Predator gestation delay and nonlocal competition play key roles in controlling population density and maintaining ecosystem stability. In order to control the Dendrolimus superans that cause serious damage to forests, we propose a predator-prey reaction-diffusion equation with Holling type-II functional response function, gestation delay, and nonlocal competition. We investigated the existence conditions of the Hopf bifurcation and obtained its normal form of Hopf bifurcation by employing the multiple time scales method. We selected the appropriate parameters for numerical simulation and found that the gestation delay is helpful to maintain the stability of the population density of Dendrolimus superans.
Citation: Wenbin Zhong, Yuting Ding. Spatiotemporal dynamics of a predator-prey model with a gestation delay and nonlocal competition[J]. Electronic Research Archive, 2025, 33(4): 2601-2617. doi: 10.3934/era.2025116
Predator gestation delay and nonlocal competition play key roles in controlling population density and maintaining ecosystem stability. In order to control the Dendrolimus superans that cause serious damage to forests, we propose a predator-prey reaction-diffusion equation with Holling type-II functional response function, gestation delay, and nonlocal competition. We investigated the existence conditions of the Hopf bifurcation and obtained its normal form of Hopf bifurcation by employing the multiple time scales method. We selected the appropriate parameters for numerical simulation and found that the gestation delay is helpful to maintain the stability of the population density of Dendrolimus superans.
| [1] |
J. Qin, J. Li, Q. Gao, J. Wilson, A. Zhang, Mitochondrial phylogeny and comparative mitogenomics of closely related pine moth pests (Lepidoptera: Dendrolimus), PeerJ, 7 (2019), e7317. https://doi.org/10.7717/peerj.7317 doi: 10.7717/peerj.7317
|
| [2] |
Q. Liu, D. Jiang, Influence of the fear factor on the dynamics of a stochastic predator-prey model, Appl. Math. Lett., 112 (2021), 106756. https://doi.org/10.1016/j.aml.2020.106756 doi: 10.1016/j.aml.2020.106756
|
| [3] |
S. Saha, A. Maiti, G. P. Samanta, A Michaelis–Menten predator–prey model with strong Allee effect and disease in prey incorporating prey refuge, Int. J. Bifurcation Chaos, 28 (2018), 1850073. https://doi.org/10.1142/s0218127418500736 doi: 10.1142/s0218127418500736
|
| [4] |
M. Liu, H. Wang, W. Jiang, Bifurcations and pattern formation in a predator-prey model with memory-based diffusion, J. Differ. Equ., 350 (2023), 1–40. https://doi.org/10.1016/j.jde.2022.12.010 doi: 10.1016/j.jde.2022.12.010
|
| [5] |
S. K. Sasmal, Y. Takeuchi, Dynamics of a predator-prey system with fear and group defense, J. Math. Anal. Appl., 481 (2020), 123471. https://doi.org/10.1016/j.jmaa.2019.123471 doi: 10.1016/j.jmaa.2019.123471
|
| [6] |
X. Zhang, Z. Liu, Hopf bifurcation analysis in a predator-prey model with predator-age structure and predator-prey reaction time delay, Appl. Math. Model., 91 (2021), 530–548. https://doi.org/10.1016/j.apm.2020.08.054 doi: 10.1016/j.apm.2020.08.054
|
| [7] |
M. R. Evans, S. N. Majumdar, G. Schehr, An exactly solvable predator prey model with resetting, J. Phys. A: Math. Theor., 55 (2022), 274005. https://doi.org/10.1088/1751-8121/ac7269 doi: 10.1088/1751-8121/ac7269
|
| [8] | J. S. Madin, M. Asbury, N. Schiettekatte, M. Dornelas, O. Pizarro, J. Reichert, et al., A word on habitat complexity, Ecol. Lett., 26 (2023), 1021–1024. https://doi.org/10.1111/ele.14208 |
| [9] |
K. D. W. Church, J. Matte, J. W. A. Grant, Territoriality modifies the effects of habitat complexity on animal behavior: A meta-analysis, Behav. Ecol., 33 (2022), 455–466. https://doi.org/10.1093/beheco/arac003 doi: 10.1093/beheco/arac003
|
| [10] |
K. Orrick, N. Sommer, F. Rowland, K. Ferraro, Predator-prey interactions across hunting mode, spatial domain size, and habitat complexities, Ecology, 105 (2024), e4316 https://doi.org/10.1002/ecy.4316 doi: 10.1002/ecy.4316
|
| [11] |
W. E. Snyder, Give predators a complement: Conserving natural enemy biodiversity to improve biocontrol, Biol. Control, 135 (2019), 73–82. https://doi.org/10.1016/j.biocontrol.2019.04.017 doi: 10.1016/j.biocontrol.2019.04.017
|
| [12] |
A. Stemmelen, H. Jactel, E. Brockerhoff, B. Castagneyrol, Meta-analysis of tree diversity effects on the abundance, diversity and activity of herbivores' enemies, Basic Appl. Ecol., 58 (2021), 130–138. https://doi.org/10.1016/j.baae.2021.12.003 doi: 10.1016/j.baae.2021.12.003
|
| [13] |
V. Volterra, Fluctuations in the abundance of a species considered mathematically, Nature, 118 (1926), 558–560. https://doi.org/10.1038/118558a0 doi: 10.1038/118558a0
|
| [14] |
Z. Ma, S. Wang, A delay-induced predator-prey model with Holling type functional response and habitat complexity, Nonlinear Dyn., 93 (2018), 1519–1544. https://doi.org/10.1007/s11071-018-4274-2 doi: 10.1007/s11071-018-4274-2
|
| [15] |
C. S. Holling, The functional response of predators to prey density and its role in mimicry and population regulation, Mem. Entomol. Soc. Can., 97 (1965), 5–60. https://doi.org/10.4039/entm9745fv doi: 10.4039/entm9745fv
|
| [16] |
Y. Peng, G. Zhang, Dynamics analysis of a predator-prey model with herd behavior and nonlocal prey competition, Math. Comput. Simul., 170 (2020), 366–378. https://doi.org/10.1016/j.matcom.2019.11.012 doi: 10.1016/j.matcom.2019.11.012
|
| [17] |
B. Dubey, A. Kumar, Dynamics of prey-predator model with stage structure in prey including maturation and gestation delays, Nonlinear Dyn., 96 (2019), 2653–2679. https://doi.org/10.1007/s11071-019-04951-5 doi: 10.1007/s11071-019-04951-5
|
| [18] |
Y. Wang, Y. Shao, C. Chai, Dynamics of a predator-prey model with fear effects and Gestation Delays, AIMS Math., 8 (2023), 7535–7559. https://doi.org/10.3934/math.2023378 doi: 10.3934/math.2023378
|
| [19] |
L. Wang, R. Xu, G. Feng, Modelling and analysis of an eco-epidemiological model with time delay and stage structure, J. Appl. Math. Comput., 50 (2016), 175–197. https://doi.org/10.1007/s12190-014-0865-3 doi: 10.1007/s12190-014-0865-3
|