϱ−3(η+β−ρ(l))(β−1)−Γ(β), | (3.3) |
and
K2=λK1[A2(ϱ−3)−A1]η∑l=ϱ−3(η+β−ρ(l))(β−1)l(1)−A22K1λη∑l=ϱ−3(η+β−ρ(l))(β−1)l(2)+Γ(β)K1(ϱ+T)[A1−A2(ϱ−3)+A22(ϱ+T−1)]. | (3.4) |
Proof. Let χ(ξ) be a solution to (3.1). Applying Lemma 2.1 and Definition 2.1, we find that
χ(ξ)=1Γ(ϱ)ξ−ϱ∑l=0(ξ−ρ(l))(ϱ−1)Φ(l+ϱ−1)+C0+C1ξ(1)+C2ξ(2), | (3.5) |
for ξ∈[ϱ−3,ϱ+T]Nϱ−3, where C0,C1,C2∈R. By using the difference of order 1 for (3.5), we have
Δχ(ξ)=1Γ(ϱ−1)ξ−ϱ+1∑l=0(ξ−ρ(l))(ϱ−2)Φ(l+ϱ−1)+C1+2C2ξ(1), |
and
Δ2χ(ξ)=1Γ(ϱ−2)ξ−ϱ+2∑l=0(ξ−ρ(l))(ϱ−3)Φ(l+ϱ−1)+2C2. |
Now, from conditions Δχ(ϱ−3)=A1 and Δ2χ(ϱ−3)=A2, we obtain that
C1=A1−A2(ϱ−3),C2=A22. |
Therefore,
χ(ξ)=1Γ(ϱ)ξ−ϱ∑l=0(ξ−ρ(l))(ϱ−1)Φ(l+ϱ−1)+C0+[A1−A2(ϱ−3)]ξ(1)+A22ξ(2), | (3.6) |
for ξ∈[ϱ−3,ϱ+T]Nϱ−3. By using formula (3.5), one has
Δ−βχ(ξ)=C1Γ(β)ξ−β∑l=ϱ−3(ξ−ρ(l))(β−1)l(1)+C2Γ(β)ξ−β∑l=ϱ−3(ξ−ρ(l))(β−1)l(2)+C0Γ(β)ξ−β∑l=ϱ−3(ξ−ρ(l))(β−1)+1Γ(ϱ)Γ(β)ξ−β∑l=ϱl−ϱ∑ξ=0(ξ−ρ(l))(β−1)(l−ρ(ξ))(ϱ−1)Φ(ξ+ϱ−1). | (3.7) |
The other condition of (3.1) gives
λΔ−βχ(η+β)=λ[A1−A2(ϱ−3)]Γ(β)η∑l=ϱ−3(η+β−ρ(l))(β−1)l(1) +λA22Γ(β)η∑l=ϱ−3(η+β−ρ(l))(β−1)l(2)+λC0Γ(β)η∑l=ϱ−3(η+β−ρ(l))(β−1) +λΓ(ϱ)Γ(β)η∑l=ϱl−ϱ∑ξ=0(η+β−ρ(l))(β−1)(l−ρ(ξ))(ϱ−1)Φ(ξ+ϱ−1)=1Γ(ϱ)T∑l=0(ϱ+T−ρ(l))(ϱ−1)Φ(l+ϱ−1)+C0 +[A1−A2(ϱ−3)](ϱ+T)(1)+A22(ϱ+T)(2). |
We have
C0=Γ(β)K1Γ(ϱ)T∑l=0(ϱ+T−ρ(l))(ϱ−1)Φ(l+ϱ−1)+K2−λK1Γ(ϱ)η∑l=ϱl−ϱ∑ξ=0(η+β−ρ(l))(β−1)(l−ρ(ξ))(ϱ−1)Φ(ξ+ϱ−1), |
where K1 and K2 are defined by (3.3) and (3.4), and one obtains (3.2) by substituting the value of C0 into (3.6).
Now, let us consider the operator H:C(Nϱ−3,ϱ+T,R)→C(Nϱ−3,ϱ+T,R) defined by
(Hχ)(ξ)=1Γ(ϱ)ξ−ϱ∑l=0(ξ−ρ(l))(ϱ−1)Φ(l+ϱ−1,χ(l+ϱ−1))−λK1Γ(ϱ)η∑l=ϱl−ϱ∑τ=0(η+β−ρ(l))(β−1)(l−ρ(τ))(ϱ−1)Φ(l+ϱ−1,χ(l+ϱ−1))+Γ(β)K1Γ(ϱ)T∑l=0(ϱ+T−ρ(l))(ϱ−1)Φ(l+ϱ−1,χ(l+ϱ−1))+K2+[A1−A2(ϱ−3)]ξ(1)+A22ξ(2). |
Theorem 3.1. Assume that:
(H1) Function Φ satisfies |Φ(ξ,χ1)−Φ(ξ,χ2)|≤K|χ1−χ2|, where K>0, ∀ξ∈Nϱ−3,ϱ+T and χ1,χ2∈C(Nϱ−3,ϱ+T,R). The discrete FBVP (3.1) has a unique solution on C(Nϱ−3,ϱ+T,R) provided
Γ(ϱ+T+1)Γ(ϱ+1)Γ(T+1)(1+Γ(β)K1)+MλK1Γ(ϱ)≤1K | (3.8) |
with
