Loading [MathJax]/jax/output/SVG/jax.js
Research article Special Issues

Application of intelligent time series prediction method to dew point forecast

  • Received: 29 December 2022 Revised: 18 February 2023 Accepted: 01 March 2023 Published: 15 March 2023
  • With the rapid development of meteorology, there requires a great need to better forecast dew point temperatures contributing to mild building surface and rational chemical control, while researches on time series forecasting barely catch the attention of meteorology. This paper would employ the seasonal-trend decomposition-based simplified dendritic neuron model (STLDNM*) to predict the dew point temperature. We utilize the seasonal-trend decomposition based on LOESS (STL) to extract three subseries from the original sequence, among which the residual part is considered as an input of an improved dendritic neuron model (DNM*). Then the back-propagation algorithm (BP) is used for training DNM* and the output is added to another two series disposed. Four datasets, which record dew points of four cities, along with eight algorithms are put into the experiments for comparison. Consequently, the combination of STL and simplified DNM achieves the best speed and accuracy.

    Citation: Dongbao Jia, Zhongxun Xu, Yichen Wang, Rui Ma, Wenzheng Jiang, Yalong Qian, Qianjin Wang, Weixiang Xu. Application of intelligent time series prediction method to dew point forecast[J]. Electronic Research Archive, 2023, 31(5): 2878-2899. doi: 10.3934/era.2023145

    Related Papers:

    [1] Adel Lachouri, Mohammed S. Abdo, Abdelouaheb Ardjouni, Bahaaeldin Abdalla, Thabet Abdeljawad . On a class of differential inclusions in the frame of generalized Hilfer fractional derivative. AIMS Mathematics, 2022, 7(3): 3477-3493. doi: 10.3934/math.2022193
    [2] Bashir Ahmad, Manal Alnahdi, Sotiris K. Ntouyas, Ahmed Alsaedi . On a mixed nonlinear boundary value problem with the right Caputo fractional derivative and multipoint closed boundary conditions. AIMS Mathematics, 2023, 8(5): 11709-11726. doi: 10.3934/math.2023593
    [3] Weichun Bu, Tianqing An, Guoju Ye, Yating Guo . Nonlocal fractional p()-Kirchhoff systems with variable-order: Two and three solutions. AIMS Mathematics, 2021, 6(12): 13797-13823. doi: 10.3934/math.2021801
    [4] Rabah Khaldi, Assia Guezane-Lakoud . On a generalized Lyapunov inequality for a mixed fractional boundary value problem. AIMS Mathematics, 2019, 4(3): 506-515. doi: 10.3934/math.2019.3.506
    [5] Zhoujin Cui . Primary resonance and feedback control of the fractional Duffing-van der Pol oscillator with quintic nonlinear-restoring force. AIMS Mathematics, 2023, 8(10): 24929-24946. doi: 10.3934/math.20231271
    [6] Fátima Cruz, Ricardo Almeida, Natália Martins . A Pontryagin maximum principle for optimal control problems involving generalized distributional-order derivatives. AIMS Mathematics, 2025, 10(5): 11939-11956. doi: 10.3934/math.2025539
    [7] Subramanian Muthaiah, Dumitru Baleanu, Nandha Gopal Thangaraj . Existence and Hyers-Ulam type stability results for nonlinear coupled system of Caputo-Hadamard type fractional differential equations. AIMS Mathematics, 2021, 6(1): 168-194. doi: 10.3934/math.2021012
    [8] Kishor D. Kucche, Sagar T. Sutar, Kottakkaran Sooppy Nisar . Analysis of nonlinear implicit fractional differential equations with the Atangana-Baleanu derivative via measure of non-compactness. AIMS Mathematics, 2024, 9(10): 27058-27079. doi: 10.3934/math.20241316
    [9] Teng-Fei Shen, Jian-Gen Liu, Xiao-Hui Shen . Existence of solutions for Hadamard fractional nonlocal boundary value problems with mean curvature operator at resonance. AIMS Mathematics, 2024, 9(10): 28895-28905. doi: 10.3934/math.20241402
    [10] Lakhlifa Sadek, Tania A Lazǎr . On Hilfer cotangent fractional derivative and a particular class of fractional problems. AIMS Mathematics, 2023, 8(12): 28334-28352. doi: 10.3934/math.20231450
  • With the rapid development of meteorology, there requires a great need to better forecast dew point temperatures contributing to mild building surface and rational chemical control, while researches on time series forecasting barely catch the attention of meteorology. This paper would employ the seasonal-trend decomposition-based simplified dendritic neuron model (STLDNM*) to predict the dew point temperature. We utilize the seasonal-trend decomposition based on LOESS (STL) to extract three subseries from the original sequence, among which the residual part is considered as an input of an improved dendritic neuron model (DNM*). Then the back-propagation algorithm (BP) is used for training DNM* and the output is added to another two series disposed. Four datasets, which record dew points of four cities, along with eight algorithms are put into the experiments for comparison. Consequently, the combination of STL and simplified DNM achieves the best speed and accuracy.



