Loading [MathJax]/jax/output/SVG/jax.js
Research article

Controlled dynamics of a chemotaxis model with logarithmic sensitivity by physical boundary conditions

  • We study the global dynamics of large amplitude classical solutions to a system of balance laws, derived from a chemotaxis model with logarithmic sensitivity, subject to time-dependent boundary conditions. The model is supplemented with H2 initial data and unmatched boundary conditions at the endpoints of a one-dimensional interval. Under suitable assumptions on the boundary data, it is shown that classical solutions exist globally in time. Time asymptotically, the differences between the solutions and their corresponding boundary data converge to zero, as time goes to infinity. No smallness restrictions on the magnitude of the initial perturbations is imposed. Numerical simulations are carried out to explore some topics that are not covered by the analytical results.

    Citation: Ling Xue, Min Zhang, Kun Zhao, Xiaoming Zheng. Controlled dynamics of a chemotaxis model with logarithmic sensitivity by physical boundary conditions[J]. Electronic Research Archive, 2022, 30(12): 4530-4552. doi: 10.3934/era.2022230

    Related Papers:

    [1] Junlong Chen, Yanbin Tang . Homogenization of nonlinear nonlocal diffusion equation with periodic and stationary structure. Networks and Heterogeneous Media, 2023, 18(3): 1118-1177. doi: 10.3934/nhm.2023049
    [2] Iryna Pankratova, Andrey Piatnitski . Homogenization of convection-diffusion equation in infinite cylinder. Networks and Heterogeneous Media, 2011, 6(1): 111-126. doi: 10.3934/nhm.2011.6.111
    [3] L.L. Sun, M.L. Chang . Galerkin spectral method for a multi-term time-fractional diffusion equation and an application to inverse source problem. Networks and Heterogeneous Media, 2023, 18(1): 212-243. doi: 10.3934/nhm.2023008
    [4] Markus Gahn, Maria Neuss-Radu, Peter Knabner . Effective interface conditions for processes through thin heterogeneous layers with nonlinear transmission at the microscopic bulk-layer interface. Networks and Heterogeneous Media, 2018, 13(4): 609-640. doi: 10.3934/nhm.2018028
    [5] Yinlin Ye, Hongtao Fan, Yajing Li, Ao Huang, Weiheng He . An artificial neural network approach for a class of time-fractional diffusion and diffusion-wave equations. Networks and Heterogeneous Media, 2023, 18(3): 1083-1104. doi: 10.3934/nhm.2023047
    [6] Tom Freudenberg, Michael Eden . Homogenization and simulation of heat transfer through a thin grain layer. Networks and Heterogeneous Media, 2024, 19(2): 569-596. doi: 10.3934/nhm.2024025
    [7] Kexin Li, Hu Chen, Shusen Xie . Error estimate of L1-ADI scheme for two-dimensional multi-term time fractional diffusion equation. Networks and Heterogeneous Media, 2023, 18(4): 1454-1470. doi: 10.3934/nhm.2023064
    [8] Farman Ali Shah, Kamran, Dania Santina, Nabil Mlaiki, Salma Aljawi . Application of a hybrid pseudospectral method to a new two-dimensional multi-term mixed sub-diffusion and wave-diffusion equation of fractional order. Networks and Heterogeneous Media, 2024, 19(1): 44-85. doi: 10.3934/nhm.2024003
    [9] Tasnim Fatima, Ekeoma Ijioma, Toshiyuki Ogawa, Adrian Muntean . Homogenization and dimension reduction of filtration combustion in heterogeneous thin layers. Networks and Heterogeneous Media, 2014, 9(4): 709-737. doi: 10.3934/nhm.2014.9.709
    [10] Thomas Geert de Jong, Georg Prokert, Alef Edou Sterk . Reaction–diffusion transport into core-shell geometry: Well-posedness and stability of stationary solutions. Networks and Heterogeneous Media, 2025, 20(1): 1-14. doi: 10.3934/nhm.2025001
  • We study the global dynamics of large amplitude classical solutions to a system of balance laws, derived from a chemotaxis model with logarithmic sensitivity, subject to time-dependent boundary conditions. The model is supplemented with H2 initial data and unmatched boundary conditions at the endpoints of a one-dimensional interval. Under suitable assumptions on the boundary data, it is shown that classical solutions exist globally in time. Time asymptotically, the differences between the solutions and their corresponding boundary data converge to zero, as time goes to infinity. No smallness restrictions on the magnitude of the initial perturbations is imposed. Numerical simulations are carried out to explore some topics that are not covered by the analytical results.