M=|η∑l=ϱl−ϱ∑τ=0(η+β−ρ(l))(β−1)(l−ρ(τ))(ϱ−1)|. | (3.9) |
Proof. Let χ1,χ2∈C(Nϱ−3,ϱ+T,R). Then, for each ξ∈Nϱ−3,ϱ+T, we have
|(Hχ1)(ξ)−(Hχ2)(ξ)|≤1Γ(ϱ)ξ−ϱ∑l=0(ξ−ρ(l))(ϱ−1)×|Φ(l+ϱ−1,χ1(l+ϱ−1))−Φ(l+ϱ−1,χ2(l+ϱ−1))|+λK1Γ(ϱ)η∑l=ϱl−ϱ∑τ=0(η+β−ρ(l))(β−1)(l−ρ(τ))(ϱ−1)×|Φ(l+ϱ−1,χ1(l+ϱ−1))−Φ(l+ϱ−1,χ2(l+ϱ−1))|+Γ(β)K1Γ(ϱ)T∑l=0(ϱ+T−ρ(l))(ϱ−1)×|Φ(l+ϱ−1,χ1(l+ϱ−1))−Φ(l+ϱ−1,χ2(l+ϱ−1))|. |
It follows that
‖(Hχ1)(ξ)−(Hχ2)(ξ)‖≤K‖χ1−χ2‖Γ(ϱ)ξ−ϱ∑l=0(ξ−ρ(l))(ϱ−1)+λK‖χ1−χ2‖K1Γ(ϱ)η∑l=ϱl−ϱ∑τ=0(η+β−ρ(l))(β−1)(l−ρ(τ))(ϱ−1)+Γ(β)K‖χ1−χ2‖K1Γ(ϱ)T∑l=0(ϱ+T−ρ(l))(ϱ−1)≤K‖χ1−χ2‖Γ(ϱ)Γ(ϱ+T+1)ϱΓ(T+1)+λK‖χ1−χ2‖K1Γ(ϱ)η∑l=ϱl−ϱ∑τ=0(η+β−ρ(l))(β−1)(l−ρ(τ))(ϱ−1)+Γ(β)K‖χ1−χ2‖K1Γ(ϱ)Γ(ϱ+T+1)ϱΓ(T+1)≤K‖χ1−χ2‖[Γ(ϱ+T+1)Γ(ϱ+1)Γ(T+1)+MλK1Γ(ϱ)+Γ(β)Γ(ϱ+T+1)K1Γ(ϱ+1)Γ(T+1)]. |
From (3.8), we conclude that H is a contraction. Then, by the Banach contraction principle, the discrete problem (3.1) has a unique solution on C(Nϱ−3,ϱ+T,R).
Theorem 3.2. Suppose that Φ:[ϱ−3,ϱ+T]Nϱ−3×R⟶R is a continuous function and
R=max{|Φ(l+ϱ−1,χ(l+ϱ−1))|,ξ∈Nϱ−3,ϱ+T,χ∈C(Nϱ−3,ϱ+T,R);‖χ‖≤2|K2|}. |
The discrete problem (3.1) has a solution provided that
R≤|K2|−|[A1−A2(ϱ−3)]|(ϱ+T)(1)−|A22|(ϱ+T)(2)Γ(ϱ+T+1)Γ(ϱ+1)Γ(T+1)(1+Γ(β)|K1|)+M|λ|Γ(ϱ)|K1|. | (3.10) |
Proof. Let G={χ∈C(Nϱ−3,ϱ+T,R);‖χ‖≤2|K2|}. For χ(ξ)∈G, we get
|(Hχ)(ξ)|=|1Γ(ϱ)ξ−ϱ∑l=0(ξ−ρ(l))(ϱ−1)Φ(l+ϱ−1,χ(l+ϱ−1))+λK1Γ(ϱ)η∑l=ϱl−ϱ∑τ=0(η+β−ρ(l))(β−1)(l−ρ(τ))(ϱ−1)Φ(l+ϱ−1,χ(l+ϱ−1))−Γ(β)K1Γ(ϱ)T∑l=0(ϱ+T−ρ(l))(ϱ−1)Φ(l+ϱ−1,χ(l+ϱ−1))+K2+[A1−A2(ϱ−3)]ξ(1)+A22ξ(2)|≤1Γ(ϱ)ξ−ϱ∑l=0(ξ−ρ(l))(ϱ−1)|Φ(l+ϱ−1,χ(l+ϱ−1))|+|λ||K1|Γ(ϱ)η∑l=ϱl−ϱ∑τ=0(η+β−ρ(l))(β−1)(l−ρ(τ))(ϱ−1)|Φ(l+ϱ−1,χ(l+ϱ−1))|+Γ(β)|K1|Γ(ϱ)T∑l=0(ϱ+T−ρ(l))(ϱ−1)|Φ(l+ϱ−1,χ(l+ϱ−1))|+|K2|+|[A1−A2(ϱ−3)]ξ(1)|+|A22ξ(2)|≤RΓ(ϱ)[ξ−ϱ∑l=0(ξ−ρ(l))(ϱ−1)+|λ||K1|η∑l=ϱl−ϱ∑τ=0(η+β−ρ(l))(β−1)(l−ρ(τ))(ϱ−1)+Γ(β)|K1|T∑l=0(ϱ+T−ρ(l))(ϱ−1)]+|K2|+|[A1−A2(ϱ−3)]|(ϱ+T)(1)+|A22|(ϱ+T)(2)≤RΓ(ϱ)[Γ(ϱ+T+1)ϱΓ(T+1)(1+Γ(β)|K1|)+M|λ||K1|]+|K2|+|[A1−A2(ϱ−3)]|(ϱ+T)(1)+|A22|(ϱ+T)(2). |
From (3.10), we have ‖Hχ‖≤2|K2|, which implies that H:G→G. By Brouwer's fixed point theorem, we know that the discrete problem (3.1) has a solution.