    The linear complexity and the k-error linear complexity are important cryptographic characteristics of stream cipher sequences. The linear complexity of an N-periodic sequence s={su}u=0, denoted by LC(s), is defined as the length of the shortest linear feedback shift register (LFSR) that generates it [1]. With the Berlekamp-Massey (B-M) algorithm [2], if LC(s)N/2, then s is regarded as a good sequence with respect to its linear complexity. For an integer k0, the k-error linear complexity LCk(s) is the smallest linear complexity that can be obtained by changing at most k terms of s in the first period and periodically continued [3]. The cryptographic background of the k-error linear complexity is that some key streams with large linear complexity can be approximated by some sequences with much lower linear complexity [2]. For a sequence to be cryptographically strong, its linear complexity should be large enough, and its k-error linear complexity should be close to the linear complexity.

    The relationship between the linear complexity and the DFT of the sequence was given by Blahut in [4]. Let m be the order of 2 modulo an odd number N. For a primitive N-th root βF2m of unity, the DFT of s is defined by

    ρi=N1u=0suβiu0iN1. (1.1)

    Then

    LC(s)=WH(ρ0,ρ1,,ρN1), (1.2)

    where WH(A) is the hamming weight of the sequence A. The polynomial

    G(X)=N1i=0ρiXiF2m[X] (1.3)

    is called the Mattson-Solomon polynomial (M-S polynomial) of s [5]. It can be deduced from Eqs (1.2)and (1.3) that the linear complexity of s is equal to the number of the nonzero terms of G(X), namely

    LC(s)=|G(X)|. (1.4)

    By the inverse DFT,

    su=N1i=0ρiβiu=G(βu)0uN1. (1.5)

    There are many studies about two-prime generators. In 1997–1998, Ding calculated the linear complexity and the autocorrelation values of binary Whiteman generalized cyclotomic sequences of order two [6,7]. In 2013, Li defined a new generalized cyclotomic sequence of order two of length pq, which is based on Whiteman generalized cyclotomic classes, and calculated its linear complexity [8]. In 2015, Wei determined the k-error linear complexity of Legendre sequences for k=1,2 [9]. In 2018, Hofer and Winterhof studied the 2-adic complexity of the two-prime generator of period pq [10]. Alecu and Sălăgean transformed the optimisation problem of finding the k-error linear complexity of a sequence into an optimisation problem in the DFT domain, by using Blahut's theorem in the same year [11]. In 2019, in terms of the DFT, Chen and Wu discussed the k-error linear complexity for Legendre, Ding-Helleseth-Lam, and Hall's sextic residue sequences of odd prime period p [12]. In 2020, Zhou and Liu presented a type of binary sequences based on a general two-prime generalized cyclotomy, and derived their minimal polynomial and linear complexity [13]. In 2021, the autocorrelation distribution and the 2-adic complexity of generalized cyclotomic binary sequences of order 2 with period pq were determined by Jing [14].

    This paper is organized as follows. Firstly, we present some preliminaries about Whiteman generalized cyclotomic classes and the linear complexity in Section 2. In Section 3, we give main results about the linear complexity of Whiteman generalized cyclotomic sequences of order two. In Section 4, we give the 1-error linear complexity of these sequences. At last, we conclude this paper in Section 5.

    Let p and q be two distinct odd primes with gcd(p1,q1)=2, and N=pq, e=(p1)(q1)/2. By the Chinese Remainder Theorem, there is a fixed common primitive root g of both p and q such that ordN(g)=e. Let x be an integer satisfying

    x=g(modp)x=1(modq).

    Then the set

    Di={gsximodN:s=0,1,,e1}

    for i=0,1 is called a Whiteman generalized cyclotomic class of order two [15].

    As pointed out in [14], the unit group of the ring ZN is

    ZN={a(mod N):gcd(a,N)=1}={ip+jq(mod N):1iq11jp1}.

    Let P={p,2p,,(q1)p}, Q={q,2q,,(p1)q} and R={0}. Then ZN=ZNPQR. The sequence s(a,b,c)={su}u=0 over F2 is defined by

    su={c,if u=0,a,if uP,b,if uQ,12(1(up)(uq)),if uZN,

    where () denotes the Legendre symbol and a,b,cF2 [14].