    We will derive integrals as indicated in the abstract in terms of special functions. Some special cases of these integrals have been reported in Gradshteyn and Ryzhik [5]. In 1867 David Bierens de Haan derived hyperbolic integrals of the form

    0((log(a)ix)k+(log(a)+ix)k)log(cos(α)sech(x)+1)dx (1.1)

    In our case the constants in the formulas are general complex numbers subject to the restrictions given below. The derivations follow the method used by us in [6]. The generalized Cauchy's integral formula is given by

    ykk!=12πiCewywk+1dw. (1.2)

    We use the method in [6]. Here the contour is in the upper left quadrant with (w)<0 and going round the origin with zero radius. Using a generalization of Cauchy's integral formula we first replace y by ix+log(a) for the first equation and then y by ix+log(a) to get the second equation. Then we add these two equations, followed by multiplying both sides by 12log(cos(α)sech(x)+1) to get

    ((log(a)ix)k+(log(a)+ix)k)log(cos(α)sech(x)+1)2k!=12πiCawwk1cos(wx)log(cos(α)sech(x)+1)dw (2.1)

    where the logarithmic function is defined in Eq (4.1.2) in [2]. We then take the definite integral over x[0,) of both sides to get

    0((log(a)ix)k+(log(a)+ix)k)log(cos(α)sech(x)+1)2k!dx=12πi0Cawwk1cos(wx)log(cos(α)sech(x)+1)dwdx=12πiC0awwk1cos(wx)log(cos(α)sech(x)+1)dxdw=12πiCπawwk2cosh(πw2)csch(πw)dw12πiCπawwk2csch(πw)cosh(αw)dw (2.2)

    from Eq (1.7.7.120) in [1] and the integral is valid for α, a, and k complex and |(α)|<π.

    In this section we will again use the generalized Cauchy's integral formula to derive equivalent contour integrals. First we replace y by yπ/2 for the first equation and y by y+π/2 for second then add these two equations to get

    (yπ2)k+(y+π2)kk!=12πiC2wk1ewycosh(πw2)dw (3.1)

    Next we replace y by log(a)+π(2p+1) then we take the infinite sum over p[0,) to get

    p=02π((log(a)+π(2p+1)π2)k+(log(a)+π(2p+1)+π2)k)k!=12πip=0C4πwk1cosh(πw2)ew(log(a)+π(2p+1))dw=12πiCp=04πwk1cosh(πw2)ew(log(a)+π(2p+1))dw (3.2)

    where (w)<0 according to (1.232.3) in [5]. Then we simplify the left-hand side to get the Hurwitz zeta function

    2k+1πk+2(k+1)!(ζ(k1,2log(a)+π4π)+ζ(k1,2log(a)+3π4π))=12πiCπawwk2cosh(πw2)csch(πw)dw (3.3)

    Then following the procedure of (3.1) and (3.2) we replace y by y+α and yα to get the second equation for the contour integral given by

    (yα)k+(α+y)kk!=12πiC2wk1ewycosh(αw)dw (3.4)

    next we replace y by log(a)+π(2p+1) and take the infinite sum over p[0,) to get

    p=0(α+log(a)+π(2p+1))k+(α+log(a)+π(2p+1))kk!=12πip=0C2wk1cosh(αw)ew(log(a)+π(2p+1))dw=12πiCp=02wk1cosh(αw)ew(log(a)+π(2p+1))dw (3.5)