In this section, we study the Hyers-Ulam and Hyers-Ulam-Rassias stability for the solutions of the discrete Riemann-Liouville (RL) FBVP
{RLΔϱξχ(ξ)=Φ(ξ+ϱ−1,χ(ξ+ϱ−1)),2<ϱ≤3,Δχ(ϱ−3)=A1,χ(ϱ+T)=λΔ−βχ(η+β),Δ2χ(ϱ−3)=A2,0<β≤1, | (4.1) |
for ξ∈[0,1,2,…,T]=[0,T]N0 and η∈[ϱ−1,T+ϱ−1]Nϱ−1, where RLΔϱξ is the RL fractional difference operator. We begin by proving the following lemma.
Lemma 4.1. Suppose that 2<ϱ≤3 and Φ:[ϱ−3,ϱ+T]Nϱ−3⟶R. A function χ satisfies the discrete problem
{RLΔϱξχ(ξ)=Φ(ξ+ϱ−1),2<ϱ≤3,Δχ(ϱ−3)=A1,χ(ϱ+T)=λΔ−βχ(η+β),Δ2χ(ϱ−3)=A2,0<β≤1, | (4.2) |
if, and only if, χ(ξ), ξ∈[ϱ−3,ϱ+T]Nϱ−3, has the form
χ(ξ)=1Γ(ϱ)ξ−ϱ∑l=0(ξ−ρ(l))(ϱ−1)Φ(l+ϱ−1)+{[A2−A1(ϱ−3)]Γ(ϱ)+fΦ+dϱhϱ(ϱ−3)2(ϱ−1)}ξ(ϱ−1)+[A1−1hϱ[fΦ+dϱ](ϱ−3)Γ(ϱ−2)]Γ(ϱ−1)ξ(ϱ−2)+fΦ+dϱhϱξ(ϱ−3), | (4.3) |
where
hϱ=ϱ−3ϱ−2(ϱ+T)(ϱ−2)−ϱ−32(ϱ−1)(ϱ+T)(ϱ−1)−(ϱ+T)(ϱ−3) | (4.4) |
+λ(ϱ−3)Γ(β)2(ϱ−1)η∑l=ϱ−3(η+β−ρ(l))(β−1)l(ϱ−1)−λ(ϱ−3)Γ(β)(ϱ−2)η∑l=ϱ−3(η+β−ρ(l))(β−1)l(ϱ−2)+λΓ(β)η∑l=ϱ−3(η+β−ρ(l))(β−1)l(ϱ−3),dϱ=A1(ϱ+T)(ϱ−2)Γ(ϱ−1)−[A2−A1(ϱ−3)]λΓ(ϱ)Γ(β)η∑l=ϱ−3(η+β−ρ(l))(β−1)l(ϱ−1) | (4.5) |
−A1λΓ(ϱ−1)Γ(β)η∑l=ϱ−3(η+β−ρ(l))(β−1)l(ϱ−2)+[A2−A1(ϱ−3)]Γ(ϱ)(ϱ+T)(ϱ−1),fΦ=−λΓ(ϱ)Γ(β)η∑l=ϱl−ϱ∑τ=0(η+β−ρ(l))(β−1)(l−ρ(τ))(ϱ−1)Φ(τ+ϱ−1) | (4.6) |
+1Γ(ϱ)T∑l=0(ϱ+T−ρ(l))(ϱ−1)Φ(l+ϱ−1). |
Proof. Let χ(ξ) be a solution to (4.2). Applying Lemma 2.2 and Definition 2.1, we obtain that the general solution of (4.2) is given by
χ(ξ)=1Γ(ϱ)ξ−ϱ∑l=0(ξ−ρ(l))(ϱ−1)Φ(l+ϱ−1)+B1ξ(ϱ−1)+B2ξ(ϱ−2)+B3ξ(ϱ−3), | (4.7) |
ξ∈[ϱ−3,ϱ+T]Nϱ−3, where B1,B2,B3∈R. The first order difference of (4.7) is
Δχ(ξ)=1Γ(ϱ−1)ξ−ϱ+1∑l=0(ξ−ρ(l))(ϱ−2)Φ(l+ϱ−1)+B1(ϱ−1)ξ(ϱ−2)+B2(ϱ−2)ξ(ϱ−3)+B3(ϱ−3)ξ(ϱ−4), |
while
Δ2χ(ξ)=1Γ(ϱ−2)ξ−ϱ+2∑l=0(ξ−ρ(l))(ϱ−3)Φ(l+ϱ−1)+B1(ϱ−1)(ϱ−2)ξ(ϱ−3)+B2(ϱ−2)(ϱ−3)ξ(ϱ−4)+B3(ϱ−3)(ϱ−4)ξ(ϱ−5). |
From the conditions Δχ(ϱ−3)=A1 and Δ2χ(ϱ−3)=A2, we obtain that
B2=1Γ(ϱ−1)[A1−B3(ϱ−3)Γ(ϱ−2)], |
and
B1=1Γ(ϱ)[A2−A1(ϱ−3)]+B3(ϱ−3)2(ϱ−1). |
Now, by using the difference of order β for (4.7), it follows that
Δ−βχ(ξ)=1Γ(β){1Γ(ϱ)[A2−A1(ϱ−3)]+B3(ϱ−3)2(ϱ−1)}ξ−β∑l=ϱ−3(ξ−ρ(l))(β−1)l(ϱ−1)+B3Γ(β)ξ−β∑l=ϱ−3(ξ−ρ(l))(β−1)l(ϱ−3)+[A1−B3(ϱ−3)Γ(ϱ−2)]Γ(ϱ−1)Γ(β)ξ−β∑l=ϱ−3(ξ−ρ(l))(β−1)l(ϱ−2)+1Γ(ϱ)Γ(β)ξ−β∑l=ϱl−ϱ∑τ=0(ξ−ρ(l))(β−1)(l−ρ(τ))(ϱ−1)Φ(τ+ϱ−1). | (4.8) |
Based on condition (4.1), we have
λΔ−βχ(η+β)=λΓ(β){1Γ(ϱ)[A2−A1(ϱ−3)]+B3(ϱ−3)2(ϱ−1)}η∑l=ϱ−3(η+β−ρ(l))(β−1)l(ϱ−1)+λΓ(ϱ−1)Γ(β)[A1−B3(ϱ−3)Γ(ϱ−2)]η∑l=ϱ−3(η+β−ρ(l))(β−1)l(ϱ−2)+B3λΓ(β)η∑l=ϱ−3(η+β−ρ(l))(β−1)l(ϱ−3)+λΓ(ϱ)Γ(β)η∑l=ϱl−ϱ∑τ=0(η+β−ρ(l))(β−1)(l−ρ(τ))(ϱ−1)Φ(τ+ϱ−1)=1Γ(ϱ)T∑l=0(ϱ+T−ρ(l))(ϱ−1)Φ(l+ϱ−1)+1Γ(ϱ−1)[A1−B3(ϱ−3)Γ(ϱ−2)](ϱ+T)(ϱ−2)+{1Γ(ϱ)[A2−A1(ϱ−3)]+B3(ϱ−3)2(ϱ−1)}(ϱ+T)(ϱ−1)+B3(ϱ+T)(ϱ−3). |
Then,
B3=1hϱ[fΦ+dϱ],B2=1Γ(ϱ−1)[A1−1hϱ[fΦ+dϱ](ϱ−3)Γ(ϱ−2)],B1=1Γ(ϱ)[A2−A1(ϱ−3)]+1hϱ[fΦ+dϱ](ϱ−3)2(ϱ−1), |
where hϱ, dϱ and fΦ are defined by (4.4)-(4.6), respectively. Substituting the values of the constants B1, B2 and B3 into (4.7), we obtain (4.3) and our proof is complete.
From Lemma 4.1, the solution of the discrete RL problem (4.1) is given by the formula
χ(ξ)=1Γ(ϱ)ξ−ϱ∑l=0(ξ−ρ(l))(ϱ−1)Φ(l+ϱ−1,χ(l+ϱ−1))+{[A2−A1(ϱ−3)]Γ(ϱ)+fχ+dϱhϱ(ϱ−3)2(ϱ−1)}ξ(ϱ−1)+[A1−1hϱ[fΦ+dϱ](ϱ−3)Γ(ϱ−2)]Γ(ϱ−1)ξ(ϱ−2)+fχ+dϱhϱξ(ϱ−3), | (4.9) |
where dρ and hρ are defined by (4.4) and (4.5), respectively, and
fχ=−λΓ(ϱ)Γ(β)η∑l=ϱl−ϱ∑τ=0(η+β−ρ(l))(β−1)(l−ρ(τ))(ϱ−1)Φ(τ+ϱ−1,χ(τ+ϱ−1))+1Γ(ϱ)T∑l=0(ϱ+T−ρ(l))(ϱ−1)Φ(l+ϱ−1,χ(l+ϱ−1)). | (4.10) |
Lemma 4.2. If χ is a solution of (4.3), then
χ(ξ)=1Γ(ϱ)ξ−ϱ∑l=0(ξ−ρ(l))(ϱ−1)Φ(l+ϱ−1)+Q(ξ)+fχK(ξ), | (4.11) |
where
Q(ξ)={[A2−A1(ϱ−3)]Γ(ϱ)+dϱ(ϱ−3)2hϱ(ϱ−1)}ξ(ϱ−1)+[A1−dϱhϱ(ϱ−3)Γ(ϱ−2)]Γ(ϱ−1)ξ(ϱ−2)+dϱhϱξ(ϱ−3), |
and
K(ξ)=(ϱ−3)2hϱ(ϱ−1)ξ(ϱ−1)−(ϱ−3)hϱ(ϱ−2)ξ(ϱ−2)+ξ(ϱ−3)hϱ. |
Proof. Take χ as a solution of (4.2). For ξ∈[ϱ−3,ϱ+T]Nϱ−3, then
χ(ξ)=1Γ(ϱ)ξ−ϱ∑l=0(ξ−ρ(l))(ϱ−1)Φ(l+ϱ−1)+{[A2−A1(ϱ−3)]Γ(ϱ)+fχ+dϱhϱ(ϱ−3)2(ϱ−1)}ξ(ϱ−1)+[A1−1hϱ[fχ+dϱ](ϱ−3)Γ(ϱ−2)]Γ(ϱ−1)ξ(ϱ−2)+fχ+dϱhϱξ(ϱ−3)=1Γ(ϱ)ξ−ϱ∑l=0(ξ−ρ(l))(ϱ−1)Φ(l+ϱ−1)+{[A2−A1(ϱ−3)]Γ(ϱ)+dϱ(ϱ−3)2hϱ(ϱ−1)}ξ(ϱ−1)+[A1−dϱhϱ(ϱ−3)Γ(ϱ−2)]Γ(ϱ−1)ξ(ϱ−2)+dϱhϱξ(ϱ−3)+fχ[(ϱ−3)2hϱ(ϱ−1)ξ(ϱ−1)−(ϱ−3)hϱ(ϱ−2)ξ(ϱ−2)+ξ(ϱ−1)hϱ]=1Γ(ϱ)ξ−ϱ∑l=0(ξ−ρ(l))(ϱ−1)Φ(l+ϱ−1)+Q(ξ)+fχK(ξ). |
The proof is complete.
Definition 4.1. We say that the discrete RL problem (4.1) is Hyers-Ulam stable if for each function ν∈C(Nϱ−3,ϱ+T,R) of
|RLΔϱξν(ξ)−Φ(ξ+ϱ−1,ν(ξ+ϱ−1))|≤ϵ,ξ∈[0,T]N0, | (4.12) |
and ϵ>0, there exists χ∈C(Nϱ−3,ϱ+T,R) solution of (4.1) and δ>0 such that
|ν(ξ)−χ(ξ)|≤δϵ,ξ∈[ϱ−3,ϱ+T]Nϱ−3. | (4.13) |
Definition 4.2. We say that the discrete RL problem (4.1) is Hyers-Ulam–Rassias stable if for each function ν∈C(Nϱ−3,ϱ+T,R) of
|RLΔϱξν(ξ)−Φ(ξ+ϱ−1,ν(ξ+ϱ−1))|≤ϵθ(ξ+ϱ−1),ξ∈[0,T]N0, | (4.14) |
and ϵ>0, there exists χ∈C(Nϱ−3,ϱ+T,R) solution of (4.1) and δ2>0 such that
|ν(ξ)−χ(ξ)|≤δ2ϵθ(ξ+ϱ−1),ξ∈[ϱ−3,ϱ+T]Nϱ−3. | (4.15) |
Remark 4.1. A function χ(ξ)∈C(Nϱ−3,ϱ+T,R) is a solution of (4.12) if, and only if, there exists μ:[ϱ−3,ϱ+T]Nϱ−3⟶R satisfying:
(H2) |μ(ξ+ϱ−1)|≤ϵ,ξ∈[0,T]N0;
(H3) RLΔϱξν(ξ)=Φ(ξ+ϱ−1,ν(ξ+ϱ−1))+μ(ξ+ϱ−1),ξ∈[0,T]N0.
Remark 4.2. A function χ(ξ)∈C(Nϱ−3,ϱ+T,R) is a solution of (4.14) if, and only if, there exists μ:[ϱ−3,ϱ+T]Nϱ−3⟶R satisfying
(H4) |μ(ξ+ϱ−1)|≤ϵθ(ξ+ϱ−1),ξ∈[0,T]N0,
(H5) RLΔϱξν(ξ)=Φ(ξ+ϱ−1,ν(ξ+ϱ−1))+μ(ξ+ϱ−1),ξ∈[0,T]N0.
Lemma 4.3. If ν satisfies (4.12), then
|ν(ξ)−1Γ(ϱ)ξ−ϱ∑l=0(ξ−ρ(l))(ϱ−1)Φ(l+ϱ−1,ν(l+ϱ−1))−Q(ξ)−fνK(ξ)|≤ϵΓ(ϱ+T+1)Γ(ϱ+1)Γ(T+1). |
Proof. Using our hypothesis, and based on Remark 4.1, the solution to (H3) satisfies
ν(ξ)=1Γ(ϱ)ξ−ϱ∑l=0(ξ−ρ(l))(ϱ−1)Φ(l+ϱ−1,ν(l+ϱ−1))+Q(ξ)+fνK(ξ)+1Γ(ϱ)ξ−ϱ∑l=0(ξ−ρ(l))(ϱ−1)μ(l+ϱ−1). |
Hence,
|ν(ξ)−1Γ(ϱ)ξ−ϱ∑l=0(ξ−ρ(l))(ϱ−1)Φ(l+ϱ−1,ν(l+ϱ−1))−Q(ξ)−fνK(ξ)|=|1Γ(ϱ)ξ−ϱ∑l=0(ξ−ρ(l))(ϱ−1)μ(l+ϱ−1)|≤1Γ(ϱ)ξ−ϱ∑l=0(ξ−ρ(l))(ϱ−1)|μ(l+ϱ−1)|≤ϵΓ(ϱ+T+1)Γ(ϱ+1)Γ(T+1), |
and the desired inequality is derived.
Theorem 4.1. If condition (H1) holds and (4.13) is satisfied, then the discrete RL problem (4.1) is Hyers-Ulam stable under the condition
K≤Γ(β)Γ(T+1)Γ(ϱ+1)2M1Γ(ϱ+T+1)Γ(β)+MM1λϱΓ(T+1), | (4.16) |
where M1=max(1,|K(ξ)|).
Proof. Let ξ∈[ϱ−3,ϱ+T]Nϱ−3. From Lemma 8, we have
|ν(ξ)−χ(ξ)|≤|ν(ξ)−1Γ(ϱ)ξ−ϱ∑l=0(ξ−ρ(l))(ϱ−1)Φ(l+ϱ−1,χ(l+ϱ−1))−Q(ξ)−fχK(ξ)|≤|ν(ξ)−1Γ(ϱ)ξ−ϱ∑l=0(ξ−ρ(l))(ϱ−1)Φ(l+ϱ−1,ν(l+ϱ−1))−Q(ξ)−fνK(ξ)|+1Γ(ϱ)ξ−ϱ∑l=0(ξ−ρ(l))(ϱ−1)|Φ(l+ϱ−1,χ(l+ϱ−1))−Φ(l+ϱ−1,ν(l+ϱ−1))|+|K(ξ)||fν−fχ|. |
It follows that
|ν(ξ)−χ(ξ)|≤ϵΓ(ϱ+T+1)Γ(ϱ+1)Γ(T+1)+KΓ(ϱ)ξ−ϱ∑l=0(ξ−ρ(l))(ϱ−1)|χ(l+ϱ−1)−ν(l+ϱ−1)|+|K(ξ)|K{λΓ(ϱ)Γ(β)η∑l=ϱl−ϱ∑τ=0(η+β−ρ(l))(β−1)(l−ρ(τ))(ϱ−1)|ν(l+ϱ−1)−χ(l+ϱ−1)|+1Γ(ϱ)T∑l=0(ϱ+T−ρ(l))(ϱ−1)|χ(l+ϱ−1)−ν(l+ϱ−1)|}≤ϵΓ(ϱ+T+1)Γ(ϱ+1)Γ(T+1)+K‖χ−ν‖Γ(ϱ)Γ(ξ+1)ϱΓ(ξ+1−ϱ)+|K(ξ)|K‖χ−ν‖[MλΓ(ϱ)Γ(β)+1Γ(ϱ)Γ(ϱ+T+1)ϱΓ(T+1)]≤ϵΓ(ϱ+T+1)Γ(ϱ+1)Γ(T+1)+2KM1Γ(ϱ+1)Γ(ϱ+T+1)Γ(T+1)‖χ−ν‖+‖χ−ν‖KMM1λΓ(ϱ)Γ(β). |
Therefore,
‖ν−χ‖≤ϵΓ(ϱ+T+1)Γ(ϱ+1)Γ(T+1)+‖ν−χ‖[2KM1Γ(ϱ+1)Γ(ϱ+T+1)Γ(T+1)+KMM1λΓ(ϱ)Γ(β)]. |
Moreover, ‖ν−χ‖≤ϵδ, where
δ=Γ(β)Γ(ϱ+T+1)Γ(β)Γ(T+1)Γ(ϱ+1)−2KM1Γ(ϱ+T+1)Γ(β)−KMM1λϱΓ(T+1)>0. |
Thus, the discrete RL problem (4.1) is Hyers-Ulam stable.
Lemma 4.4. If v solves (4.14) under the condition:
(H6) The function θ:[ϱ−3,ϱ+T]Nϱ−3⟶R is increasing and there exists a constant γ>0 such that
1Γ(ϱ)ξ−ϱ∑l=0(ξ−ρ(l))(ϱ−1)θ(l+ϱ−1)≤γθ(ξ+ϱ−1),ξ∈[0,T]N0, |
then
|ν(ξ)−1Γ(ϱ)ξ−ϱ∑l=0(ξ−ρ(l))(ϱ−1)Φ(l+ϱ−1,ν(l+ϱ−1))−Q(ξ)−fϕνK(ξ)|≤γθ(ξ+ϱ−1). |
Proof. Let ν satisfy (4.14). From Remark 4.2, the solution to (H5) satisfies
ν(ξ)=1Γ(ϱ)ξ−ϱ∑l=0(ξ−ρ(l))(ϱ−1)Φ(l+ϱ−1,ν(l+ϱ−1))+Q(ξ)+fνK(ξ)+1Γ(ϱ)ξ−ϱ∑l=0(ξ−ρ(l))(ϱ−1)μ(l+ϱ−1). |
Hence,
|ν(ξ)−1Γ(ϱ)ξ−ϱ∑l=0(ξ−ρ(l))(ϱ−1)Φ(l+ϱ−1,ν(l+ϱ−1))−Q(ξ)−fνK(ξ)|=|1Γ(ϱ)ξ−ϱ∑l=0(ξ−ρ(l))(ϱ−1)μ(l+ϱ−1)|≤1Γ(ϱ)ξ−ϱ∑l=0(ξ−ρ(l))(ϱ−1)|μ(l+ϱ−1)|≤ϵΓ(ϱ)ξ−ϱ∑l=0(ξ−ρ(l))(ϱ−1)|θ(l+ϱ−1)|≤γϵθ(l+ϱ−1), |
and the desired inequality is derived.
Remark 4.3. About the restrictiveness of hypotheses (H1)–(H6), and the bounds imposed on the family of discrete systems that satisfy them, one should note that such hypotheses are the usual conditions for proving existence, uniqueness or stability of solutions. In fact, the conditions (H2)–(H6) are considered as the fundamental conditions in the definition of Hyers-Ulam-Rassias stability. Condition (H1) is a standard Lipschitz condition while other constants are computed based on the given fractional system. Therefore, these conditions are natural and, in real systems, with specified numerical data, their expressions are reduced to numerical bounds.
Theorem 4.2. If the inequality (4.16) and the hypotheses (H1) and (H6) are satisfied, then the discrete RL problem (4.1) is Hyers-Ulam-Rassias stable.
Proof. From Lemmas 4.4 and 2.3, we obtain that
‖ν−χ‖≤δ2ϵθ(ξ+ϱ−1), |
where
δ2=Γ(ϱ+1)Γ(β)Γ(T+1)Γ(ϱ+1)Γ(β)Γ(T+1)−2KM1Γ(β)Γ(ϱ+T+1)−KMM1λϱΓ(T+1)>0. |
Thus, the discrete RL problem (4.1) is Hyers-Ulam-Rassias stable.
In this section, we consider two examples to illustrate the obtained results.
Example 5.1. Let
{∗Δϱξχ(ξ)=Φ(ξ+ϱ−1,χ(ξ+ϱ−1)),ξ∈N0,4,Δχ(ϱ−3)=1,χ(ϱ+4)=0.3Δ−0.5χ(η+0.5),Δ2χ(ϱ−3)=0, | (5.1) |
where ∗Δϱξ denotes the operator cΔϱξ or RLΔϱξ. Set β=0.5, T=4, λ=0.7, A1=1, A2=0, and
Φ(ξ+1.5,χ(ξ+1.5))=137105sin(χ(ξ+1.5)). |
∙ If ∗Δϱξχ(ξ)=cΔ52ξχ(ξ) and η=52, then we obtain that
K1=λη∑l=ϱ−3(η+β−ρ(l))(β−1)−Γ(β)=λΓ(η+β−ϱ+4)βΓ(η−ϱ+4)−Γ(β)=0.9416, |
M=|η∑l=ϱl−ϱ∑ξ=0(η+β−ρ(l))(β−1)(l−ρ(ξ))(ϱ−1)|=2.3562. | (5.2) |
Hence, the inequality (3.8) takes the form
Γ(ϱ+T+1)Γ(ϱ+1)Γ(T+1)(1+Γ(β)K1)+MλK1Γ(ϱ)≈68.9403≤1K≈729.9270, |
such that
K=137105. |
From Theorem 3.1, the discrete problem (5.1) has a unique solution.
∙ In the case ∗Δϱξχ(ξ)=RLΔ3ξχ(ξ) and η=3, we obtain
M=3.5449,M1=1.8824,hϱ=λΓ(η+β−ϱ+4)Γ(β+1)Γ(η−ϱ+4)−1=0.5313,K1=λΓ(η+β−ϱ+4)βΓ(η−ϱ+4)−Γ(β)=0.9416. |
Also,
Γ(β)Γ(T+1)Γ(ϱ+1)2M1Γ(ϱ+T+1)Γ(β)+MM1λϱΓ(T+1)≈0.0075. | (5.3) |
If K=0.0014<0.0075 and
|RLΔ3ξν(ξ)−Φ(ξ+2,v(ξ+2))|≤ϵ,ξ∈[0,4]N0, | (5.4) |
holds, then, by Theorem 4.1, the discrete RL problem (5.1) is Hyers-Ulam stable.
Example 5.2. Let
{cΔ2.4ξχ(ξ)=1107χ4(ξ+1.4),ξ∈N0,2,Δχ(−0.4)=2,χ(3.4)=0.8Δ−1/3χ(1/3+2.4),Δ2χ(−0.6)=0. | (5.5) |
After some calculations, we find that
M=3.277,K1=λη∑l=ϱ−3(η+β−ρ(l))(β−1)−Γ(β)=1.0253,K2=A1Γ(β)K1(ϱ+T)−λA1K1(η−β(3−ϱ))Γ(η−ϱ+β+4)β(β+1)Γ(η−ϱ+4)=16.2963. |
We define the following Banach space:
C(Nϱ−3,ϱ+T,R)={χ(t)|[−0.5,6.5]N−0.5→R,‖χ‖≤2|K2|=32.5927}. |
Note that
|K2|−|[A1−A2(ϱ−3)]|(ϱ+T)(1)−|A22|(ϱ+T)(2)Γ(ϱ+T+1)Γ(ϱ+1)Γ(T+1)(1+Γ(β)|K1|)+M|λ|Γ(ϱ)|K1|=0.3262. |
It is clear that |Φ(t,χ)|≤0.0586≤0.3262 whenever χ∈[−32.5927,32.5927]. Therefore, by Theorem 3.2, we find out that the discrete FBVP (5.5) has a solution.
We proved existence and uniqueness of solution to discrete fractional boundary value problems (FBVPs) involving fractional difference operators via the Brouwer fixed point theorem and the Banach contraction principle. Different versions of stability criteria were obtained for a discrete FBVP involving Riemann-Liouville difference operators. The results were illustrated by suitable examples. The approach of this paper is new and can be a beginning method for discussing different real-world models in the context of discrete behavior structures. In particular, our results can contribute for the development of discrete fractional boundary value problems describing discrete dynamics of some physical applications. In future works, we plan to extend our approach to other types of discrete differential inclusions or fully-hybrid discrete fractional differential equations.
The third and fourth authors would like to thank Azarbaijan Shahid Madani University. The fifth author was supported by the Portuguese Foundation for Science and Technology (FCT) and CIDMA through project UIDB/04106/2020. This research received funding support from the NSRF via the Program Management Unit for Human Resources & Institutional Development, Research and Innovation (Grant number B05F650018).
The authors declare no conflict of interest.
[1] | Z. Han, Research on Strategies to Enhance the Competitiveness of China's Steel Industry, ph.D thsis, Chinese Academy of Social Sciences, 2014. |
[2] | C. Zhang, Research on Energy Efficiency of My Country's Steel Enterprises Based on Circular Economy, ph.D thsis, University of Science and Technology Beijing, 2018. |
[3] |
L. Malka, F. Bidaj, A. Kuriqi, A. Jaku, R. Roçi, A. Gebremedhin, Energy system analysis with a focus on future energy demand projections: the case of Norway, Energy, 272 (2023), 127107. https://doi.org/10.1016/j.energy.2023.127107 doi: 10.1016/j.energy.2023.127107
![]() |
[4] |
X. Liu, S. Yuan, H. Yu, Z. Liu, How ecological policy stringency moderates the influence of industrial innovation on environmental sustainability: The role of renewable energy transition in BRICST countries, Renewable Energy, 207 (2023), 194–204. https://doi.org/10.1016/j.renene.2023.01.045 doi: 10.1016/j.renene.2023.01.045
![]() |
[5] |
G. P. Perunov, Y. V. Inatovich, N. A. Strashkova, The power consumption optimization for thin-sheet rolling on a reversing mill, Steel Transl., 50 (2020), 897–901. https://doi.org/10.3103/S0967091220120116 doi: 10.3103/S0967091220120116
![]() |
[6] |
M. Tan, H. Yang, B. Duan, Y. Su, F. He, Optimizing production scheduling of steel plate hot rolling for economic load dispatch under time‐of‐use electricity pricing, Math. Probl. Eng., 2017 (2017), 1048081. https://doi.org/10.1155/2017/1048081 doi: 10.1155/2017/1048081
![]() |
[7] |
L. Giorleo, E. Ceretti, C. Giardini, Energy consumption reduction in Ring Rolling processes: A FEM analysis, Int. J. Mech. Sci., 74 (2013), 55–64. https://doi.org/10.1016/j.ijmecsci.2013.04.008 doi: 10.1016/j.ijmecsci.2013.04.008
![]() |
[8] |
J. Paralikas, K. Salonitis, G. Chryssolouris, Energy efficiency of cold roll forming process, Int. J. Adv. Manuf. Technol., 66 (2013), 1271–1284. https://doi.org/10.1007/s00170-012-4405-8 doi: 10.1007/s00170-012-4405-8
![]() |
[9] | V. Chubenko, A. Khinotskaya, T. Yarosh, L. Saithareiev, Sustainable development of the steel plate hot rolling technology due to energy-power process parameters justification, in E3S Web of Conferences, EDP Sciences, 166 (2020), 06009. |
[10] |
J. Qiu, J. Feng, X. Huang, Z. Huang, Optimization of reheating furnace rolling delay strategies based on a minimum energy consumption principle, J. Iron. Steel Res. Int., 2024 (2024), 1–13. https://doi.org/10.1007/s42243-024-01227-0 doi: 10.1007/s42243-024-01227-0
![]() |
[11] | X. Chen, Y. Yang, Data-driven multi-objective optimization of power consumption and quality for finishing rolling process, in 2024 IEEE 13th Data Driven Control and Learning Systems Conference (DDCLS), IEEE, (2024), 1262–1266. https://doi.org/10.1109/DDCLS61622.2024.10606881 |
[12] |
Y. Zhong, J. Wang, J. Xu, S. Wu, J. Rao, K. Dang, Prediction of energy consumption in horizontal roughing process of hot rolling strip based on TDADE algorithm, IEEE Trans. Autom. Sci. Eng., 21 (2023), 555–568. https://doi.org/10.1109/TASE.2023.3236306 doi: 10.1109/TASE.2023.3236306
![]() |
[13] |
Y. T. Kim, B. J. Kim, S. W. Kim, Multi-level stacked regression for predicting electricity consumption of hot rolling mill, Expert Syst. Appl., 201 (2022), 117040. https://doi.org/10.1016/j.eswa.2022.117040 doi: 10.1016/j.eswa.2022.117040
![]() |
[14] | X. Xiong, D. Deng, Y. Xiao, Q. Guo, Y. Zhang, Research on prediction method of finish rolling power consumption of multi-specific strip steel based on random forest optimization model, in 2020 39th Chinese Control Conference (CCC), IEEE, (2020), 5977–5984. https://doi.org/10.23919/CCC50068.2020.9188937 |
[15] |
S. Behzadipour, A. Khajepour, J. G. Lenard, J. Biglou, A new shape change quantification method for estimation of power in shape rolling, J. Mater. Process. Technol., 148 (2004), 353–361. https://doi.org/10.1016/j.jmatprotec.2004.02.047 doi: 10.1016/j.jmatprotec.2004.02.047
![]() |
[16] |
G. A. Orcajo, J. Rodríguez, P. Ardura, J. M. Cano, J. G. Norniella, T. R. Llera, et al., Dynamic estimation of electrical demand in hot rolling mills, IEEE Trans. Ind. Appl., 52 (2016), 2714–2723. https://doi.org/10.1109/TIA.2016.2533483 doi: 10.1109/TIA.2016.2533483
![]() |
[17] | Y. Sun, Model and Control of Hot Strip Rolling, Metallurgical Industry Press, Beijing, 2007. |
[18] |
R. B. Sims, The calculation of roll force and torque in hot rolling, Proc. Inst. Mech. Eng., 168 (1954), 191–200. https://doi.org/10.1243/PIME_PROC_1954_168_023_02 doi: 10.1243/PIME_PROC_1954_168_023_02
![]() |
[19] |
J. Guo, X. Wang, W. Xue, Y. Zhao, System identification with binary-valued observations under data tampering attacks, IEEE Trans. Autom. Control, 66 (2021), 3825–3832. https://doi.org/10.1109/TAC.2020.3029325 doi: 10.1109/TAC.2020.3029325
![]() |
[20] |
J. Guo, Q. Zhang, Y. Zhao, Identification of FIR Systems with binary-valued observations under replay attacks, Automatica, 172 (2025), 112001. https://doi.org/10.1016/j.automatica.2024.112001 doi: 10.1016/j.automatica.2024.112001
![]() |
[21] | H. Valecha, A. Varma, I. Khare, A. Sachdeva, M. Goyal, Prediction of consumer behaviour using random forest algorithm, in 2018 5th IEEE Uttar Pradesh Section International Conference on Electrical, Electronics and Computer Engineering (UPCON), IEEE, (2018), 1–6. https://doi.org/10.1109/UPCON.2018.8597070 |
1. | Zimeng Lv, Xinyu Liu, Yuting Ding, Dynamic behavior analysis of an SVIR epidemic model with two time delays associated with the COVID-19 booster vaccination time, 2023, 20, 1551-0018, 6030, 10.3934/mbe.2023261 | |
2. | Zhiliang Li, Lijun Pei, Guangcai Duan, Shuaiyin Chen, A non-autonomous time-delayed SIR model for COVID-19 epidemics prediction in China during the transmission of Omicron variant, 2024, 32, 2688-1594, 2203, 10.3934/era.2024100 | |
3. | Liping Wang, Xinyu Wang, Dajun Liu, Xuekang Zhang, Peng Wu, Dynamical analysis of a heterogeneous spatial diffusion Zika model with vector-bias and environmental transmission, 2024, 32, 2688-1594, 1308, 10.3934/era.2024061 | |
4. | Chen Wang, Ruizhi Yang, Hopf bifurcation analysis of a pine wilt disease model with both time delay and an alternative food source, 2025, 33, 2688-1594, 2815, 10.3934/era.2025124 |