    Lemma 2.1. [7] 1D1, if |pq|/2 is odd; and 1D0, if |pq|/2 is even.

    Lemma 2.2. [6]

    (1)Ifp±1(mod8),q±1(mod8)orp±3(mod8),q±3(mod8),then2D0.(2)Ifp±1(mod8),q±3(mod8)orp±3(mod8),q±1(mod8),then2D1.

    Lemma 2.3. [6] (1) If aP, then aP=P and aQ=R.

    (2) If aQ, then aP=R and aQ=Q.

    (3) If aDi, then aP=P, aQ=Q, and aDj=D(i+j)mod2, where i,j=0,1.

    It was shown in [6] that, for a primitive N-th root βF2m of unity, we have

    iPβi=1,iQβi=1,

    and

    iD0βi+iD1βi+iPβi+iQβi=1. (2.1)

    Lemma 2.4. [6]

    uDjβiu={p12(mod2),ifiP,q12(mod2),ifiQ.

    Actually, if p1(mod8) or p3(mod8), then (p1)/2=1; if p1(mod8) or p3(mod8), then (p1)/2=0. By symmetry, if q1(mod8) or q3(mod8), then (q1)/2=1; if q1(mod8) or q3(mod8), then (q1)/2=0.

    Lemma 2.5. Define

    Di(X)=uDiXuF2[X],i=0,1.

    Then for β, we have D0(β)=0 and D1(β)=1 if 2D0; D0(β)=ω and D1(β)=1+ω if 2D1, where ωF4F2.

    Proof. (1) If 2D0, by Lemma 2.3 we have

    [Di(β)]2=Di(β2)=2uDiβ2u=Di(β)F2.

    (2) If 2D1, by Lemma 2.3 we have

    [Di(β)]2=Di(β2)=2uDi+1β2u=Di+1(β),[Di(β)]4=[Di(β)2]2=[Di+1(β)]2=Di+1(β2)=2uDiβ2u=Di(β).

    Hence Di(β)F4F2.

    And by Eq (2.1), we have D0(β)D1(β) and D0(β)+D1(β)=1. Assume that D0(β)=0, D1(β)=1 for 2D0, and D0(β)=ω, D1(β)=1+ω for 2D1, where ωF4F2.

    Let LC(s(a,b,c)) be the linear complexity of s(a,b,c), and the other symbols be the same as before.

    Theorem 3.1. Let pv(mod8) and qw(mod8), where v,w=±1,±3. Then the linear complexity of s(a,b,c) respect to different values of p and q is as shown as Table 1.

    Table 1.  The linear complexity of s(a,b,c).
    s(0,0,0) s(0,0,1) s(0,1,0) s(0,1,1) s(1,0,0) s(1,0,1) s(1,1,0)) s(1,1,1)
    (1,3) or (3,1) pqp pqq+1 pq1 pqpq+2 pqpq+1 pq pqq pqp+1
    (1,3) or (3,1) pq1 pqpq+2 pqp pqq+1 pqq pqp+1 pqpq+1 pq
    (1,1) or (3,3) pqp+q12 pq+pq+12 pq+p+q32 pqpq+32 pqpq+12 pq+p+q12 pq+pq12 pqp+q+12
    (1,1) or (3,3) pq+p+q32 pqpq+32 pqp+q12 pq+pq+12 pq+pq12 pqp+q+12 pqpq+12 pq+p+q12
    (3,1) or (1,3) pqq pqp+1 pqpq+1 pq pq1 pqpq+2 pqp pqq+1
    (1,1) or (3,3) pq+pq12 pqp+q+12 pqpq+12 pq+p+q12 pq+p+q32 pqpq+32 pqp+q12 pq+pq+12

     | Show Table
    DownLoad: CSV

    Proof. We provide the process of calculating LC(s(0,0,0)) when v=1 and w=3, and can prove other cases in a similar way.

    By Lemmas 2.1–2.3 and Eq (1.1), we have 1D1, 2D1, then

    ρi=N1u=0suβiu=uD1βiu=uD0βiu,

    and ρ0=0. By Eq (1.3), we have

    G(X)=N1i=0ρiXi=iD0ρiXi+iD1ρiXi+iPρiXi+iQρiXi+ρ0=iD0uD0βiuXi+iD1uD0βiuXi+iPuD0βiuXi+iQuD0βiuXi.

    Let t=iu. Then by Lemmas 2.3–2.5, we have

    G(X)=iD0tD0βtXi+iD1tD1βtXi+iPp12Xi+iQq12Xi=D0(β)D0(X)+D1(β)D1(X)+iPXi=ωD0(X)+(1+ω)D1(X)+iPXi.

    By Eq (1.4) we can get the linear complexity of s(0,0,0) as

    LC(s(0,0,0))=|G(X)|=pqp.

    Actually, the linear complexity of s(1,0,0) was studied by Ding in [6] with its minimal polynomial.

    Let LCk(s(a,b,c)) be the k-error linear complexity of s(a,b,c), ˜s={˜su}u=0 be the new sequence obtained by changing at most k terms of s, that ˜s=s+e, where e={eu}u=0 is an error sequence of period N. Ding has provided in [2] that, the k-error linear complexity of a sequence can be expressed as

    LCk(s)=minWH(e)k{LC(s+e)}. (4.1)

    It is clearly that LC0(s)=LC(s) and

    NLC0(s)LC1(s)LCl(s)=0,

    where l=WH(s).

    Let G(X), Gk(X) and ˜G(X) be the M-S polynomials of s, e and ˜s respectively. Note that

    G(X)=N1i=0ρiXi, Gk(X)=N1i=0ηiXi, ˜G(X)=N1i=0ξiXi, (4.2)

    where ρi, ηi and ξi are the DFTs of s, e and ˜s respectively. By Eqs (1.5), (4.1) and (4.2), we have ˜G(X)=G(X)+Gk(X), then

    ξi=ρi+ηi. (4.3)

    Assume that eu0=1 for 0u0N1 and eu=0 for uu0 in the first period of e. Then the DFT of e is

    ηi=N1u=0euβiu=βiu00iN1.

    Specially, if u0=0, then ηi=1 for all 0iN1; otherwise, η0=1 and the order of ηi is N for 1iN1.

    Theorem 4.1. Let pv(mod8) and qw(mod8), where v,w=±1,±3, and the other symbols be the same as before. Then the 1-error linear complexity of s(a,b,c) is as shown as Table 2.

    Table 2.  The 1-error linear complexity of s(a,b,c).
    s(0,0,0) and s(0,0,1) s(0,1,0) and s(0,1,1) s(1,0,0) and s(1,0,1) s(1,1,0)) and s(1,1,1)
    (1,3) or (3,1) (1) pqp, if p>q;
    (2) pqq+1, if p<q.
    pqpq+2 pqpq+1 (1) pqp+1, if p>q;
    (2) pqq, if p<q.
    (1,3) or (3,1) pqpq+2 (1) pqp, if p>q;
    (2) pqq+1, if p<q.
    (1) pqp+1, if p>q;
    (2) pqq, if p<q.
    pqpq+1
    (1,1) or (3,3) (1) pqp+q12, if p>q;
    (2) pq+pq+12, if p<q.
    pqpq+32 pqpq+12 (1) pqp+q+12, if p>q;
    (2) pq+pq12, if p<q.
    (1,1) or (3,3) pqpq+32 (1) pqp+q12, if p>q;
    (2) pq+pq+12, if p<q.
    (1) pqp+q+12, if p>q;
    (2) pq+pq12, if p<q.
    pqpq+12
    (3,1) or (1,3) (1) pqp+1, if p>q;
    (2) pqq, if p<q.
    pqpq+1 pqpq+2 (1) pqp, if p>q;
    (2) pqq+1, if p<q.
    (1,1) or (3,3) (1) pqp+q+12, if p>q;
    (2) pq+pq12, if p<q.
    pqpq+12 pqpq+32 (1) pqp+q12, if p>q;
    (2) pq+pq+12, if p<q.

     | Show Table
    DownLoad: CSV

    Proof. We consider the case v=1,w=3 for LC1(s(0,0,0)). By Lemmas 2.1–2.5 and Eq (1.1), we have 1D1, 2D1 and

    ξi=ρi+ηi=uD0βiu+βiu0={ω+βiu0,if iD0,1+ω+βiu0,if iD1,1+βiu0,if iP,βiu0,if iQ,1,if i=0.

    Then by Eq (4.2), we can get

    ˜G(X)=N1i=0ξiXi=iD0(ω+βiu0)Xi+iD1(1+ω+βiu0)Xi+iP(1+βiu0)Xi+iQβiu0Xi+1.

    According to Lemma 2.3, we can get the following results.

    (1) If u0=0, then

    ˜G(X)=iD0(ω+1)Xi+iD1ωXi+iQXi+1,|˜G(X)|=pqq+1.

    (2) If u0Q, then

    ˜G(X)=iD0(ω+βiu0)Xi+iD1(1+ω+βiu0)Xi+iQβiu0Xi+1,|˜G(X)|=pqq+1.

    (3) If u0D0 or u0D1 or u0P, then

    ˜G(X)=iD0(ω+βiu0)Xi+iD1(1+ω+βiu0)Xi+iP(1+βiu0)Xi+iQβiu0Xi+1,|˜G(X)|=pq.

    Compare the results of Cases (1)–(3) with LC(s(0,0,0))=pqp. If p>q, then pqp<pqq+1<pq; if p<q, then pqq+1<pqp<pq. Hence

    LC1(s(0,0,0))={pqp,if p>q,pqq+1,if p<q.

    Similarly we can prove the other cases for LC1(s(a,b,c)).

    All results of LC(s(a,b,c)) and LC1(s(a,b,c)) in Sections 3 and 4 have been tested by MAGMA program.

    The purpose of this paper is to determine the linear complexity and the 1-error linear complexity of s(a,b,c). In most of the cases, s(a,b,c) possesses high linear complexity, namely LC(s(a,b,c))>N/2, consequently has decent stability against 1-bit error. Notice that the linear complexity of some of the sequences above is close to N/2. Then the sequences can be selected to construct cyclic codes by their minimal generating polynomials with the method introduced by Ding [16].

    This work was supported by Fundamental Research Funds for the Central Universities (No. 20CX05012A), the Major Scientific and Technological Projects of CNPC under Grant (No. ZD2019-183-008), the National Natural Science Foundation of China (Nos. 61902429, 11775306) and Shandong Provincial Natural Science Foundation of China (ZR2019MF070).

    The authors declare that they have no conflicts of interest.



    [1] M. Fathi, M. H. Kashani, S. M. Jameii, E. Mahdipour, Big data analytics in weather forecasting: A systematic review, Arch. Comput. Methods Eng., 29 (2022), 1247–1275. https://doi.org/10.1007/s11831-021-09616-4 doi: 10.1007/s11831-021-09616-4
    [2] J. S. Leu, K. W. Su, C. T. Chen, Ambient mesoscale weather forecasting system featuring mobile augmented reality, Multimedia Tools Appl., 72 (2014), 1585–1609. https://doi.org/10.1007/s11042-013-1462-4 doi: 10.1007/s11042-013-1462-4
    [3] P. Roudier, B. Muller, P. d'Aquino, C. Roncoli, M. A. Soumaré, L. Batté, et al., The role of climate forecasts in smallholder agriculture: Lessons from participatory research in two communities in Senegal, Clim. Risk Manage., 2 (2014), 42–55. https://doi.org/10.1016/j.crm.2014.02.001 doi: 10.1016/j.crm.2014.02.001
    [4] S. C. Gao, M. C. Zhou, Z. Q. Wang, D. Sugiyama, J. Cheng, J. Wang, et al., Fully complex-valued dendritic neuron model, IEEE Trans. Neural Networks Learn. Syst., 2021 (2021), 1–14. https://doi.org/10.1109/TNNLS.2021.3105901 doi: 10.1109/TNNLS.2021.3105901
    [5] J. Shi, W. J. Lee, Y. Liu, Y. Yang, P. Wang, Forecasting power output of photovoltaic systems based on weather classification and support vector machines, IEEE Trans. Ind. Appl., 48 (2012), 1064–1069. https://doi.org/10.1109/TIA.2012.2190816 doi: 10.1109/TIA.2012.2190816
    [6] D. Lazos, A. B. Sproul, M. Kay, Optimisation of energy management in commercial buildings with weather forecasting inputs: A review, Renewable Sustainable Energy Rev., 39 (2014), 587–603. https://doi.org/10.1016/j.rser.2014.07.053 doi: 10.1016/j.rser.2014.07.053
    [7] D. B. Jia, W. X. Xu, D. Z. Liu, Z. X. Xu, Z. M. Zhong, X. X. Ban, Verification of classification model and dendritic neuron model based on machine learning, Discrete Dyn. Nat. Soc., 2022 (2022). https://doi.org/10.1155/2022/3259222 doi: 10.1155/2022/3259222
    [8] Q. H. Li, X. L. Wang, H. B. Yang, X. C. Liu, Research on water vapor release and adsorption mechanism to improve the measurement of dew Point humidity sensor, IEEE Sens. J., 21 (2021), 14666–14676. https://doi.org/10.1109/JSEN.2021.3074647 doi: 10.1109/JSEN.2021.3074647
    [9] J. J. Cheng, G. Y. Yuan, M. C. Zhou, S. Gao, C. Liu, H. Duan, A fluid mechanics-based data flow model to estimate VANET capacity, IEEE Trans. Intell. Transp. Syst., 21 (2020), 2603–2614. https://doi.org/10.1109/TITS.2019.2921074 doi: 10.1109/TITS.2019.2921074
    [10] M. G. Schultz, C. Betancourt, B. Gong, F. Kleinert, M. Langguth, L. H. Leufen, et al., Can deep learning beat numerical weather prediction, Phil. Trans. R. Soc. A, 379 (2021). https://doi.org/10.1098/rsta.2020.0097 doi: 10.1098/rsta.2020.0097
    [11] J. J. Cheng, X. Wu, M. C. Zhou, S. C. Gao, Z. H. Huang, C. Liu, A novel method for detecting new overlapping community in complex evolving networks, IEEE Trans. Syst. Man Cybern. Syst., 49 (2019), 1832–1844. https://doi.org/10.1109/TSMC.2017.2779138 doi: 10.1109/TSMC.2017.2779138
    [12] D. B. Jia, Y. Fujishita, C. H. Li, Y. Todo, H. W. Dai, Validation of large-scale classification problem in dendritic neuron model using particle antagonism mechanism, Electronics, 9 (2020). https://doi.org/10.3390/electronics9050792 doi: 10.3390/electronics9050792
    [13] J. J. Cheng, M. J. Chen, M. C. Zhou, S. C. Gao, C. N. Liu, C Liu, Overlapping community change-point detection in an evolving network, IEEE Trans. Big Data, 6 (2020), 189–200. https://doi.org/10.1109/TBDATA.2018.2880780 doi: 10.1109/TBDATA.2018.2880780
    [14] K. Fu, H. Li, P. Deng, Chaotic time series prediction using DTIGNet based on improved temporal-inception and GRU, Chaos, Solitons Fractals, 159 (2022), 2022, 112183. https://doi.org/10.1016/j.chaos.2022.112183 doi: 10.1016/j.chaos.2022.112183
    [15] H. Abbasimehr, F. S. Baghery, A novel time series clustering method with fine-tuned support vector regression for customer behavior analysis, Expert Syst. Appl., 204 (2022), 117584. https://doi.org/10.1016/j.eswa.2022.117584 doi: 10.1016/j.eswa.2022.117584
    [16] M. M. Öztürk, Initializing hyper-parameter tuning with a metaheuristic-ensemble method: A case study using time series weather data, Evol. Intell., 2022 (2022). https://doi.org/10.1007/s12065-022-00717-y doi: 10.1007/s12065-022-00717-y
    [17] D. B. Jia, H. W. Dai, Y. Takashima, T. Nishio, K. Hirobayashi, M. Hasegawa, et al., EEG processing in internet of medical things using non-harmonic analysis: Application and evolution for SSVEP responses, IEEE Access, 7 (2019), 11318–11327. https://doi.org/10.1109/ACCESS.2019.2892188 doi: 10.1109/ACCESS.2019.2892188
    [18] W. X. Xu, D. B. Jia, Z. M. Zhong, C. H. Li, Z. X. Xu, Intelligent dendritic neural model for classification problems, Symmetry, 14 (2022). https://doi.org/10.3390/sym14010011 doi: 10.3390/sym14010011
    [19] M. Rabbani, M. Musarat, W. Alaloul, M. Rabbani, A. Maqsoom, S. Ayub, et al., A comparison between seasonal autoregressive integrated moving average (SARIMA) and exponential smoothing (ES) based on time series model for forecasting road accidents, Arabian J. Sci. Eng., 46 (2021), 11113–11138. https://doi.org/10.1007/s13369-021-05650-3 doi: 10.1007/s13369-021-05650-3
    [20] J. N. K. Liu, B. N. L. Li, T. S. Dillon, An improved naive Bayesian classifier technique coupled with a novel input solution method[rainfall prediction], IEEE Trans. Syst. Man Cybern. Part C Appl. Rev., 31 (2021), 249–256. https://doi.org/10.1109/5326.941848 doi: 10.1109/5326.941848
    [21] F. Wang, Z. Zhen, Z. Mi, H. Sun, S. Su, G. Yang, Solar irradiance feature extraction and support vector machines based weather status pattern recognition model for short-term photovoltaic power forecasting, Energy Build., 86 (2015), 427–438. https://doi.org/10.1016/j.enbuild.2014.10.002 doi: 10.1016/j.enbuild.2014.10.002
    [22] J. An, F. Yin, M. Wu, J. She, X. Chen, Multisource wind speed fusion method for short-term wind power prediction, IEEE Trans. Ind. Inf., 17 (2021), 5927–5937. https://doi.org/10.1109/TⅡ.2020.3006928 doi: 10.1109/TⅡ.2020.3006928
    [23] J. Sun, S. C. Gao, H. W. Dai, J. Cheng, M. Zhou, J. Wang, Bi-objective elite differential evolution algorithm for multivalued logic networks, IEEE Trans. Cybern., 50 (2020), 233–246. https://doi.org/10.1109/TCYB.2018.2868493 doi: 10.1109/TCYB.2018.2868493
    [24] S. C. Gao, Y. Yu, Y. Wang, J. Wang, J. Cheng, M. Zhou, Chaotic local search-based differential evolution algorithms for optimization, IEEE Trans. Syst. Man Cybern.: Syst., 51 (2021), 3954–3967. https://doi.org/10.1109/TSMC.2019.2956121 doi: 10.1109/TSMC.2019.2956121
    [25] D. B. Jia, K. Yanagisawa, M. Hasegawa, S. Hirobayashi, H. Tagoshi, T. Narikawa, et al., Time-frequency based non-harmonic analysis to reduce line noise impact for LIGO observation system, Astron. Comput., 25 (2018), 238–246. https://doi.org/10.1016/j.ascom.2018.10.003 doi: 10.1016/j.ascom.2018.10.003
    [26] Y. Cheng, R. Wu, The research of aviation dangerous weather forecast for fog and haze based on BP neural network, in Proceedings of the 5th International Conference on Electrical Engineering and Automatic Control, Springer, 367 (2016), 877–883. https://doi.org/10.1007/978-3-662-48768-6_97
    [27] X. M. Zhang, Y. Q. Zhou, H. J. Huang, Q. F. Luo, Enhanced salp search algorithm for optimization extreme learning machine and application to dew point temperature prediction, Int. J. Comput. Intell. Syst., 15 (2022). https://doi.org/10.1007/s44196-022-00160-y doi: 10.1007/s44196-022-00160-y
    [28] S. Gul, M. Khan, N. B. Yoma, S. W. Shah, Sheheryar, Enhancing the correlation between the quality and intelligibility objective metrics with the subjective scores by shallow feed forward neural network for time–frequency masking speech separation algorithms, Appl. Acoust., 188 (2022), 108539. https://doi.org/10.1016/j.apacoust.2021.108539 doi: 10.1016/j.apacoust.2021.108539
    [29] D. B. Jia, K. Yanagisawa, Y. Ono, K. Hirobayashi, M. Hasegawa, S. Hirobayashi, et al., Multiwindow nonharmonic analysis method for gravitational waves, IEEE Access, 6 (2018), 48645–48655. https://doi.org/10.1109/ACCESS.2018.2867494 doi: 10.1109/ACCESS.2018.2867494
    [30] B. R. Murlidar, H. Nguyen, J. Rostami, X. N. Bui, D. J. Armaghani, P. Ragam, et al., Prediction of flyrock distance induced by mine blasting using a novel Harris Hawks optimization-based multi-layer perceptron neural network, J. Rock Mech. Geotech. Eng., 13 (2021), 1413–1427. https://doi.org/10.1016/j.jrmge.2021.08.005 doi: 10.1016/j.jrmge.2021.08.005
    [31] J. J. Cheng, G. Y. Yuan, S. C. Gao, M. C. Zhou, C. Liu, H. Duan, et al., Accessibility analysis and modeling for IoV in an urban scene, IEEE Trans. Veh. Technol., 69 (2020), 4246–4256. https://doi.org/10.1109/TVT.2020.2970553 doi: 10.1109/TVT.2020.2970553