    Then we simplify to get

    2k+1πk+2(k+1)!(ζ(k1,α+log(a)+π2π)+ζ(k1,α+log(a)+π2π))=12πiCπ(aw)wk2csch(πw)cosh(αw)dw (3.6)

    Since the right-hand sides of Eqs (2.2), (3.3) and (3.5) are equivalent we can equate the left-hand sides to get

    0((log(a)ix)k+(log(a)+ix)k)log(cos(α)sech(x)+1)dx=2(2k+1πk+2(ζ(k1,α+log(a)+π2π)+ζ(k1,α+log(a)+π2π))k+1)2(2k+1πk+2(ζ(k1,2log(a)+π4π)+ζ(k1,2log(a)+3π4π))k+1) (4.1)

    from (9.521) in [5] where ζ(z,q) is the Hurwitz zeta function. Note the left-hand side of Eq (4.1) converges for all finite k. The integral in Eq (4.1) can be used as an alternative method to evaluating the Hurwitz zeta function. The Hurwitz zeta function has a series representation given by

    ζ(z,q)=n=01(q+n)z (4.2)

    where (z)>1,q0,1,.. and is continued analytically by (9.541.1) in [5] where z=1 is the only singular point.

    In this section we have evaluated integrals and extended the range of the parameters over which the integrals are valid. The aim of this section is to derive a few integrals in [5] in terms of the Lerch function. We also present errata for one of the integrals and faster converging closed form solutions.

    Using Eq (4.1) and taking the first partial derivative with respect to α and setting a=1 and simplifying the left-hand side we get

    0xkcos(α)+cosh(x)dx=2kπk+1csc(α)sec(πk2)(ζ(k,πα2π)ζ(k,α+π2π)) (5.1)

    from Eq (7.102) in [3].

    Using Eq (5.1) and taking the first partial derivative with respect to k and setting k=0 and simplifying the left-hand side we get

    0log(x)cos(α)+cosh(x)dx=csc(α)(αlog(2π)πlog(απ)+πlog(απ)πlogΓ(α+π2π)+πlogΓ(πα2π)))=csc(α)(αlog(2π)+πlog(Γ(α+π2π)Γ(πα2π))) (5.2)

    from (7.105) in [3].

    Using Eq (5.2) and setting α=π/2 and simplifying we get

    0log(x)sech(x)dx=πlog(2πΓ(34)Γ(14)) (5.3)

    Using Eq (5.2) and taking the first derivative with respect to α and setting α=π/2 and simplifying we get

    0log(x)sech2(x)dx=log(π4)γ (5.4)

    where γ is Euler's constant.

    Using Eq (5.1) and taking the first partial derivative with respect to k then setting k=1/2 and α=π/2 and simplifying we get

    0log(x)sech(x)xdx=12π(2ζ(12,14)+2ζ(12,34)+(ζ(12,34)ζ(12,14))(π+log(14π2))) (5.5)

    The expression in [4] is correct but converges much slower than Eq (5.5).

    Using Eq (5.1) and taking the first partial derivative with respect to α we get

    0xk(cos(α)+cosh(x))2dx=2k1πkcsc2(α)sec(πk2)(k(ζ(1k,πα2π)+ζ(1k,α+π2π)))2k1πkcsc2(α)sec(πk2)(2πcot(α)(ζ(k,πα2π)ζ(k,α+π2π))) (5.6)

    from (7.102) in [3]. Next we use L'Hopital's rule and take the limit as α0 to get

    0xk(cosh(x)+1)2dx=1321k((2k8)ζ(k2)(2k2)ζ(k))Γ(k+1) (5.7)

    Then we take the first partial derivative with respect to k to get

    0xklog(x)(cosh(x)+1)2dx=1324kkΓ(k)ζ(k2)23kΓ(k)ζ(k2)1322kkΓ(k)ζ(k)+23kΓ(k)ζ(k)1321kklog(256)ζ(k2)Γ(k)+1321kklog(4)ζ(k)Γ(k)+1324kkζ(k2)Γ(k)ψ(0)(k+1)23kζ(k2)Γ(k)ψ(0)(k+1)1322kkζ(k)Γ(k)ψ(0)(k+1)+23kζ(k)Γ(k)ψ(0)(k+1) (5.8)

    Finally we set k=0 to get

    0log(x)(cosh(x)+1)2dx=13(14ζ(2)γ+log(π2)) (5.9)

    The integral listed in [4] appears with an error in the integrand.

    Using Eq (4.1) we first take the limit as k1 by applying L'Hopital's rule and using (7.105) in [3] and simplifying the right-hand side we get

    0log(cos(α)sech(x)+1)a2+x2dx=πalog(π212aπΓ(aπ+12)Γ(aα+π2π)Γ(a+α+π2π)) (5.10)

    Next we take the first partial derivative with respect to α and set α=0 to get

    0sech(x)a2+x2dx=ψ(0)(2a+π4π)ψ(0)(2a+3π4π)2a (5.11)

    from Eq (8.360.1) in [5] where (a)>0, next we replace x with bx to get

    0sech(bx)a2+b2x2dx=ψ(0)(2a+π4π)ψ(0)(2a+3π4π)2ab (5.12)

    Next we set a=b=π to get

    0sech(πx)x2+1dx=12(ψ(0)(54)ψ(0)(34))=2π2 (5.13)

    from Eq (8.363.8) in [5].

    Using Eq (5.12) and setting a=b=π/2 we get

    0sech(πx2)x2+1dx=12(γψ(0)(12))=log(2) (5.14)

    from Eq (8.363.8) in [5].

    Using Eq (5.12) and setting a=b=π/4 we get

    0sech(πx4)x2+1dx=12(ψ(0)(78)ψ(0)(38))=π2coth1(2)2 (5.15)

    from Eq (8.363.8) in [5].

    Using Eq (5.10) and taking the second partial derivative with respect to α we get

    0sech2(x)a2+x2dx=ψ(1)(aπ+12)πa (5.16)

    from Eq (8.363.8) in [5] where (a)>0.

    In this paper we were able to present errata and express our closed form solutions in terms of special functions and fundamental constants such π, Euler's constant and log(2). The use of the trigamma function is quite often necessary in statistical problems involving beta or gamma distributions. This work provides both an accurate and extended range for the solutions of the integrals derived.

    We have presented a novel method for deriving some interesting definite integrals by Bierens de Haan using contour integration. The results presented were numerically verified for both real and imaginary and complex values of the parameters in the integrals using Mathematica by Wolfram.

    This research is supported by Natural Sciences and Engineering Research Council of Canada NSERC Canada under Grant 504070.

    The authors declare there are no conflicts of interest.



    [1] J. D. Murray, Mathematical Biology I: An Introduction, 3rd edition, Springer-Verlag, New York, 2002. https://doi.org/10.1023/A:1022616217603
    [2] R. Tyson, S. R. Lubkin, J. D. Murray, Model and analysis of chemotactic bacterial patterns in a liquid medium, J. Math. Biol., 38 (1999), 359–375. https://doi.org/10.1007/s002850050153 doi: 10.1007/s002850050153
    [3] A. Gamba, D. Ambrosi, A. Coniglio, A. de Candia, S. Di Talia, E. Giraudo, et al., Percolation, morphogenesis, and Burgers dynamics in blood vessels formation, Phys. Rev. Lett., 90 (2003), 118101. https://doi.org/10.1103/PhysRevLett.90.118101 doi: 10.1103/PhysRevLett.90.118101
    [4] K. J. Painter, P. K. Maini, H. G. Othmer, Stripe formation in juvenile pomacanthus explained by a generalized Turing mechanism, Proc. Nat. Acad. Sci., 96 (1999), 5549–5554. https://doi.org/10.1073/pnas.96.10.5549 doi: 10.1073/pnas.96.10.5549
    [5] M. A. J. Chaplain, A. M. Stuart, A model mechanism for the chemotactic response of endothelial cells to tumor angiogenesis factor, IMA J. Math. Appl. Med., 10 (1993), 149–168. https://doi.org/10.1093/imammb/10.3.149 doi: 10.1093/imammb/10.3.149
    [6] K. J. Painter, P. K. Maini, H. G. Othmer, A chemotactic model for the advance and retreat of the primitive streak in avian development, Bull. Math. Biol., 62 (2000), 501–525. https://doi.org/10.1006/bulm.1999.0166 doi: 10.1006/bulm.1999.0166
    [7] H. Höfer, J. A. Sherratt, P. K. Maini, Cellular pattern formation during Dictyostelium aggregation, Phys. D, 85 (1995), 425–444. https://doi.org/10.1016/0167-2789(95)00075-F doi: 10.1016/0167-2789(95)00075-F
    [8] G. J. Petter, H. M. Byrne, D. L. S. McElwain, J. Norbury, A model of wound healing and angiogenesis in soft tissue, Math. Biosci., 136 (2003), 35–63. https://doi.org/10.1016/0025-5564(96)00044-2 doi: 10.1016/0025-5564(96)00044-2
    [9] C. S. Patlak, Random walk with persistence and external bias, Bull. Math. Biophys., 15 (1953), 311–338. https://doi.org/10.1007/BF02476407 doi: 10.1007/BF02476407
    [10] E. F. Keller, L. A. Segel, Initiation of slime mold aggregation viewed as an instability, J. Theor. Biol., 26 (1970), 399–415. https://doi.org/10.1016/0022-5193(70)90092-5 doi: 10.1016/0022-5193(70)90092-5
    [11] E. F. Keller, L. A. Segel, Model for chemotaxis, J. Theor. Biol., 30 (1971), 225–234. https://doi.org/10.1016/0022-5193(71)90050-6 doi: 10.1016/0022-5193(71)90050-6
    [12] E. F. Keller, L. A. Segel, Traveling bands of chemotactic bacteria: a theoretical analysis, J. Theor. Biol., 26 (1971), 235–248. https://doi.org/10.1016/0022-5193(71)90051-8 doi: 10.1016/0022-5193(71)90051-8
    [13] N. Bellomo, A. Bellouquid, Y. Tao, M. Winkler, Toward a mathematical theory of Keller-Segel models of pattern formation in biological tissues, Math. Models Methods Appl. Sci., 25 (2015), 1663–1763. https://doi.org/10.1142/S021820251550044X doi: 10.1142/S021820251550044X
    [14] T. Hillen, K. Painter, A users guide to PDE models for chemotaxis, J. Math. Biol., 58 (2009), 183–217. https://doi.org/10.1007/s00285-008-0201-3 doi: 10.1007/s00285-008-0201-3
    [15] D. Horstmann, From 1970 until present: The Keller-Segel model in chemotaxis and its consequences I, Jahresber. Dtsch. Math. Ver., 105 (2003), 103–165.
    [16] J. Adler, Chemotaxis in bacteria, Science, 153 (1966), 708–716. https://doi.org/10.1126/science.153.3737.708 doi: 10.1126/science.153.3737.708
    [17] W. Alt, D. A. Lauffenburger, Transient behavior of a chemotaxis system modeling certain types of tissue inflammation, J. Math. Biol., 24 (1987), 691–722. https://doi.org/10.1007/BF00275511 doi: 10.1007/BF00275511
    [18] D. Balding, D. L. S. McElwain, A mathematical model of tumour-induced capillary growth, J. Theor. Biol., 114 (1985), 53–73. https://doi.org/10.1016/S0022-5193(85)80255-1 doi: 10.1016/S0022-5193(85)80255-1
    [19] F. W. Dahlquist, P. Lovely, D. E. Jr Koshland, Quantitative analysis of bacterial migration in chemotaxis, Nat. New Biol., 236 (1972), 120–123. https://doi.org/10.1038/newbio236120a0 doi: 10.1038/newbio236120a0
    [20] Y. V. Kalinin, L. Jiang, Y. Tu, M. Wu, Logarithmic sensing in Escherichia coli bacterial chemotaxis, Bio. J., 96 (2009), 2439–2448. https://doi.org/10.1016/j.bpj.2008.10.027 doi: 10.1016/j.bpj.2008.10.027
    [21] H. A. Levine, B. D. Sleeman, A system of reaction diffusion equations arising in the theory of reinforced random walks, SIAM J. Appl. Math., 57 (1997), 683–730. https://doi.org/10.1137/S0036139995291106 doi: 10.1137/S0036139995291106
    [22] H. Othmer, A. Stevens, Aggregation, blowup and collapse: The ABC's of taxis in reinforced random walks, SIAM J. Appl. Math., 57 (1997), 1044–1081. https://doi.org/10.1137/S0036139995288976 doi: 10.1137/S0036139995288976
    [23] H. A. Levine, B. D. Sleeman, M. Nilsen-Hamilton, A mathematical model for the roles of pericytes and macrophages in the initiation of angiogenesis. i. the role of protease inhibitors, Math. Biosci., 168 (2000), 77–115. https://doi.org/10.1016/S0025-5564(00)00034-1 doi: 10.1016/S0025-5564(00)00034-1
    [24] M. A. Fontelos, A. Friedman, B. Hu, Mathematical analysis of a model for the initiation of angiogenesis, SIAM J. Math. Anal., 33 (2002), 1330–1355. https://doi.org/10.1137/S0036141001385046 doi: 10.1137/S0036141001385046
    [25] J. Guo, J. Xiao, H. Zhao, C. Zhu, Global solutions to a hyperbolic-parabolic coupled system with large initial data, Acta Math. Sci. Ser. B (Engl. Ed.), 29 (2009), 629–641. https://doi.org/10.1016/S0252-9602(09)60059-X doi: 10.1016/S0252-9602(09)60059-X
    [26] Q. Hou, C. Liu, Y. Wang, Z. A. Wang, Stability of boundary layers for a viscous hyperbolic system arising from chemotaxis: one dimensional case, SIAM J. Math. Anal., 50 (2018), 3058–3091. https://doi.org/10.1137/17M112748X doi: 10.1137/17M112748X
    [27] Q. Hou, Z. A. Wang, Convergence of boundary layers for the Keller-Segel system with singular sensitivity in the half-plane, J. Math. Pures. Appl., 130 (2019), 251–287. https://doi.org/10.1016/j.matpur.2019.01.008 doi: 10.1016/j.matpur.2019.01.008
    [28] Q. Hou, Z. A. Wang, K. Zhao, Boundary layer problem on a hyperbolic system arising from chemotaxis, J. Differ. Equations, 261 (2016), 5035–5070. https://doi.org/10.1016/j.jde.2016.07.018 doi: 10.1016/j.jde.2016.07.018
    [29] D. Li, R. Pan, K. Zhao, Quantitative decay of a one-dimensional hybrid chemotaxis model with large data, Nonlinearity, 28 (2015), 2181–2210. https://doi.org/10.1088/0951-7715/28/7/2181 doi: 10.1088/0951-7715/28/7/2181
    [30] H. Li, K. Zhao, Initial-boundary value problems for a system of hyperbolic balance laws arising from chemotaxis, J. Differ. Equations, 258 (2015), 302–338. https://doi.org/10.1016/j.jde.2014.09.014 doi: 10.1016/j.jde.2014.09.014
    [31] T. Li, R. Pan, K. Zhao, Global dynamics of a hyperbolic-parabolic model arising from chemotaxis, SIAM J. Appl. Math., 72 (2012), 417–443. https://doi.org/10.1137/110829453 doi: 10.1137/110829453
    [32] V. R. Martinez, Z. A. Wang, K. Zhao, Asymptotic and viscous stability of large-amplitude solutions of a hyperbolic system arising from biology, Indiana Univ. Math. J., 67 (2018), 1383–1424. https://www.jstor.org/stable/45010333
    [33] H. Peng, Z. A. Wang, K. Zhao, C. Zhu, Boundary layers and stabilization of the singular Keller-Segel model, Kinet. Relat. Models, 11 (2018), 1085–1123. https://doi.org/10.3934/krm.2018042 doi: 10.3934/krm.2018042
    [34] Y. Tao, L. Wang, Z. A. Wang, Large-time behavior of a parabolic-parabolic chemotaxis model with logarithmic sensitivity in one dimension, Disc. Cont. Dyn. Syst., Ser. B, 18 (2013), 821–845. https://doi.org/10.3934/dcdsb.2013.18.821 doi: 10.3934/dcdsb.2013.18.821
    [35] Z. A. Wang, K. Zhao, Global dynamics and diffusion limit of a parabolic system arising from repulsive chemotaxis, Commun. Pure Appl. Anal., 12 (2013), 3027–3046. https://doi.org/10.3934/cpaa.2013.12.3027 doi: 10.3934/cpaa.2013.12.3027
    [36] K. Choi, M. Kang, Y. Kwon, A. Vasseur, Contraction for large perturbations of traveling waves in a hyperbolic-parabolic system arising from a chemotaxis model, Math. Models Methods Appl. Sci., 30 (2020), 387–437. https://doi.org/10.1142/S0218202520500104 doi: 10.1142/S0218202520500104
    [37] H. Jin, J. Li, Z. A. Wang, Asymptotic stability of traveling waves of a chemotaxis model with singular sensitivity, J. Differ. Equations, 255 (2013), 193–219. https://doi.org/10.1016/j.jde.2013.04.002 doi: 10.1016/j.jde.2013.04.002
    [38] J. Li. T. Li, Z. A. Wang, Stability of traveling waves of the Keller-Segel system with logarithmic sensitivity, Math. Models Methods Appl. Sci., 24 (2014), 2819–2849. https://doi.org/10.1142/S0218202514500389 doi: 10.1142/S0218202514500389
    [39] T. Li, Z. A. Wang, Nonlinear stability of traveling waves to a hyperbolic-parabolic system modeling chemotaxis, SIAM J. Appl. Math., 7 (2009), 1522–1541. https://doi.org/10.1137/09075161X doi: 10.1137/09075161X
    [40] T. Li, Z. A. Wang, Nonlinear stability of large amplitude viscous shock waves of a generalized hyperbolic-parabolic system arising in chemotaxis, Math. Models Methods Appl. Sci., 20 (2010), 1967–1998. https://doi.org/10.1142/S0218202510004830 doi: 10.1142/S0218202510004830
    [41] T. Li, Z. A. Wang, Asymptotic nonlinear stability of traveling waves to conservation laws arising from chemotaxis, J. Differ. Equations, 250 (2011), 1310–1333. https://doi.org/10.1016/j.jde.2010.09.020 doi: 10.1016/j.jde.2010.09.020
    [42] T. Li, Z. A. Wang, Steadily propagating waves of a chemotaxis model, Math. Biosci., 240 (2012), 161–168. https://doi.org/10.1016/j.mbs.2012.07.003 doi: 10.1016/j.mbs.2012.07.003
    [43] H. Peng, Z. A. Wang, Nonlinear stability of strong traveling waves for the singular Keller-Segel system with large perturbations, J. Differ. Equations, 265 (2018), 2577–2613. https://doi.org/10.1016/j.jde.2018.04.041 doi: 10.1016/j.jde.2018.04.041
    [44] Z. A. Wang, Mathematics of traveling waves in chemotaxis, Disc. Cont. Dyn. Syst. Ser. B, 18 (2013), 601–641. https://doi.org/10.3934/dcdsb.2013.18.601 doi: 10.3934/dcdsb.2013.18.601
    [45] J. A. Carrillo, J. Li, Z. A. Wang, Boundary spike‐layer solutions of the singular Keller–Segel system: existence and stability, Proc. London Math. Soc., 122 (2021), 42–68. https://doi.org/10.1112/plms.12319 doi: 10.1112/plms.12319
    [46] R. M. Fuster-Aguilera, V. R. Martinez, K. Zhao, A PDE model for chemotaxis with logarithmic sensitivity and logistic growth, preprint, arXiv: 2012.10521.
    [47] Y. Zeng, Nonlinear stability of diffusive contact wave for a chemotaxis model, J. Differ. Equations, 308 (2022), 286–326. https://doi.org/10.1016/j.jde.2021.11.008 doi: 10.1016/j.jde.2021.11.008
    [48] Y. Zeng, K. Zhao, On the Logarithmic Keller-Segel-Fisher/KPP System, Disc. Cont. Dyn. Syst., 39 (2019), 5365–5402. https://doi.org/10.3934/dcds.2019220 doi: 10.3934/dcds.2019220
    [49] Y. Zeng, K. Zhao, Optimal decay rates for a chemotaxis model with logistic growth, logarithmic sensitivity and density-dependent production/consumption rate, J. Differ. Equations, 268 (2020), 1379–1411. https://doi.org/10.1016/j.jde.2019.08.050 doi: 10.1016/j.jde.2019.08.050
    [50] Y. Zeng, K. Zhao, Optimal decay rates for a chemotaxis model with logistic growth, logarithmic sensitivity and density-dependent production/consumption rate, J. Differ. Equations, 29 (2020), 6359–6363. https://doi.org/10.1016/j.jde.2019.08.050 doi: 10.1016/j.jde.2019.08.050
    [51] Y. Zeng, K. Zhao, Asymptotic behavior of solutions to a chemotaxis-logistic model with transitional end-states, J. Differ. Equations, 336 (2022), 1–43. https://doi.org/10.1016/j.jde.2022.07.013 doi: 10.1016/j.jde.2022.07.013
    [52] Z. Feng, J. Xu, L. Xue, K. Zhao, Initial and boundary value problem for a system of balance laws from chemotaxis: Global dynamics and diffusivity limit, Ann. Appl. Math., 37 (2021), 61–110. https://doi.org/10.4208/aam.OA-2020-0004 doi: 10.4208/aam.OA-2020-0004
    [53] N. Zhu, Z. Liu, V. R. Martinez, K. Zhao, Global Cauchy problem of a system of parabolic conservation laws arising from a Keller-Segel type chemotaxis model, SIAM J. Math. Anal., 50 (2018), 5380–5425. https://doi.org/10.1137/17M1135645 doi: 10.1137/17M1135645
    [54] N. Zhu, Z. Liu, F. Wang, K. Zhao, Asymptotic dynamics of a system of conservation laws from chemotaxis, Disc. Cont. Dyn. Syst., 41 (2021), 813–847. https://doi.org/10.3934/dcds.2020301 doi: 10.3934/dcds.2020301
    [55] F. Wang, L. Xue, K. Zhao, X. Zheng, Global stabilization and boundary control of generalized Fisher/KPP equation and application to diffusive SIS model, J. Differ. Equations, 275 (2021), 391–417. https://doi.org/10.1016/j.jde.2020.11.031 doi: 10.1016/j.jde.2020.11.031
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1817) PDF downloads(83) Cited by(3)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog