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Abstract: We study the global dynamics of large amplitude classical solutions to a system of balance
laws, derived from a chemotaxis model with logarithmic sensitivity, subject to time-dependent bound-
ary conditions. The model is supplemented with H2 initial data and unmatched boundary conditions
at the endpoints of a one-dimensional interval. Under suitable assumptions on the boundary data, it
is shown that classical solutions exist globally in time. Time asymptotically, the differences between
the solutions and their corresponding boundary data converge to zero, as time goes to infinity. No
smallness restrictions on the magnitude of the initial perturbations is imposed. Numerical simulations
are carried out to explore some topics that are not covered by the analytical results.
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1. Introduction

1.1. Background

This paper focuses on the boundary control of large amplitude classical solutions to an initial-
boundary value problem of the system of hyperbolic balance laws:

ut − (uv)x = uxx, (1.1a)
vt − (uγ − v2)x = vxx, (1.1b)

which originates from the chemotaxis model with logarithmic sensitivity:

ut = Duxx − χ
[
u(log c)x

]
x, (1.2a)

ct = εcxx − µuγc. (1.2b)
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Chemotaxis is the biochemical process through which the movement of an organism or entity is
not only regulated by random diffusion, but also controlled by the concentration gradient of a chem-
ical stimulus in the local environment. Biological processes undergoing chemotaxis include bacterial
foraging, immune response, embryonic development and tissue homeostasis [1,2], blood vessel forma-
tion [3], fish pigmentation patterning [4], tumor angiogenesis [5], primitive streak formation [6], slime
mould formation [7], and wound healing [8], just to name a few.

Interpretation of the underlying mechanism of chemotaxis using continuum PDE models dates bak
to the 1950s by Patlak [9] and the 1970s by Keller and Segel [10–12], the former from a probabilistic
perspective, and the latter based on a phenomenological approach. In a general form, the Patlak-Keller-
Segel model can be expressed as

ut = Duxx − χ
[
uΦ(c)x

]
x, (1.3a)

ct = εcxx + f (u, c), (1.3b)

which is a system of reaction-diffusion-advection equations. Here, the unknown functions u(x, t) and
c(x, t) denote the density of the organic population and concentration of the chemical signal at position
x at time t, respectively. The parameters: D > 0 stands for the diffusion coefficient of the organic den-
sity; χ , 0 is the coefficient of chemotactic sensitivity, the sign of χ dictates whether the chemotaxis
is attractive (χ > 0) or repulsive (χ < 0), with |χ| measuring the strength of chemotactic response;
and ε ≥ 0 is the diffusion coefficient of the chemical signal. The function Φ(c) denotes the chemotac-
tic sensitivity, which underlines the main character of such a model, whose spatial derivative depicts
the mechanistic feature of chemotactic movement – advection of the organic population induced by
the spatial gradient of the chemical signal in the local environment. Moreover, the function f (u, c)
accounts for consumption/production/degradation of the chemical signal. Formally, the model por-
trays the evolution (biased movement) of the organic population in response to the chemical stimulus
in the local environment. Mathematically, the synergy of random diffusion, nonlinear advection and
nonlinear reaction makes the dynamics of the model an intriguing problem to investigate. Depending
on the specific forms of Φ(c) and f (u, c), the model can be utilized to explain the underlying mech-
anisms of various biological processes experiencing chemotaxis. We refer the readers to the survey
papers [13–15] for a comprehensive list and the mathematical development of such models.

To introduce the specific problem, we first present the following model, which is a special version
of (1.3) when Φ is the logarithmic function of c and f (u, c) is a polynomial of u and c:

ut = Duxx − χ
[
u log(c)x

]
x, (1.4a)

ct = εcxx − µuc − σc, (1.4b)

where the parameter µ , 0 denotes the density-dependent production/degradation rate of the chemical
signal and σ ≥ 0 stands for the natural degradation rate of the chemical signal. When σ = 0, this
model can be viewed as a borderline case of one of the original models developed by Keller and Segel:

ut = Duxx − χ
[
u log(c)x

]
x, (1.5a)

ct = εcxx − µucm, 0 ≤ m < 1, (1.5b)
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which appeared in [12] to understand J. Adler’s experimental result [16] on the formation of traveling
bands in nutrient-enticed E. Coli population. The logarithmic sensitivity entails that the chemotactic
movement obeys the Weber-Fechner’s law, which is a fundamental principle in psychophysics and has
prominent applications in biology ( [12, 17–20]).

System (1.4) appeared in a variety of contexts to elucidate the fundamental principles of different
chemotactic processes. For example, when χ < 0, µ < 0 and σ > 0, the model was designed in [21,22]
to illustrate the chemotactic movement of reinforced random walkers, such as surface or matrix-bound
adhesive molecules, which deposit non-diffusive (ε = 0) or slowly moving (0 < ε ≪ 1) chemical
signals that modify the local environment for succeeding passages. In light of the biological contexts
of the parameters χ and µ, the model characterizes the process of repulsive chemotaxis in response to
a chemical stimulus that is being produced by the organism. On the other hand, when χ > 0, µ > 0 and
σ = 0, the model was employed by Levine et al. [23] to interpret the dynamical interactions between
vascular endothelial cells (VECs) and signaling molecules vascular endothelial growth factor (VEGF)
in the onset of tumor angiogenesis. In this case, the model portrays the process of attractive chemotaxis
in response to a chemical stimulus that is being consumed by the organism.

It should be stressed that although the logarithmic sensitivity plays an important role in biological
modeling, its singular nature brings out an obstruction for the qualitative (numerical and rigorous)
analysis of the mathematical equations. The existing results concerning the qualitative behavior of
the models with logarithmic sensitivity is much less than those with other types of sensitivity, such
as linear sensitivity, saturating sensitivity, et al, see e.g., [13–15]. Fortunately, it has been recognized
that the singular nature of the logarithmic sensitivity can be removed by applying the Cole-Hopf type
transformation: v =

[
log(eσtc)

]
x =

cx
c . Combining such a transformation with the temporal-spatial

rescaling:
t → |χµ|D−1 t, x→

√
|χµ|D−1 x, v→ −sign(χ)

√
|χ| |µ|−1 v,

one can convert the original chemotaxis model into

ut − (uv)x = uxx, (1.6a)
vt − sign(χµ)ux = εD−1vxx − εχ

−1(v2)x, (1.6b)

where the equations are written in the conservative form to facilitate further discussions in the context
of balance laws. A direct calculation shows that the characteristics associated with the flux in (1.6) are

λ± =

(
2εχ−1 − 1

)
v ±
√(

2εχ−1 + 1
)2 v2 + 4 sign(χµ)u

2
, (1.7)

from which we see that the principle part of (1.6) is hyperbolic in biologically relevant regimes (where
the cellular density u > 0), provided χµ > 0. Hence, the analytical tools in hyperbolic balance laws
become feasible for studying the qualitative behavior of the model. We focus on this case throughout
the paper, since otherwise the characteristic fields may change the type, which could alter the dynamics
of the model drastically. This is supported by the finite-time blowup of the explicit and numerical
solutions constructed in [21].

Rigorous mathematical study of (1.6) has been carried out for nearly two decades. Most of the
results are established for the case when χµ > 0. The global well-posedness of large amplitude classical
solutions was first established in [24, 25], and upgraded in a series of recent works [26–35] under
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various initial and/or boundary conditions. The existence and local stability of large-strength traveling
waves and boundary spike-layer solutions have been settled in [36–44] and [45], respectively. There are
also works investigating the qualitative behavior of the appended version of (1.6) with logistic growth
[46–51]. Collectively, these results suggest that large-time homogenization is generic in the processes
of logarithmically sensitive chemo-attraction with chemical consumption and chemo-repulsion with
chemical production, while finite-time singularities are not expected in such processes.

Inspired by the biological background and the mathematical research recently conducted on (1.6),
the following model was proposed and analyzed in [52, 53]:

ut = Duxx − χ
[
u(log c)x

]
x, (1.8a)

ct = εcxx − µuγc − σc, γ > 1, (1.8b)

which is an amended version of (1.4) by replacing the linear dependence of the chemical produc-
tion/consumption rate on the organic density by a power-like one. Since monomials are building blocks
of general nonlinear functions, this model paves a way for the understanding of the dynamical behavior
of the Keller-Segel type model with genuinely nonlinear production/consumption rates. By applying
the Cole-Hopf transformation and the rescaling applied to (1.4), we obtain

ut − (uv)x = uxx, (1.9a)
vt − sign(χµ)(uγ)x = εD−1vxx − εχ

−1(v2)x, (1.9b)

which is the focal point of this paper. From the perspective of rigorous mathematical analysis, (1.9)
is considerably more complicated than (1.6), due to the power-like nonlinearity. So far, the global
stability of constant ground states and convergence rates in the regime of classical solutions to the
Cauchy problem has been proven in [53,54], and the global stabilization of classical solutions on finite
intervals subject to dynamic boundary conditions has been demonstrated in [52].

1.2. Motivation

Mathematically, the initial-boundary value problem of a PDE model subject to dynamic (time-
dependent) boundary conditions can be equivalently viewed as a control problem with the boundary
data as external inputs. A typical question in this type of problem is under what conditions on the
boundary data the solution stabilizes in the long run. Such a problem has been studied for (1.9) in [52],
where the global stabilization of large data classical solutions under dynamic boundary conditions is
established. However, we note that the result of [52] required the boundary values of the unknown
functions to match at the endpoints, i.e., u(a, t) = u(b, t) and v(a, t) = v(b, t). Apparently, such a
restriction is not desirable from the physical/biological point of view. Rigorous mathematical study
of the models subject to unmatched boundary conditions, i.e., u(a, t) , u(b, t) and v(a, t) , v(b, t),
thus becomes physically/biologically relevant. Nevertheless, the long-time dynamics of large data
solutions to the model subject to unmatched boundary conditions still remains to be investigated. This
has been highlighted in Remark 1.1 of [52]. To enrich the contemporary body of knowledge, we
dedicate this paper to the investigation of such a problem. Since γ serves as a tuning parameter and
the dynamic boundary data are regarded as external inputs, our major task is to identify the conditions
on the parameter value and the boundary data, under which solutions to the initial-boundary value
problem of the model stabilize when time getting large. Comparing with the case of matched boundary
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data, the analysis under unmatched boundary conditions is much more involved, since the reference
profile depends on the spatial variable. Hence, the combined effect of the spatially dependent reference
profile coupled with power-like/quadratic nonlinearities creates an intriguing mathematical problem to
pursue.

1.3. Statement of results

To simplify the presentation, we take χ = D = ε = 1, since the specific values of the parameters do
not affect the underlying analysis. Also, recall that we are focusing on the case when χµ > 0. Under
these circumstances, we obtain the cleaner version of (1.9):

ut − (uv)x = uxx, (1.10a)
vt − (uγ)x = vxx − (v2)x, γ > 1. (1.10b)

The system is supplemented with the initial conditions

(u, v)(x, 0) = (u0, v0)(x), x ∈ [0, 1], (1.11)

and the boundary conditions:

u(0, t) = α1(t), u(1, t) = α2(t), t ≥ 0, (1.12a)
v(0, t) = β1(t), v(1, t) = β2(t), t ≥ 0. (1.12b)

The main result of this paper addresses the global nonlinear stability of large data classical solutions
to (1.10) when γ = 2 and subject to unmatched dynamic boundary conditions.

Theorem 1.1. Consider the initial-boundary value problems (1.10)–(1.12) with γ = 2. Suppose the
initial data satisfy u0 > 0, (u0, v0) ∈ [H2((0, 1))]2, and are compatible with the boundary conditions.
Assume α1, α2, β1, and β2 are smooth functions on [0,∞), and satisfy the following conditions:

• α1(t) ≥ α1 > 0, α2(t) ≥ α2 > 0, ∀ t ≥ 0, (1.13)

• α1 − α2 ∈ L1((0,∞)) and α′1, α
′
2 ∈ W1,1((0,∞)), (1.14)

• β1 − β2 ∈ L1((0,∞)) and β′1, β
′
2 ∈ W1,1((0,∞)), (1.15)

where αi are constants. Then there exists a unique solution to the IBVP, such that

∥ũ(t)∥2H2((0,1)) + ∥ṽ(t)∥2H2((0,1)) +

∫ t

0

(
∥ũ(τ)∥2H3((0,1)) + ∥ṽ(τ)∥2H3((0,1))

)
dτ ≤ C,

where
ũ(x, t) = u(x, t) − α(x, t), α(x, t) = [α2(t) − α1(t)]x + α1(t),

ṽ(x, t) = v(x, t) − β(x, t), β(x, t) = [β2(t) − β1(t)]x + β1(t),

and the constant C > 0 is independent of t. Moreover, the solution obeys the long-time behavior

∥ũ(t)∥2H2((0,1)) + ∥ṽ(t)∥2H2((0,1)) → 0 as t → ∞.
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We have the following remarks concerning Theorem 1.1.

Remark 1.1. Since we did not specify any decay rate for the boundary data, the rate of convergence
of the perturbed functions can not be identified under the assumptions of Theorem 1.1. The integra-
bility conditions of the boundary data present general criteria that guarantee the convergence of the
perturbations. On the other hand, if we specify certain decay rates for αi and βi, then the convergence
rate of ũ and ṽ could be determined by using ODE arguments. We refer the reader to the example in
the Appendix of [55], whose proof can be adapted to fit into the situation encountered in this paper.

Remark 1.2. The technical assumptions in Theorem 1.1 imply the difference between the correspond-
ing boundary data will converge to zero as t → ∞, i.e., the unmatched boundary data will eventually
match. However, based on the assumptions we see that the boundary functions do not necessarily equal
to each other at any finite time. In addition, there is no smallness restriction on the amplitude of the
initial perturbation around the reference profile.

Remark 1.3. Since the boundary data are smooth functions on [0,∞) and their first order derivatives
belong to W1,1((0,∞)), it follows from the Fundamental Theorem of Calculus that the functions them-
selves and their first order derivatives are uniformly bounded with respect to t. Such information will
be frequently utilized in the proof of the theorem.

Remark 1.4. Our result only covers a single value of γ, i.e., γ = 2. For other values of γ, it is
not clear whether similar results hold true or not. We provide numerical results towards the end of
the paper to present some positive evidences, while leave the rigorous investigation for future work.
On the other hand, we would like to mention that by combining the analysis of this paper with the
techniques in [33], especially the Orlicz-type free energy functional, one can establish a similar result
for the original model (1.6) under the boundary conditions: u(0, t) = u(1, t) = α(t), v(0, t) = β1(t),
v(1, t) = β2(t), where β1(t) , β2(t), and α, β1, β2 satisfy similar conditions as those in Theorem 1.1.
However, the problem with unmatched boundary data for u(x, t) can not be settled at this point, due to
technical obstructions caused by the Orlicz-type functional. We also leave the investigation for future
work.

We prove Theorem 1.1 in Section 2. The proof is self-contained, utilizing delicate energy methods.
We apply various elementary inequalities, such as Cauchy-Schwarz, Young, Hölder and Grönwall. The
energy estimates are carefully crafted to unveil the assumptions about the growth/decaying properties
of the boundary data. In Section 3, we present numerical results to illustrate some problems that are not
covered by Theorem 1.1, including dynamic boundary data with non-trivial final profiles, time periodic
boundary conditions, and the case when γ is a fraction. For notational convenience, throughout the rest
of the paper, we use ∥ · ∥ and ∥ · ∥∞ to denote the standard norms ∥ · ∥L2 and ∥ · ∥L∞ , respectively. The
functional space H s((0, 1)) is denoted by H s. Moreover, we use C to denote a generic constant which
is independent of time, but may depend on the initial and/or boundary data. The value of the constant
may vary line by line according to the context.
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2. Proof of Theorem 1.1

We now prove Theorem 1.1. The proof is divided into several steps which are contained in a series
of subsections. We define the reference profiles:

α(x, t) = [α2(t) − α1(t)]x + α1(t),
β(x, t) = [β2(t) − β1(t)]x + β1(t),

which interpolate the boundary data in the linear fashion. To facilitate the asymptotic analysis, we let

ũ(x, t) = u(x, t) − α(x, t),
ṽ(x, t) = v(x, t) − β(x, t).

In terms of ũ and ṽ, system (1.10) with γ = 2 reads as

ũt − (ũṽ)x = ũxx + (αṽ)x + (βũ)x + (αβ)x − αt, (2.1a)
ṽt − (ũ2)x = ṽxx − (ṽ2)x − 2(βṽ)x − (β2)x + 2(αũ)x + (α2)x − βt, (2.1b)

with the initial and boundary conditions

I. C. (ũ, ṽ)(x, 0) = (u0(x) − α(x, 0), v0(x) − β(x, 0)), x ∈ [0, 1], (2.2)
B. C. ũ(0, t) = ũ(1, t) = 0, ṽ(0, t) = ṽ(1, t) = 0, t ≥ 0. (2.3)

First of all, under the assumptions of Theorem 1.1, the local well-posedness of solutions to (2.1),
(2.2) and (2.3) can be established by using standard approaches, such as Galerkin approximation and
fixed point argument, along with the energy estimates derived in this section. We present the result
without going through the technical details in order to simplify the presentation.

Lemma 2.1. Under the assumptions of Theorem 1.1, there exist a finite T0 > 0 and a unique solution
(ũ, ṽ) to (2.1), (2.2) and (2.3), such that (ũ, ṽ) ∈

[
C([0,T0]; H2) ∩ L2(0,T0; H3)

]2
.

Next, we shall derive the a priori estimates of the local solution, in order to extend it to a global
one. The a priori estimates alongside their proofs are recorded in the following subsections.

2.1. L∞t L2
x–L2

t H1
x–Estimates

Lemma 2.2. Under the assumptions of Theorem 1.1, there exists a constant C > 0 which is independent
of t, such that

∥ũ(t)∥2 + ∥ṽ(t)∥2 +
∫ t

0

(
∥ũx(τ)∥2 + ∥ṽx(τ)∥2

)
dτ ≤ C.

Proof. Taking L2 inner product of (2.1a) with 2ũ and integrating by parts, we can show that

d
dt
∥ũ∥2 + 2∥ũx∥

2 = −2
∫ 1

0
ũṽũxdx + 2

∫ 1

0
αxṽũdx + 2

∫ 1

0
αṽxũdx +

∫ 1

0
βxũ2dx

+ 2
∫ 1

0
(αxβ + αβx − αt)ũdx. (2.4)
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Taking L2 inner product of (2.1b) with ṽ and integrating by parts, we can show that

1
2

d
dt
∥ṽ∥2 + ∥ṽx∥

2 = 2
∫ 1

0
ũṽũxdx −

∫ 1

0
βxṽ2dx − 2

∫ 1

0
αũṽxdx

+

∫ 1

0
(2ααx − 2ββx − βt)ṽdx. (2.5)

Taking the sum of (2.4) and (2.5), we obtain

d
dt

(
∥ũ∥2 +

1
2
∥ṽ∥2
)
+ 2∥ũx∥

2 + ∥ṽx∥
2 = 2

∫ 1

0
αxṽũdx︸          ︷︷          ︸
≡R1a

+

∫ 1

0
βxũ2dx︸       ︷︷       ︸
≡R1b

−

∫ 1

0
βxṽ2dx︸         ︷︷         ︸
≡R1c

+ 2
∫ 1

0
(αxβ + αβx − αt)ũdx︸                           ︷︷                           ︸

≡R1d

+

∫ 1

0
(2ααx − 2ββx − βt)ṽdx︸                            ︷︷                            ︸

≡R1e

. (2.6)

Since αx = α2(t) − α1(t) and βx = β2(t) − β1(t), we infer that

|R1a| + |R1b| + |R1c| ≤
(
|α2 − α1| + |β2 − β1|

)(
∥ũ∥2 + ∥ṽ∥2

)
.

Using the uniform boundedness of α and β, see Remark 1.3, we can show that

|R1d| ≤
(
|α2 − α1| + |β2 − β1| + |α

′
2| + |α

′
1|
)(

1 + ∥ũ∥2
)
.

Similarly, it can be shown that

|R1e| ≤
(
|α2 − α1| + |β2 − β1| + |β

′
2| + |β

′
1|
)(

1 + ∥ṽ∥2
)
.

Substituting the above estimates into (2.6), we can show that

d
dt

(
∥ũ∥2 +

1
2
∥ṽ∥2
)
+ 2∥ũx∥

2 + ∥ṽx∥
2

≤ C
(
|α2 − α1| + |β2 − β1| + |α

′
1| + |α

′
2| + |β

′
1| + |β

′
2|
)(
∥ũ∥2 +

1
2
∥ṽ∥2
)

+C
(
|α2 − α1| + |β2 − β1| + |α

′
1| + |α

′
2| + |β

′
1| + |β

′
2|
)
. (2.7)

Applying Grönwall’s inequality and using the assumptions of Theorem 1.1, we can show that

∥ũ(t)∥2 + ∥ṽ(t)∥2 +
∫ t

0

(
∥ũx(τ)∥2 + ∥ṽx(τ)∥2

)
dτ ≤ C, (2.8)

for some constant which is independent of t. This completes the proof of the lemma. □
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2.2. L∞t H1
x–L2

t H2
x–Estimates

Lemma 2.3. Under the assumptions of Theorem 1.1, there exists a constant C > 0 which is independent
of t, such that

∥ũx(t)∥2 + ∥ṽx(t)∥2 +
∫ t

0

(
∥ũxx(τ)∥2 + ∥ṽxx(τ)∥2

)
dτ ≤ C.

Proof. Step 1. Taking L2 inner product of (2.1a) with −ũxx, we obtain

1
2

d
dt
∥ũx∥

2 + ∥ũxx∥
2 =−

∫ 1

0
(ũṽ)xũxxdx︸              ︷︷              ︸
≡R2a

−

∫ 1

0
(αṽ)xũxxdx︸              ︷︷              ︸
≡R2b

−

∫ 1

0
(βũ)xũxxdx︸              ︷︷              ︸
≡R2c

−

∫ 1

0
(αβ)xũxxdx︸               ︷︷               ︸
≡R2d

+

∫ 1

0
αtũxxdx︸        ︷︷        ︸
≡R2e

. (2.9)

Applying the Sobolev embedding theorem and Poincaré inequality, we can show that

|R2a| ≤ ∥ũx∥∥ṽ∥∞∥ũxx∥ + ∥ũ∥∞∥ṽx∥∥ũxx∥

≤ C∥ũx∥∥ṽx∥∥ũxx∥.

Using the uniform boundedness of αx = α2(t) − α1(t) and α, we deduce

|R2b| ≤ ∥αx∥∥ṽ∥∞∥ũxx∥ + ∥α∥∞∥ṽx∥∥ũxx∥

≤ C∥ṽx∥∥ũxx∥.

Similarly, we can show that

|R2c| ≤ C∥ũx∥∥ũxx∥.

For R2d and R2e, we can show that

|R2d| ≤
(
∥αx∥∥β∥∞ + ∥α∥∞∥βx∥

)
∥ũxx∥

≤ C
(
|α2 − α1| + |β2 − β1|

)
∥ũxx∥,

and

|R2e| ≤ C
(
|α′2| + |α

′
1|
)
∥ũxx∥,

Feeding the above estimates to (2.9), applying Cauchy’s inequality, and invoking the uniform bound-
edness of α, β and their derivatives (see Remark 1.3), we can show that

1
2

d
dt
∥ũx∥

2 +
1
2
∥ũxx∥

2

≤ C∥ũx∥
2∥ṽx∥

2 +C
(
∥ũx∥

2 + ∥ṽx∥
2 + |α2 − α1| + |β2 − β1| + |α

′
1| + |α

′
2|
)
. (2.10)
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Applying Grönwall’s inequality to (2.10) and utilizing Lemma 2.2, we can show that

∥ũx(t)∥2 +
∫ t

0
∥ũxx(τ)∥2dτ ≤ C, (2.11)

where the constant is independent of t.
Step 2. Taking L2 inner product of (2.1b) with −ṽxx, we deduce

1
2

d
dt
∥ṽx∥

2 + ∥ṽxx∥
2 = −

∫ 1

0
(ũ2)xṽxxdx︸              ︷︷              ︸
≡R3a

+

∫ 1

0
(ṽ2)xṽxxdx︸           ︷︷           ︸
≡R3b

+ 2
∫ 1

0
(βṽ)xṽxxdx︸             ︷︷             ︸
≡R3c

+

∫ 1

0
(β2)xṽxxdx︸           ︷︷           ︸
≡R3d

−2
∫ 1

0
(αũ)xṽxxdx︸                ︷︷                ︸
≡R3e

−

∫ 1

0
(α2)xṽxxdx︸              ︷︷              ︸
≡R3 f

+

∫ 1

0
βtṽxxdx︸       ︷︷       ︸
≡R3g

. (2.12)

Similar to the estimate of R2a, we can show that

|R3a| + |R3b| ≤ C
(
∥ũx∥

2 + ∥ṽx∥
2)∥ṽxx∥ ≤ C

(
∥ũx∥ + ∥ṽx∥

2)∥ṽxx∥,

where we applied (2.11) for ∥ũx∥
2. Similar to the estimates of R2b and R2c, we can show that

|R3c| + |R3e| ≤ C
(
∥ũx∥ + ∥ṽx∥

)
∥ṽxx∥.

Similar to the estimate of R2d, we can show that

|R3d| + |R3 f | ≤ C
(
|β2 − β1| + |α2 − α1|

)
∥ṽxx∥.

Similar to the estimate of R2e, we can show that

|R3g| ≤ C
(
|β′1| + |β

′
2|
)
∥ṽxx∥.

Substituting the above estimates into (2.12), we can show that

1
2

d
dt
∥ṽx∥

2 +
1
2
∥ṽxx∥

2

≤ C
(
∥ṽx∥

4 + ∥ũx∥
2 + ∥ṽx∥

2 + |β2 − β1| + |α2 − α1| + |β
′
1| + |β

′
2|
)
. (2.13)

Applying Grönwall’s inequality to (2.13) and utilizing Lemma 2.2, we can show that

∥ṽx(t)∥2 +
∫ t

0
∥ṽxx(τ)∥2dτ ≤ C, (2.14)

for some constant which is independent of t. This completes the proof of the lemma. □
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2.3. L∞t H2
x–L2

t H3
x–Estimates

Lemma 2.4. Under the assumptions of Theorem 1.1, there exists a constant C > 0 which is independent
of t, such that

∥ũxx(t)∥2 + ∥ṽxx(t)∥2 +
∫ t

0

(
∥ũxxx(τ)∥2 + ∥ṽxxx(τ)∥2

)
dτ ≤ C.

Proof. Since the information about the higher order spatial derivatives of the solution is unknown at
the boundary points, the usual procedure (differentiating with respect to x) for estimating the L∞t H2

x and
L2

t H3
x norms of the solution can not be directly implemented here. To circumvent such a technical issue,

we turn to the estimation of the temporal derivatives of the solution, then utilize the model equations
to recover the estimates of the spatial derivatives.

Step 1. Taking ∂t of (2.1a) and (2.1b), we have

ũtt − (ũṽ)xt = ũxxt + αtṽx + αṽxt + αxtṽ + αxṽt + βtũx + βũxt + βxtũ + βxũt

+ αtβx + αβxt + αxtβ + αxβt − αtt, (2.15a)

ṽtt − (ũ2)xt = ṽxxt − 2ṽtṽx − 2ṽṽxt − 2βtṽx − 2βṽxt − 2βxṽt − 2βxtṽ − 2βtβx

− 2ββxt + 2αxtũ + 2αxũt + 2αtũx + 2αũxt + 2αtαx + 2ααxt − βtt. (2.15b)

Taking L2 inner product of (2.15a) with ũt and integrating by parts, we can show that

1
2

d
dt
∥ũt∥

2 + ∥ũxt∥
2 =−

∫ 1

0
(ũṽ)tũxtdx︸             ︷︷             ︸
≡R4a

+

∫ 1

0
αtṽxũtdx︸         ︷︷         ︸
≡R4b

−

∫ 1

0
αṽtũxtdx︸            ︷︷            ︸
≡R4c

+

∫ 1

0
αxtṽũtdx︸         ︷︷         ︸
≡R4d

+

∫ 1

0
αxṽtũtdx︸         ︷︷         ︸
≡R4e

+

∫ 1

0
βtũxũtdx︸         ︷︷         ︸
≡R4 f

+ βxt

∫ 1

0
ũũtdx︸         ︷︷         ︸

≡R4g

+

∫ 1

0
(αtβx + αβxt + αxtβ + αxβt − αtt)ũtdx︸                                               ︷︷                                               ︸

≡R4h

+
βx

2
∥ũt∥

2. (2.16)

Using the Sobolev embedding theorem and Lemmas 2.2–2.3, we can show that

|R4a| ≤
1
4
∥ũxt∥

2 + 2
(
∥ũ∥2L∞∥ṽt∥

2 + ∥ṽ∥2L∞∥ũt∥
2)

≤
1
4
∥ũxt∥

2 +C
(
∥ũ∥2H1∥ṽt∥

2 + ∥ṽ∥2H1∥ũt∥
2)

≤
1
4
∥ũxt∥

2 +C
(
∥ṽt∥

2 + ∥ũt∥
2).

Since αt = [α′2(t) − α′1(t)]x + α′1(t) is uniformly bounded (see Remark 1.3), we infer that

|R4b| ≤ C
(
∥ṽx∥

2 + ∥ũt∥
2).

Since α is uniformly bounded, we can show that

|R4c| ≤
1
4
∥ũxt∥

2 +C∥ṽt∥
2.

Electronic Research Archive Volume 30, Issue 12, 4530–4552.



4541

Since αxt = α
′
2(t) − α′1(t) and αx = α2(t) − α1(t) are uniformly bounded, we can show that

|R4d| ≤ C
(
∥ṽx∥

2 + ∥ũt∥
2),

where we applied Poincaré inequality to ṽ, and

|R4e| ≤ C
(
∥ṽt∥

2 + ∥ũt∥
2).

Similarly, using the uniform boundedness of βt and βxt, we can show that

|R4 f | + |R4g| ≤ C
(
∥ũx∥

2 + ∥ũt∥
2),

where we applied Poincaré inequality to ũ. Lastly, R4h is estimated as

|R4h| ≤
(
|α′′1 | + |α

′′
2 |
)
∥ũt∥

2 +C
(
|α′′1 | + |α

′′
2 | + |α

′
1| + |α

′
2| + |β

′
1| + |β

′
2| + ∥ũt∥

2).
Substituting the above estimates into (2.16), we have

1
2

d
dt
∥ũt∥

2 +
1
2
∥ũxt∥

2 ≤
(
|α′′1 | + |α

′′
2 |
)
∥ũt∥

2 +C
(
∥ũt∥

2 + ∥ũx∥
2 + ∥ṽt∥

2 + ∥ṽx∥
2

+ |α′′1 | + |α
′′
2 | + |α

′
1| + |α

′
2| + |β

′
1| + |β

′
2|
)
. (2.17)

Step 2. Taking L2 inner product of (2.15b) with ṽt and integrating by parts, we can show that

1
2

d
dt
∥ṽt∥

2 + ∥ṽxt∥
2 = −βx∥ṽt∥

2 − 2
∫ 1

0
ũũtṽxtdx + 2

∫ 1

0
ṽṽtṽxtdx − 2

∫ 1

0
βtṽxṽtdx

− 2βxt

∫ 1

0
ṽṽtdx + 2αxt

∫ 1

0
ũṽtdx + 2

∫ 1

0
αtũxṽtdx − 2

∫ 1

0
αũtṽxtdx

+

∫ 1

0

(
2αtαx + 2ααxt − 2βtβx − 2ββxt − βtt

)
ṽtdx. (2.18)

Using similar arguments as those in deriving the estimates of R4a–R4h, we can show that

1
2

d
dt
∥ṽt∥

2 +
1
2
∥ṽxt∥

2 ≤
(
|β′′1 | + |β

′′
2 |
)
∥ṽt∥

2 +C
(
∥ũt∥

2 + ∥ũx∥
2 + ∥ṽt∥

2 + ∥ṽx∥
2

+ |β′′1 | + |β
′′
2 | + |β

′
1| + |β

′
2| + |α

′
1| + |α

′
2|
)
. (2.19)

Step 3. Using (2.1a) and similar arguments as in Step 1, we can show that

∥ũt∥
2 ≤ C

(
∥(ũṽ)x∥

2 + ∥ũxx∥
2 + ∥(αṽ)x∥

2 + ∥(βũ)x∥
2 + ∥(αβ)x∥

2 + ∥αt∥
2)

≤ C
(
∥ũx∥

2 + ∥ṽx∥
2 + ∥ũxx∥

2 + |α1 − α2| + |β1 − β2| + |α
′
1| + |α

′
2|
)
. (2.20)

In the same spirit, by using (2.1b), we can show that

∥ṽt∥
2 ≤ C

(
∥ũx∥

2 + ∥ṽx∥
2 + ∥ṽxx∥

2 + |α1 − α2| + |β1 − β2| + |β
′
1| + |β

′
2|
)
. (2.21)
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Using (2.20) and (2.21), we update (2.17) and (2.19) as

1
2

d
dt
∥ũt∥

2 +
1
2
∥ũxt∥

2 ≤
(
|α′′1 | + |α

′′
2 |
)
∥ũt∥

2 +C
(
∥ũxx∥

2 + ∥ũx∥
2 + ∥ṽxx∥

2 + ∥ṽx∥
2

+ |α′′1 | + |α
′′
2 | + |α

′
1| + |α

′
2| + |α1 − α2| + |β

′
1| + |β

′
2| + |β1 − β2|

)
. (2.22)

and

1
2

d
dt
∥ṽt∥

2 +
1
2
∥ṽxt∥

2 ≤
(
|β′′1 | + |β

′′
2 |
)
∥ṽt∥

2 +C
(
∥ũxx∥

2 + ∥ũx∥
2 + ∥ṽxx∥

2 + ∥ṽx∥
2

+ |β′′1 | + |β
′′
2 | + |β

′
1| + |β

′
2| + |β1 − β2| + |α

′
1| + |α

′
2| + |α1 − α2|

)
. (2.23)

Applying Grönwall’s inequality to (2.22) and (2.23), using Lemmas 2.2 and 2.3 and the assumptions
in Theorem 1.1, we can show that

∥ũt(t)∥2 + ∥ṽt(t)∥2 +
∫ t

0

(
∥ũxt(τ)∥2 + ∥ṽxt(τ)∥2

)
dτ ≤ C. (2.24)

As a consequence of the above estimates, we can show by using (2.1a) and (2.1b) that

∥ũxx(t)∥2 + ∥ṽxx(t)∥2 +
∫ t

0

(
∥ũxxx(τ)∥2 + ∥ṽxxx(τ)∥2

)
dτ ≤ C.

This completes the proof of Lemma 2.4. □

Lemmas 2.2–2.4 established the desired energy estimates of the solution as stated in Theorem 1.1.
The global well-posedness of the initial-boundary value problem thus follows from the local well-
posedness in Lemma 2.1, a priori estimates in Lemmas 2.2–2.4 and standard continuation argument.
To complete the proof of Theorem 1.1, it remains to derive the temporal decaying of the perturbed
variables, which is carried out in the next subsection.

2.4. Decay estimate

We first recall a technical lemma which is essential in deriving the temporal decaying of the pertur-
bations. The proof of the lemma can be found in [53].

Lemma 2.5. Let f ∈ W1,1(0,∞) be a nonnegative function. Then f (t)→ 0 as t → ∞.

Using Lemma 2.5, we can show the following:

Lemma 2.6. Under the assumptions of Theorem 1.1, ∥ũ(t)∥2H2 + ∥ṽ(t)∥2H2 → 0, as t → ∞.

Proof. Step 1. Based on Lemma 2.2, we know that

∥ũx(t)∥2 + ∥ṽx(t)∥2 ∈ L1((0,∞)), (2.25)

which, together with Poincaré inequality, implies

∥ũ(t)∥2 + ∥ṽ(t)∥2 ∈ L1((0,∞)). (2.26)
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Using the assumptions of Theorem 1.1 and the energy estimates established in Lemmas 2.2–2.4, we
can deduce from (2.6) and (2.7) that∣∣∣∣ ddt

(
∥ũ∥2 +

1
2
∥ṽ∥2
)∣∣∣∣ ≤ C

(
∥ũx∥

2 + ∥ṽx∥
2 + |α2 − α1| + |α

′
2| + |α

′
1| + |β2 − β1| + |β

′
2| + |β

′
1|
)
,

where the constant is independent of t. Integrating the above inequality, we obtain

d
dt

(
∥ũ(t)∥2 +

1
2
∥ṽ(t)∥2

)
∈ L1((0,∞)). (2.27)

Collectively, (2.26) and (2.27) imply

(
∥ũ(t)∥2 +

1
2
∥ṽ(t)∥2

)
∈ W1,1((0,∞)).

Hence, ∥ũ(t)∥2 + ∥ṽ(t)∥2 → 0, as t → ∞, according to Lemma 2.5. Moreover, since ∥ũxx(t)∥ and
∥ṽxx(t)∥ are uniformly bounded with respect to time, the decaying of ∥ũx(t)∥2+ ∥ṽx(t)∥2 follows from the
decaying of ∥ũ(t)∥2 + ∥ṽ(t)∥2 and the interpolation inequality ∥ fx∥

2 ≤ ∥ f ∥ · ∥ fxx∥, for any f ∈ H2
0((0, 1)).

Step 2. For the second order spatial derivatives, we know from (2.24) and Poincaré inequality that

∥ũt(t)∥2 + ∥ṽt(t)∥2 ∈ L1((0,∞)).

Based on (2.17), (2.19), and previous estimates, it can be shown that∣∣∣∣ ddt

(
∥ũt∥

2 + ∥ṽt∥
2
) ∣∣∣∣ ≤ C

(
∥ũt∥

2 + ∥ṽt∥
2 + ∥ũxt∥

2 + ∥ṽxt∥
2 + ∥ũx∥

2 + ∥ṽx∥
2

+ |α′′1 | + |α
′′
2 | + |α

′
1| + |α

′
2| + |β

′′
1 | + |β

′′
2 | + |β

′
1| + |β

′
2|
)
,

which implies
d
dt

(
∥ũt(t)∥2 + ∥ṽt(t)∥2

)
∈ L1((0,∞)).

Hence, ∥ũt(t)∥2 + ∥ṽt(t)∥2 ∈ W1,1((0,∞)), and thus ∥ũt(t)∥2 + ∥ṽt(t)∥2 → 0, as t → ∞. Using (2.1), we
can show that

∥ũxx∥
2 + ∥ṽxx∥

2 ≤ C
(
∥ũt∥

2 + ∥ṽt∥
2 + ∥ũx∥

2 + ∥ṽx∥
2

+ |α1 − α2| + |α
′
1| + |α

′
2| + |β1 − β2| + |β

′
1| + |β

′
2|
)
. (2.28)

Since α1 − α2, α1, α2, β1 − β2, β′1 and β′2 belong to W1,1((0,∞)), they tend to zero as t → ∞. Therefore,
the decaying of ∥ũxx(t)∥2 + ∥ṽxx(t)∥2 follows from (2.28) and the decaying of the first order derivatives
of the perturbed solution. This completes the proof of Lemma 2.6. □

Collectively, Theorem 1.1 follows from Lemmas 2.1–2.4 and 2.6.
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3. Numerical experiments

We have shown that large data classical solutions to an initial boundary value problem of the non-
linear PDE system (1.10), subject to unmatched Dirichlet type dynamic boundary conditions, stabilize
in the long run under appropriate assumptions on the boundary data. However, it was mentioned in
Remark 1.2 that the technical assumptions in Theorem 1.1 imply the unmatched boundary data will
eventually match at the endpoints, i.e., the final states are constants. This indeed rules out the more
physically/biologically relevant situations in which the final equilibria are non-trivial. Another situa-
tion that is not covered by Theorem 1.1 is when the boundary data are time periodic. Because of the
ubiquitous presence of time periodic phenomena in natural sciences, it is worth investigating whether
time periodic boundary data generate time periodic solutions of the nonlinear PDE model. Moreover,
our theoretical result only included the special case γ = 2. It is not clear whether the results hold true
for other values of γ, especially when γ is a fraction. Inspired by these observations, we devote the
last part of this paper to numerically showcasing two problems that are not covered by the analytical
results. These include dynamic boundary data with unmatched final states and time periodic boundary
conditions. We use a finite difference scheme to simulate the problems. We hope that our numerical
studies will shed some light on, and provide guidance for further analytical studies in this specific area
of research.

Recall the initial-boundary value problem

ut − (uv)x = uxx, x ∈ (0, 1), t > 0,
vt − (uγ)x = vxx − (v2)x, x ∈ (0, 1), t > 0,

(u, v)(x, 0) = (u0, v0)(x), x ∈ [0, 1],
u(0, t) = α1(t), u(1, t) = α2(t), t ≥ 0,
v(0, t) = β1(t), v(1, t) = β2(t), t ≥ 0.

where the initial and boundary data are compatible, i.e.,

u0(0) = α1(0), u0(1) = α2(0), v0(0) = β1(0), v0(1) = β2(0).

3.1. Dynamic boundary data with unmatched final states

In Example 1, we set u0 = 5 sin(πx/2) + 10, v0 = 2 + cos(πx/2), α1(t) = 9 + 1
1+t , α2(t) = 14 + e−t,

β1(t) = 4 − e−t, β2(t) = 2 + t
1+t . The value of γ is set as γ =1.5, 2 and 2.5. The numerical solutions of u

and v evolve to non-trivial steady states as shown in Figure 1.
Meanwhile, it is interesting to observe from Figure 2 that the graphs of the steady state solutions

steepen near the boundary points as γ increases. We thus expect boundary layers will develop near the
endpoints of the interval as γ grows. Mathematical analysis of this problem requires more sophisticated
tools and we leave the investigation in a future paper.

3.2. Time-Periodic boundary conditions

In Examples 2A, 2B and 2C, we simulate the problem by using time-periodic boundary data. The
simulations are run for the same values of γ as in Example 1. It turns out, however, the simulation

Electronic Research Archive Volume 30, Issue 12, 4530–4552.



4545

Figure 1. Example 1. First row: γ = 1.5. Second row: γ = 2. Third row: γ = 2.5. Left
column: u. Right column: v.
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Figure 2. Profiles of steady state solutions in Example 1.

results are almost the same for different values of γ and the plots are visibly indistinguishable. The
plots presented below are for γ = 1.5.

In Example 1A, the initial values are u0 = 2+x(1−x) and v0 = 4+sin(2πx). The boundary conditions
are α1(t) = α2(t) = 2 + sin(2πt) and β1(t) = β2(t) = 4 + sin(2πt). Thus the boundary conditions of u
and v have the same period and same phase angle. The solutions are shown in Figure 3, where both u
and v evolve to periodic solutions at later time, although initially they are not. Note the maximum and
minimum values of u and v occur at the same time.

Figure 3. Example 2A. The last panel shows the evolution of u and v at x = 0.5.

In Example 2B, the initial values of u and v are the same as those in Example 2A. The boundary
condition of u is still α1(t) = α2(t) = 2+sin(2πt), but that of v is changed to β1(t) = β2(t) = 3+cos(2πt).
That is, they share the same period but have different phase angles. The solutions are shown in Figure 4,
where both u and v evolve to periodic solutions. Note the maximum and minimum values of u and v
occur at a gap of 1/4 time units, which originates from the difference of the phase angles of α and β.

In Example 2C, the initial values of u and v are the same as in Examples 2A and 2B. The boundary
condition of u is changed to α1(t) = 2 + sin(2πt) and α2(t) = 1 + cos(2πt), and that of v is changed to
β1(t) = 4 + sin(2πt) and β2(t) = 3 + cos(2πt). That is, the left boundary conditions for u and v have
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Figure 4. Example 2B. The last panel shows the evolution of u and v at x = 0.5.

the same phase angle and the right boundary conditions have another phase angle. The solutions are
shown in Figure 5, where both u and v evolve to periodic solutions.

Figure 5. Example 2C. The last panel shows the evolution of u and v at x = 0.5.

4. Conclusions

In this paper, we studied the global dynamics of classical solutions to the nonlinear PDE system
(1.1) subject to dynamic boundary conditions. When γ = 2, we proved that if the time-dependent
Dirichlet-type boundary conditions satisfy (1.13)–(1.15), there exists a unique global-in-time solution
to the initial-boundary value problem (IBVP) for any initial data in H2((0, 1)), and the solution is
shown to converge asymptotically to the steady state determined by the boundary data as time goes to
infinity. In our analytical results, the boundary values of the solution are not required to match at any
time. This generalized the previous work [52], where the boundary values must match for all time. To
investigate some problems that are not covered by our analytical results, we numerically simulated the
IBVP for dynamic boundary conditions with unmatched end-states or periodic in time. Our numerical
results suggested that in the former case, the solution converges to a non-trivial steady state in the
long run, and in the latter case, time periodicity was observed in the solution after certain duration
of time. Moreover, we simulated the problem for several values of γ different from 2 and discovered
the phenomenon of boundary steepening of the steady state as the value of γ increases. Rigorous
mathematical studies of these phenomena will be carried out in future works.
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