    [32] X. X. Qian, Y. R. Wang, S. C. Gao, Y. K. Todo, S. C. Gao, Mr2DNM: A novel mutual information-based dendritic neuron model, Comput. Intell. Neurosci., 2019 (2019). https://doi.org/10.1155/2019/7362931 doi: 10.1155/2019/7362931
    [33] M. Dong, H. Wu, H. Hu, R. Azzam, L. Zhang, Z. Zheng, et al., Deformation prediction of unstable slopes based on real-time monitoring and DeepAR model, Sensors, 21 (2021). https://doi.org/10.3390/s21010014 doi: 10.3390/s21010014
    [34] R. B. Jin, Z. H. Chen, K. Y. Wu, M. Wu, X. L. Li, R. Q. Yan, Bi-LSTM-based two-stream network for machine remaining useful life prediction, IEEE Trans. Instrum. Meas., 71 (2022), 1–10. https://doi.org/10.1109/TIM.2022.3167778 doi: 10.1109/TIM.2022.3167778
    [35] Q. Li, J. H. Tan, J. Wang, H. C. Chen, A multimodal event-driven lstm model for stock prediction using online news, IEEE Trans. Knowl. Data Eng., 33 (2021), 3323–3337. https://doi.org/10.1109/TKDE.2020.2968894 doi: 10.1109/TKDE.2020.2968894
    [36] F. G. Liu, Z. W. Zhang, R. L. Zhou, Automatic modulation recognition based on CNN and GRU, Tsinghua Sci. Technol., 27 (2022), 422–431. https://doi.org/10.26599/TST.2020.9010057 doi: 10.26599/TST.2020.9010057
    [37] X. Lin, F. R. Bi, X. Yang, X. Y. Bi, An echo state network with improved topology for time series prediction, IEEE Sens. J., 22 (2022), 5869–5878. https://doi.org/10.1109/JSEN.2022.3148742 doi: 10.1109/JSEN.2022.3148742
    [38] X. S. Yao, Y. N. Shao, S. Y. Fan, S. X. Cao, Echo state network with multiple delayed outputs for multiple delayed time series prediction, J. Franklin Inst. 359 (2022), 11089–11107. https://doi.org/10.1016/j.jfranklin.2022.09.059 doi: 10.1016/j.jfranklin.2022.09.059
    [39] W. Chen, J. Sun, S. Gao, J. J. Cheng, J. Wang, Y. Todo, Using a single dendritic neuron to forecast tourist arrivals to Japan, IEICE Trans. Inf. Syst., E100.D (2017), 190–202. https://doi.org/10.1587/transinf.2016EDP7152 doi: 10.1587/transinf.2016EDP7152
    [40] D. B. Jia, C. H. Li, Q. Liu, Q. Yu, X. Meng, Z. Zhong, et al., Application and evolution for neural network and signal processing in large-scale systems, Complexity, 2021 (2021). https://doi.org/10.1155/2021/6618833 doi: 10.1155/2021/6618833
    [41] S. Gao, M. Zhou, Y. Wang, J. Cheng, H. Yachi, J. Wang, Dendritic neuron model with effective learning algorithms for classification, approximation, and prediction, IEEE Trans. Neural Networks Learn. Syst., 30 (2019), 601–614. https://doi.org/10.1109/TNNLS.2018.2846646 doi: 10.1109/TNNLS.2018.2846646
    [42] M. Chaloupka, Historical trends, seasonality and spatial synchrony in green sea turtle egg production, Biol. Conserv., 101 (2001), 263–279. https://doi.org/10.1016/S0006-3207(00)00199-3 doi: 10.1016/S0006-3207(00)00199-3
    [43] T. Zhou, S. Gao, J. Wang, C. Chu, Y. Todo, Z. Tang, Financial time series prediction using a dendritic neuron model, Knowledge-Based Syst., 105 (2016), 214–224. https://doi.org/10.1016/j.knosys.2016.05.031 doi: 10.1016/j.knosys.2016.05.031
    [44] H. T. He, S. C. Gao, T. Jin, S. Sato, X. Y. Zhang, A seasonal-trend decomposition-based dendritic neuron model for financial time series prediction, Appl. Soft Comput., 108 (2021), 107488. https://doi.org/10.1016/j.asoc.2021.107488 doi: 10.1016/j.asoc.2021.107488
    [45] Z. J. Sha, L. Hu, Y. Todo, J. Ji, S. Gao, Z. Tang, A breast cancer classifier using a neuron model with dendritic nonlinearity, IEICE Trans. Inf. Syst., E98.D (2015), 1365–1376. https://doi.org/10.1587/transinf.2014EDP7418 doi: 10.1587/transinf.2014EDP7418
    [46] H. Li, X. T. Liu, D. B. Jia, Y. Y. Chen, P. F. Hou, H. N. Li, Research on chest radiography recognition model based on deep learning, Math. Biosci. Eng., 19 (2022), 11768–11781. https://doi.org/10.3934/mbe.2022548 doi: 10.3934/mbe.2022548
    [47] J. Demšar, Statistical comparisons of classifiers over multiple data sets, J. Mach. Learn. Res., 7 (2006), 1–30.
    [48] Y. Cheng, W. N. Jia, R. H. Chi, A. Li, A clustering analysis method with high reliability based on Wilcoxon-Mann-Whitney testing, IEEE Access, 9 (2021), 19776–19787. https://doi.org/10.1109/ACCESS.2021.3053244 doi: 10.1109/ACCESS.2021.3053244
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2175) PDF downloads(95) Cited by(7)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog