
We study the existence and orbital stability of normalized solutions of the biharmonic equation with the mixed dispersion and a general nonlinear term
γΔ2u−βΔu+λu=f(u),x∈RN
with a priori prescribed L2-norm constraint Sa:={u∈H2(RN):∫RN|u|2dx=a}, where a>0, γ>0,β∈R and the nonlinear term f satisfies the suitable L2-subcritical assumptions. When β≥0, we prove that there exists a threshold value a0≥0 such that the equation above has a ground state solution which is orbitally stable if a>a0 and has no ground state solution if a<a0. However, for β<0, this case is more involved. Under an additional assumption on f, we get the similar results on the existence and orbital stability of ground state. Finally, we consider a specific nonlinearity f(u)=|u|p−2u+μ|u|q−2u,2<q<p<2+8/N,μ<0 under the case β<0, which does not satisfy the additional assumption. And we use the example to show that the energy in the case β<0 exhibits a more complicated nature than that of the case β≥0.
Citation: Haijun Luo, Zhitao Zhang. Existence and stability of normalized solutions to the mixed dispersion nonlinear Schrödinger equations[J]. Electronic Research Archive, 2022, 30(8): 2871-2898. doi: 10.3934/era.2022146
[1] | Sayed Saifullah, Amir Ali, Zareen A. Khan . Analysis of nonlinear time-fractional Klein-Gordon equation with power law kernel. AIMS Mathematics, 2022, 7(4): 5275-5290. doi: 10.3934/math.2022293 |
[2] | Khudhayr A. Rashedi, Musawa Yahya Almusawa, Hassan Almusawa, Tariq S. Alshammari, Adel Almarashi . Lump-type kink wave phenomena of the space-time fractional phi-four equation. AIMS Mathematics, 2024, 9(12): 34372-34386. doi: 10.3934/math.20241637 |
[3] | Khalid K. Ali, Mohamed S. Mohamed, Weam G. Alharbi, M. Maneea . Solving the time fractional q-deformed tanh-Gordon equation: A theoretical analysis using controlled Picard's transform method. AIMS Mathematics, 2024, 9(9): 24654-24676. doi: 10.3934/math.20241201 |
[4] | Jing Li, Linlin Dai, Kamran, Waqas Nazeer . Numerical solution of multi-term time fractional wave diffusion equation using transform based local meshless method and quadrature. AIMS Mathematics, 2020, 5(6): 5813-5838. doi: 10.3934/math.2020373 |
[5] | Sunyoung Bu . A collocation methods based on the quadratic quadrature technique for fractional differential equations. AIMS Mathematics, 2022, 7(1): 804-820. doi: 10.3934/math.2022048 |
[6] | Abdul Samad, Imran Siddique, Fahd Jarad . Meshfree numerical integration for some challenging multi-term fractional order PDEs. AIMS Mathematics, 2022, 7(8): 14249-14269. doi: 10.3934/math.2022785 |
[7] | Mustafa Inc, Hadi Rezazadeh, Javad Vahidi, Mostafa Eslami, Mehmet Ali Akinlar, Muhammad Nasir Ali, Yu-Ming Chu . New solitary wave solutions for the conformable Klein-Gordon equation with quantic nonlinearity. AIMS Mathematics, 2020, 5(6): 6972-6984. doi: 10.3934/math.2020447 |
[8] | Farman Ali Shah, Kamran, Zareen A Khan, Fatima Azmi, Nabil Mlaiki . A hybrid collocation method for the approximation of 2D time fractional diffusion-wave equation. AIMS Mathematics, 2024, 9(10): 27122-27149. doi: 10.3934/math.20241319 |
[9] | Bengisen Pekmen Geridonmez . RBF simulation of natural convection in a nanofluid-filled cavity. AIMS Mathematics, 2016, 1(3): 195-207. doi: 10.3934/Math.2016.3.195 |
[10] | Xiaoyong Xu, Fengying Zhou . Orthonormal Euler wavelets method for time-fractional Cattaneo equation with Caputo-Fabrizio derivative. AIMS Mathematics, 2023, 8(2): 2736-2762. doi: 10.3934/math.2023144 |
We study the existence and orbital stability of normalized solutions of the biharmonic equation with the mixed dispersion and a general nonlinear term
γΔ2u−βΔu+λu=f(u),x∈RN
with a priori prescribed L2-norm constraint Sa:={u∈H2(RN):∫RN|u|2dx=a}, where a>0, γ>0,β∈R and the nonlinear term f satisfies the suitable L2-subcritical assumptions. When β≥0, we prove that there exists a threshold value a0≥0 such that the equation above has a ground state solution which is orbitally stable if a>a0 and has no ground state solution if a<a0. However, for β<0, this case is more involved. Under an additional assumption on f, we get the similar results on the existence and orbital stability of ground state. Finally, we consider a specific nonlinearity f(u)=|u|p−2u+μ|u|q−2u,2<q<p<2+8/N,μ<0 under the case β<0, which does not satisfy the additional assumption. And we use the example to show that the energy in the case β<0 exhibits a more complicated nature than that of the case β≥0.
Fractional calculus have recently become a fascinating field of study due to its vast applications in various aspects of modern life. It has been observed that many physical phenomena can be modeled successfully by means of fractional order differential equations, where the integer-order differential equations fails in modeling certain issues [1]. Compared to integer order derivatives some properties of the non-integer order derivatives are very tedious to deal with. Thus, it becomes of great importance to establish more results for fractional calculus. Recently lots of researchers have proposed new and efficient analytical and numerical schemes to approximate the solutions of numerous fractional order problems. In this connection one can find efficient work done by researchers such as the analysis of fractional Drinfeld-Sokolov-Wilson model with exponential memory [2], a homotopy perturbation sumudu transform method (HPSTM) for solving fractional equal width (EW) equation [3]. The ternary-fractional differential transform method, that extends its applicability to encompass initial value problems in the fractal 3D space [1]. The local fractional homotopy perturbation Sumudu transform scheme and the local fractional reduced differential transform method for a fractal vehicular traffic flow problem [4]. The authors in [5] have proposed a numerical algorithm based on homotopic technique to examine the fractional vibration equation in Atangana-Baleanu sense. The authors in [6] have presented the efficiency of the Atangana-Baleanu (AB) derivative over Caputo-Fabrizio (CF) to some nonlinear partial differential equations. The authors in [7] have done a comparative analysis of exothermic reactions model having constant heat source in the porous media via Caputo, Caputo Fabrizio and Atangana-Baleanu theories. In [8] a hybrid numerical scheme based on the homotopy analysis transform method (HATM) to examine the fractional model of nonlinear wave-like equations having variable coefficients is presented. The Klein-Gordon is one of the most important mathematical model which finds its applications in numerous phenomenon in science and engineering. It has been applied to non linear optics, quantum field theory, Plasma physics, fluid dynamics, chemical kinetics and solid state physics [9,10,11]. In literature a lot of work has been done on solving the Klein-Gordon equation analytically some of them are the tanh and the sine-cosine methods [12], the differential transform method [13], Modified Kudryashov method [14,15], ansatz method [16], Exp(−ϕ(ϵ))-expansion method [17], and the variational iteration method [18]. The residual power series method for linear time fractional Klein-Gordon equation [19], homotopy analysis method [20,21], local fractional series expansion method [10], homotopy perturbation method [22], and the fractional Riccati expansion method [23]. In [24] a hybrid method based on local fractional Sumudu transform method and homotopy perturbation technique is employed to find the non differentiable solution of Klein-Gordon equation on Cantor sets. Since Most of the problems cannot be solved analytically so one must use numerical methods. Despite the fact that, numerical approximation of these equations are rare, in literature some excellent work is available, such as Mohebi et al utilized the Compact finite difference method [25] and the implicit RBF meshless method [26] for the approximation of linear time fractional Klein-Gordon equations. M. M. Khader [27] applied an efficient method based on the generalized laguerre polynomials for approximating the linear time fractional Klein-Gordon equations. In [28] the authors used the wavelet method for approximating a class of fractional Klein-Gordon equations. The authors in [29] proposed a numerical algorithm based on the applications of the operational matrices of the Legendre scaling functions for the approximation of fractional Klein-Gordon equation. The authors in [30] applied a high order compact finite difference scheme to two dimensional fractional Klein-Gordon equations. Dehghan et al [31] used radial basis functions to approximate the solution of non linear Klein-Gordon equations. However in these time stepping schemes the computations may be very expansive because each new iteration is dependent on the previous time step. An alternative way is to use the Laplace transform coupled with these numerical methods. In literature one can find numerous research work on the coupling of other numerical methods and Laplace transform. The Laplace transform was first coupled with the boundary integral method by Rizzo and Shippey [32]. Moridis and Reddell coupled Laplace transform with finite difference, boundary element and finite element methods [33,34,35]. In [36] the authors coupled the Galerkin method with Laplace transform. Moridis and Kansa [37] coupled multiquadric method and Laplace transform for the approximation of PDEs. In [38] the author studied RBF method coupled with Laplace transform on unit sphere. Similarly the coupling of Laplace transform with other numerical methods such as spectral method, finite difference method, boundary particle method, RBF method, and the finite element method can be found in [39,40,41,42,43,44] and the references therein. In this work we apply the idea of [45,46], the Laplace transform is coupled with local RBF method to approximate linear time-fractional Klein-Gordon equation. The Laplace transform is used to avoid the stability restrictions, which are commonly encountered in time-stepping procedure. The local radial basis function method is used to resolve the issue of ill-conditioning of the differentiation matrices and the sensitivity of shape parameter in global radial basis functions method. The main idea of the local radial basis function method is the collocation on overlapping sub-domains of the whole domain. The overlapping sub-domains remarkably reduce the size of collocation matrix by solving many small size matrices. Each small matrix has the same size as the number of nodes in the domain of influence of each node. In order to validate our method we consider linear time-fractional Klein-Gordon equation of the form [25]
βα−1∂αχ(x,t)∂tα+η∂χ(x,t)∂t+κχ(x,t)=Lχ(x,t)+βα−1f(x,t),0≤x≤L,1<α≤2,0≤t≤1,η≥0,κ≥0, | (1.1) |
with initial and boundary conditions given in (1.2) and (1.3),
χ(x,0)=f1(x),∂χ(x,t)∂t|t=0=f2(x),x∈Ω, | (1.2) |
Bχ(x,t)=h(t),x∈∂Ω. | (1.3) |
Here L and B are the governing and boundary differential operators, and ∂α∂tα is the Caputo fractional derivative of order α defined by [47]:
∂α∂tαχ(t)=1Γ(p−α)∫t0(t−s)m−α−1dmdsmχ(s)ds,m−1≤α≤m,m∈N. | (1.4) |
Let the Laplace transform of χ(t) be denoted and defined by
ˆχ(s)=L{χ(t)}=∫∞0e−stχ(t)dt, | (1.5) |
and the Laplace transform of the Caputo derivative is defined by
L{∂α∂tαχ(t)}=sαˆχ(s)−m−1∑i=0sα−i−1χ(i)(0). | (1.6) |
Here we construct a local RBF method coupled with Laplace transform for the approximation of the solution of the linear time-fractional Klein-Gordon equations. In order to avoid the time stepping procedure the Laplace transform is used to eliminate the time variable. Then the local RBF method is utilized to approximate the time independent linear PDE.
Applying the Laplace transform to Eqs (1.1) and (1.3), we get
βα−1(sαˆχ(x,s)−sα−1χ(x,0)−sα−2χt(x,0))+η(sˆχ(x,s)−χ(x,0))+κˆχ(x,s)=Lˆχ(x,s)+βα−1ˆf(x,s), | (2.1) |
thus we have the following linear system
(βα−1sαI+ηsI+κI−L)ˆχ(x,s)=ˆg(x,s),x∈Ω, | (2.2) |
Bˆχ(x,s)=h(s),x∈∂Ω, | (2.3) |
where
ˆg(x,s)=βα−1sα−1χ(x,0)+βα−1sα−2χt(x,0)+ηχ(x,0)+βα−1ˆfχ(x,s). |
In the following section the local RBF method is used to approximate the differential operator L and B in order to solve the problem (2.2)–(2.3) in Laplace space.
In local RBF method the approximation of the function ˆχ(x), for a given set of data points {ˆχ(xi):i=1,...,N}, where {xi:i=1,...,N}⊂Ω⊂Rd,d≥1 takes the form
ˆχ(xi)=∑xj∈Ωiλjϕ(‖xi−xj‖), | (2.4) |
where λi={λij:j=1,...,n} is the vector of expansion coefficients, ϕ(r),r≥0 is radial kernel and the distance between the centers xi and xj is r=‖xi−xj‖, and Ωi is a sub domain of Ω containing xi, and around xi it contains n neighboring centers. So we have N number of n×n linear systems given by
^χχi=Φiλi,i=1,2,3,...,N, | (2.5) |
the elements of the interpolation matrix Φi are bikj=ϕ(‖xk−xj‖),wherexk,xj∈Ωi, each n×n system is then solved for the unknowns λi={λij:j=1,...,n}. Next the operator Lˆχ(x), is approximated by
Lˆχ(xi)=∑xj∈ΩiλijLϕ(‖xi−xj‖), | (2.6) |
the above Eq (2.6) can be expressed as
Lˆχ(xi)=λi⋅νi, | (2.7) |
where νi is of order 1×n and λi of order n×1, the entries of νi are shown in the following equation
νi=Lϕ(‖xi−xj‖),xj∈Ωi, | (2.8) |
using Eq (2.5), the coefficients λi can be eliminated as,
λi=(Φi)−1ˆχi, | (2.9) |
using the values of λi from (2.9) in (2.7) we get,
Lˆχ(xi)=νi(Φi)−1ˆχi=wiˆχi | (2.10) |
where,
wi=νi(Φi)−1, | (2.11) |
Hence the linear differential L is approximated using the local RBF method for each center xi as
Lˆχ≡Dˆχ. | (2.12) |
The matrix D is sparse differentiation matrix which approximates the linear differential operator L. The matrix D has order N×N which contains n non-zero and N−n zero entries, where n is the number of centers in the sub domain Ωi. The same procedure can be applied to the boundary operator B.
In literature a large number of radial kernels are available. In this article we have selected the multi-quadrics ϕ(r)=√1+(rc)2 for our numerical approximation. The accuracy of the numerical solution greatly depends on the parameter c. The researchers always search for that value of c which gives an optimal solution. In this regard a large amount of work has been done such as [48,49,50] and references therein. Here we utilize the uncertainty principle [51] for optimal shape parameter c.
Algorithm:
● The interval 1012<Cond<1016 is selected for the condition number (Cond) of the system matrices of the given problem.
● Using SVD, the interpolation matrix is decomposed as R,P,Q=svd(Φi). The order of Φi is n×n (n is the number of centers in each Ωi), and the n singular values of the matrix Φi lies on the diagonal of the matrix P (P is a diagonal matrix), and the condition number of Φi is Cond=‖Φi‖‖(Φi)−1‖=max(P)min(P).
● The c is searched until the condition 1012<Cond<1016 is satisfied, the algorithm is given as
Step 1: set Cond=1
Step 2: select 1012<Cond<1016
Step 3: whileCond>CondmaxandCond<Condmin
Step 4: R,P,Q=svd(Φi)
Step 5: Cond=max(P)min(P)
Step 6: ifCond<Condmin,c=c−δc
Step 7: ifCond>Condmax,c=c+δc
c(optimal)=c.
Optimal value of the parameter c is obtained, when the above condition is satisfied, and then we can compute the inverse using (Φi)−1=(RPQT)−1=QP−1RT [52]. Hence wi in (2.11) can be computed.
Following the discretization by local RBF method of the linear differential and boundary operators L and B respectively, the system (2.2)–(2.3) is solved for each point s. Finally the solution of the problem (1.1)–(1.3) is obtained using the inverse of Laplace transform
χ(x,t)=12πi∫σ+i∞σ−i∞estˆχ(x,s)ds. | (2.13) |
In applying the Laplace transform method the calculation of inverse Laplace transform is the main difficulty. In many cases it is difficult to find the inverse Laplace transform analytically so numerical methods must be used. A large number of methods for the numerical inversion of Laplace transform have been developed. In this work we use the idea of [39,42] in which the integration is performed over a parabolic or hyperbolic path Γ, so the integral in equation (2.13) can be written as
χ(x,t)=12πi∫Γestˆχ(x,s)ds,σ>σ0, | (2.14) |
where Γ is a path of integration joining σ−i∞ to σ+i∞ and
s=s(ω), | (2.15) |
using (2.15) in (2.14), we find the following expression
χ(x,t)=12πi∫∞−∞es(ω)tˆχ(x,s(ω))sˊ | (2.16) |
Finally the trapezoidal rule with uniform step size is used to approximate (2.16), as
(2.17) |
The approximate solution of the proposed scheme is defined by Eq (2.17). The accuracy of (2.17) greatly depends on the path of the integration . There are various contours available in the literature. Recently the hyperbolic [41] and parabolic [42] contours are used to approximate the integer and fractional order PDEs. In our computations the hyperbolic path due to [41] is used.
(3.1) |
where , , , and . In fact, when we choose , the Eq (3.1) is reduced to the left branch of the hyperbola
(3.2) |
transforming the strip into the hyperbola Suppose and let The following theorem gives the error estimate of the scheme for the contour .
Theorem 3.1 ([41], Theorem 2.1) let the solution of (1.1) be , with analyitc in Let and be defined by , where , , , and let Then for the approximate solution defined by (2.17), with for , , , , , , and Thus the corresponding error estimate is of the order
In order to investigate the systems (2.2)–(2.3) stability, we represent the system in discrete form as
(4.1) |
where is the sparse differentiation matrix of order obtained using local RBF method. For the system (4.1) the constant of stability is given by
(4.2) |
where C is finite using any discrete norm on . From (4.2) we may write
(4.3) |
Similarly for the pseudoinverse of , we can write
(4.4) |
Thus we have
(4.5) |
We can see that Eqs (4.3) and (4.5) confirms the bounds for the stability constant . Calculating the pseudoinverse for approximating the system (4.1) numerically may be very expansive computationally, but it ensures the stability. The MATLAB's function condest can be used to estimate in case of square systems, thus we have
(4.6) |
This work well with less number of computations for our sparse differentiation matrix . Figures 1 and 2 show the bounds for the constant of our system (2.2)–(2.3) for Problem 3. Selecting , , , and at , we have It is observed that the stability constant is bounded by very small numbers, which guarantees the stability of the proposed local RBF scheme.
This section is devoted to the numerical experiments. The proposed method is tested here for 1-D time fractional order Klein-Gordon equations. The multi-quadrics radial kernels = are used in all our numerical experiments. The Uncertainty principle [51] is used to optimize the shape parameter . The accuracy of the method is measured using error defined by
is used. Here and are the numerical and exact solutions respectively.
If we use , , and Eq (1.1) takes the form
(5.1) |
where with zero boundary and initial conditions. The domain is selected for the problem with exact solution
and non homogeneous term
The MATLAB's command is used to generate the quadrature points along the path of integration . The parameters used in our computations are Using Eq (3.1) the remaining optimal parameters can be found for the hyperbolic path . In our computations in the sub domain and in the global domain are selected. The error estimates and errors are shown in Tables 1 and 2. The efficiency of the method can be seen in the results. The actual error and error estimates are shown in Figure 3 and the absolute errors for different values of are shown in Figure 4. The numerical and the exact solutions are shown in Figures 5 and 6 respectively.
, |
Error | Error Estimate | CPU time(s) | |
10 | 7.65 | 4.4187 | 0.145896 | |
15 | 2.30 | 2.6363 | 0.158580 | |
20 | 1.30 | 1.5582 | 0.169243 | |
30 | 1.38 | 0.5373 | 0.218606 | |
40 | 6.57 | 0.1836 | 0.384568 | |
50 | 1.25 | 0.0625 | 0.682311 | |
60 | 9.58 | 0.0212 | 1.143210 | |
70 | 9.70 | 0.0072 | 2.792846 | |
80 | 9.66 | 0.0024 | 5.805704 | |
[25] 1.34 |
, |
Error | Error Estimate | CPU time(s) | |
10 | 7.65 | 4.4187 | 0.151320 | |
15 | 2.30 | 2.6363 | 0.190760 | |
20 | 1.30 | 1.5582 | 0.173974 | |
30 | 1.38 | 0.5373 | 0.275586 | |
40 | 6.35 | 0.1836 | 0.483761 | |
50 | 1.19 | 0.0625 | 0.732991 | |
60 | 8.99 | 0.0212 | 1.269992 | |
70 | 9.11 | 0.0072 | 3.328360 | |
80 | 9.07 | 0.0024 | 5.789626 | |
[25] 4.45 |
If we use , , and Eq (1.1) takes the form
(5.2) |
where with zero initial and boundary conditions, the exact solution of the problem is
and non homogeneous term is
The MATLAB's command is used to generate the quadrature points along the path of integration . The parameters used in our computations are Using Eq (3.1) the remaining optimal parameters can be found for the hyperbolic path . In our computations centers in the sub domain and in the global domain are selected. The error estimates and errors are shown in Tables 3 and 4. Also the maximum absolute errors for different values of are shown in Table 5, which shows the efficiency of the proposed method. The numerical and exact solutions of this problem are shown in Figures 7 and 8 respectively and plot of Actual error and Error Estimate corresponding to problem 2 are shown in Figure 9.
, |
Error | Error Estimate | CPU time(s) | |
10 | 5.77 | 0.0024 | 0.561563 | |
20 | 1.27 | 0.0024 | 1.125699 | |
30 | 3.55 | 0.0024 | 1.252799 | |
40 | 2.43 | 0.0024 | 2.716533 | |
50 | 2.87 | 0.0024 | 4.686349 | |
60 | 3.78 | 0.0024 | 6.319554 | |
80 | 8.38 | 0.0024 | 8.773851 | |
90 | 8.20 | 0.0024 | 9.862299 | |
[25] 5.91 |
, |
Error | Error Estimate | CPU time(s) | |
10 | 3.32 | 4.4187 | 0.146540 | |
15 | 9.63 | 2.6363 | 0.160951 | |
20 | 5.71 | 1.5582 | 0.170815 | |
30 | 6.70 | 0.5373 | 0.212776 | |
40 | 7.76 | 0.1836 | 0.361477 | |
50 | 4.25 | 0.0625 | 0.585600 | |
60 | 5.48 | 0.0212 | 1.047157 | |
70 | 5.42 | 0.0072 | 1.872323 | |
80 | 5.44 | 0.0024 | 4.417500 | |
[25] 7.59 |
0 | 1.463 | 1.463 | 1.463 | 1.463 |
0.1 | 1.353 | 1.340 | 1.326 | 1.315 |
0.2 | 1.155 | 1.131 | 1.104 | 1.079 |
0.3 | 9.710 | 9.400 | 9.010 | 8.630 |
0.4 | 8.170 | 7.820 | 7.360 | 6.850 |
0.5 | 6.760 | 6.410 | 5.910 | 5.320 |
0.6 | 5.180 | 4.860 | 4.370 | 3.740 |
0.7 | 3.510 | 3.240 | 2.830 | 2.220 |
0.8 | 1.620 | 1.430 | 1.130 | 6.200 |
0.9 | 1.300 | 2.300 | 3.900 | 6.800 |
1 | 3.590 | 3.590 | 3.590 | 3.590 |
Here we consider the 1-D linear Klein-Gordon equation of the form [19]
(5.3) |
with initial condition and exact solution , where The domain is selected for the given problem. The quadrature points are generated using the MATLAB's command along the path of integration . The parameters used in our computations are Using Eq (3.1) the remaining optimal parameters can be found for the hyperbolic path . In our computations we select centers in the sub domain and in the global domain are selected. The error estimates and errors are shown in Tables 6 and 7. Similar behavior is observed as in the previous examples. The numerical and exact solutions for problem 3 are shown in Figures 10 and 11 and plot of Actual error and Error Estimate corresponding to problem 3 are shown in Figure 12.
, , |
Error | Error Estimate | CPU time(s) | |
10 | 7.37 | 4.4187 | 0.168655 | |
20 | 4.14 | 1.5582 | 0.216721 | |
30 | 3.13 | 0.5373 | 0.268500 | |
40 | 9.80 | 0.1836 | 0.352215 | |
50 | 1.49 | 0.0625 | 0.480307 | |
60 | 2.60 | 0.0212 | 0.899249 | |
70 | 8.67 | 0.0072 | 2.037757 | |
80 | 8.90 | 0.0024 | 3.956089 | |
90 | 8.12 | 8.18 | 6.517429 |
, , |
Error | Error Estimate | CPU time(s) | |
10 | 2.68 | 4.4187 | 0.158384 | |
15 | 4.53 | 2.6363 | 0.162534 | |
20 | 3.36 | 1.5582 | 0.162535 | |
30 | 1.59 | 0.5373 | 0.189903 | |
40 | 2.0 | 0.1836 | 0.245566 | |
50 | 8.70 | 0.0625 | 0.344221 | |
60 | 1.10 | 0.0212 | 0.502084 | |
70 | 6.32 | 0.0072 | 0.923548 | |
80 | 5.70 | 0.0024 | 2.520403 |
In this article, we constructed a local RBF method based on Laplace transform proposed for the approximation of the solution of the linear time fractional Klein-Gordon equations. In time stepping procedure usually the time instability is encountered and for accuracy we need a very small time step size. Global RBF methods are efficient and accurate only for small amount of nodes. They become inefficient and the differentiation matrix becomes ill-conditioned for large amount of nodes. The main advantage of this method is that it avoids the time stepping procedure with the help of Laplace transform, and the local RBF method has been used to resolve the issue of ill-conditioning. The numerical results confirmed the stability and convergence of the method. The comparison of the results with other methods led us to conclude that the proposed local RBF method coupled with Laplace transform is an efficient method for approximation of the solution of the linear time fractional Klein-Gordon equations.
The authors wish to thank the referees for their careful reading of the manuscript and valuable suggestions.This work was supported in part by the National Key Research and Development Program under Grant 2018YFB0904205, in part by the Key Laboratory of Pattern Recognition and Intelligent Information Processing, Institutions of Higher Education of Sichuan Province under Grant MSSB-2020-12.
The authors declare that no competing interests exist.
[1] |
G. Fibich, B. Ilan, G. Papanicolaou, Self-focusing with fourth-order dispersion, SIAM J. Appl. Math., 62 (2002), 1437–1462. https://doi.org/10.1137/S0036139901387241 doi: 10.1137/S0036139901387241
![]() |
[2] |
G. Baruch, G. Fibich, Singular solutions of the -supercritical biharmonic nonlinear Schrödinger equation, Nonlinearity, 24 (2011), 1843–1859. https://doi.org/10.1088/0951-7715/24/6/009 doi: 10.1088/0951-7715/24/6/009
![]() |
[3] |
G. Baruch, G. Fibich, E. Mandelbaum, Ring-type singular solutions of the biharmonic nonlinear Schrödinger equation, Nonlinearity, 23 (2010), 2867–2887. https://doi.org/10.1088/0951-7715/23/11/008 doi: 10.1088/0951-7715/23/11/008
![]() |
[4] |
G. Baruch, G. Fibich, E. Mandelbaum, Singular solutions of the biharmonic nonlinear Schrödinger equation, SIAM J. Appl. Math., 70 (2010), 3319–3341. https://doi.org/10.1137/100784199 doi: 10.1137/100784199
![]() |
[5] |
D. Bonheure, J.-B. Casteras, E. dos Santos, R. Nascimento, Orbitally stable standing waves of a mixed dispersion nonlinear Schrödinger equation, SIAM J. Math. Anal., 50 (2018), 5027–5071. https://doi.org/10.1137/17M1154138 doi: 10.1137/17M1154138
![]() |
[6] |
D. Bonheure, J.-B. Casteras, T. Gou, L. Jeanjean, Normalized solutions to the mixed dispersion nonlinear Schrödinger equation in the mass critical and supercritical regime, Trans. Amer. Math. Soc., 372 (2019), 2167–2212. https://doi.org/10.1090/tran/7769 doi: 10.1090/tran/7769
![]() |
[7] | T. Luo, S. Zheng, S. Zhu, Orbital stability of standing waves for a fourth-order nonlinear Schrödinger equation with the mixed dispersions, arXiv preprint, (2019), arXiv: 1904.02540. https://doi.org/10.48550/arXiv.1904.02540 |
[8] |
T. Cazenave, P.-L. Lions, Orbital stability of standing waves for some nonlinear Schrödinger equations, Comm. Math. Phys., 85 (1982), 549–561. https://doi.org/10.1007/BF01403504 doi: 10.1007/BF01403504
![]() |
[9] |
P.-L. Lions, The concentration-compactness principle in the calculus of variations. The locally compact case. Ⅱ, Ann. Inst. H. Poincaré Anal. Non Linéaire, 1 (1984), 223–283. https://doi.org/10.1016/S0294-1449(16)30422-X doi: 10.1016/S0294-1449(16)30422-X
![]() |
[10] |
X. Zhu, H. Zhou, Bifurcation from the essential spectrum of superlinear elliptic equations, Appl. Anal., 28 (1988), 51–66. https://doi.org/10.1080/00036818808839748 doi: 10.1080/00036818808839748
![]() |
[11] |
M. Shibata, Stable standing waves of nonlinear Schrödinger equations with a general nonlinear term, Manuscripta Math., 143 (2014), 221–237. https://doi.org/10.1007/s00229-013-0627-9 doi: 10.1007/s00229-013-0627-9
![]() |
[12] |
J. Hirata, K. Tanaka, Scalar field equations with constraint: Mountain pass and symmetric mountain pass approaches, Adv. Nonlinear Stud., 19 (2019), 263–290. https://doi.org/10.1515/ans-2018-2039 doi: 10.1515/ans-2018-2039
![]() |
[13] |
L. Jeanjean, S. Lu, Nonradial normalized solutions for nonlinear scalar field equations, Nonlinearity, 32 (2019), 4942–4966. https://doi.org/10.1088/1361-6544/ab435e doi: 10.1088/1361-6544/ab435e
![]() |
[14] |
L. Jeanjean, Existence of solutions with prescribed norm for semilinear elliptic equations, Nonlinear Anal., 28 (1997), 1633–1659. https://doi.org/10.1016/S0362-546X(96)00021-1 doi: 10.1016/S0362-546X(96)00021-1
![]() |
[15] | H. Berestycki, T. Cazenave, Instabilité des états stationnaires dans les équations de Schrödinger et de Klein-Gordon non linéaires. (French) [Instability of stationary states in nonlinear Schrödinger and Klein-Gordon equations], C. R. Acad. Sci. Paris Sér. I Math., 293 (1981), 489–492. |
[16] |
S. Le Coz, A note on Berestycki-Cazenave's classical instability result for nonlinear Schrödinger equations, Adv. Nonlinear Stud., 8 (2008), 455–463. https://doi.org/10.1515/ans-2008-0302 doi: 10.1515/ans-2008-0302
![]() |
[17] |
T. Bartsch, S. de Valeriola, Normalized solutions of nonlinear Schrödinger equations, Arch. Math. (Basel), 100 (2013), 75–83. https://doi.org/10.1007/s00013-012-0468-x doi: 10.1007/s00013-012-0468-x
![]() |
[18] |
B. Bieganowski, J. Mederski, Normalized ground states of the nonlinear Schrödinger equation equation with at least mass critical growth, J. Funct. Anal., 280 (2021), 108989. https://doi.org/10.1016/j.jfa.2021.108989 doi: 10.1016/j.jfa.2021.108989
![]() |
[19] |
L. Jeanjean, S. Lu, A mass supercritical problem revisited, Calc. Var. Partial Differential Equations, 59 (2020), 1–43. https://doi.org/10.1007/s00526-020-01828-z doi: 10.1007/s00526-020-01828-z
![]() |
[20] |
N. Soave, Normalized ground states for the NLS equation with combined nonlinearities, J. Differ. Equ., 269 (2020), 6941–6987. https://doi.org/10.1016/j.jde.2020.05.016 doi: 10.1016/j.jde.2020.05.016
![]() |
[21] |
N. Soave, Normalized ground states for the NLS equation with combined nonlinearities: the Sobolev critical case, J. Funct. Anal., 279 (2020), 108610. https://doi.org/10.1016/j.jfa.2020.108610 doi: 10.1016/j.jfa.2020.108610
![]() |
[22] | A. J. Fernandez, L. Jeanjean, R. Mandel, M. Maris, Some non-homogeneous Gagliardo-Nirenberg inequalities and application to a biharmonic non-linear Schrödinger equation, arXiv preprint, (2020), arXiv: 2010.01448. |
[23] | N. Boussaïd, A. J. Fernández, L. Jeanjean, Some remarks on a minimization problem associated to a fourth order nonlinear Schrödinger equation, arXiv preprint, (2019), arXiv: 1910.13177v1. |
[24] | X. Luo, T. Yang, Normalized solutions for a fourth-order Schrödinger equation with positive second-order dispersion coefficient, arXiv preprint, (2019), arXiv: 1908.03079v1. |
[25] |
H. Ye, The existence of normalized solutions for -critical constrained problems related to Kirchhoff equations, Z. Angew. Math. Phys., 66 (2015), 1483–1497. https://doi.org/10.1007/s00033-014-0474-x doi: 10.1007/s00033-014-0474-x
![]() |
[26] |
T. Bartsch, N. Soave, A natural constraint approach to normalized solutions of nonlinear Schrödinger equations and systems, J. Funct. Anal., 272 (2017), 4998–5037. https://doi.org/10.1016/j.jfa.2017.01.025 doi: 10.1016/j.jfa.2017.01.025
![]() |
[27] |
B. Feng, J. Ren, Q. Wang, Existence and instability of normalized standing waves for the fractional Schrödinger equations in the -supercritical case, J. Math. Phys., 61 (2020), 071511. https://doi.org/10.1063/5.0006247 doi: 10.1063/5.0006247
![]() |
[28] |
B. Guo, D. Huang, Existence and stability of standing waves for nonlinear fractional Schrödinger equations, J. Math. Phys., 53 (2012), 083702. https://doi.org/10.1063/1.4746806 doi: 10.1063/1.4746806
![]() |
[29] |
Y. Guo, Z.-Q. Wang, X. Zeng, H. Zhou, Properties of ground states of attractive Gross-Pitaevskii equations with multi-well potentials, Nonlinearity, 31 (2018), 957–979. https://doi.org/10.1088/1361-6544/aa99a8 doi: 10.1088/1361-6544/aa99a8
![]() |
[30] |
G. Li, X. Luo, Normalized solutions for the Chern-Simons-Schrödinger equation in , Ann. Acad. Sci. Fenn. Math., 42 (2017), 405–428. https://doi.org/10.5186/aasfm.2017.4223 doi: 10.5186/aasfm.2017.4223
![]() |
[31] |
H. Luo, Z. Zhang, Limit configurations of Schrödinger systems versus optimal partition for the principal eigenvalue of elliptic systems, Adv. Nonlinear Stud., 19 (2019), 693–715. https://doi.org/10.1515/ans-2019-2057 doi: 10.1515/ans-2019-2057
![]() |
[32] |
H. Luo, Z. Zhang, Normalized solutions to the fractional Schrödinger equations with combined nonlinearities, Calc. Var. Partial Differential Equations, 59 (2020), Paper No. 143, 35 pp. https://doi.org/10.1007/s00526-020-01814-5 doi: 10.1007/s00526-020-01814-5
![]() |
[33] |
H. Luo, Z. Zhang, Partial symmetry of normalized solutions for a doubly coupled Schrödinger system, Partial Differ. Equ. Appl., 1 (2020), Paper No. 24, 15 pp. https://doi.org/10.1007/s42985-020-00016-0 doi: 10.1007/s42985-020-00016-0
![]() |
[34] |
H. Luo, D. Wu, Normalized ground states for general pseudo-relativistic Schrödinger equations, Appl. Anal., (2020), 1–22. https://doi.org/10.1080/00036811.2020.1849631 doi: 10.1080/00036811.2020.1849631
![]() |
[35] |
D. Wu, Existence and stability of standing waves for nonlinear fractional Schrödinger equations with Hartree type nonlinearity, J. Math. Anal. Appl., 411 (2014), 530–542. https://doi.org/10.1016/j.jmaa.2013.09.054 doi: 10.1016/j.jmaa.2013.09.054
![]() |
[36] | E. Gagliardo, Caratterizzazioni delle tracce sulla frontiera relative ad alcune classi di funzioni in variabili. (Italian), Rend. Sem. Mat. Univ. Padova, 27 (1957), 284–305. |
[37] | L. Nirenberg, On elliptic partial differential equations, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 13 (1959), 115–162. |
[38] | M. Willem, Minimax Theorems, 1nd edition, Birkhuser, Boston, 1996. Available from: https://link.springer.com/book/10.1007/978-1-4612-4146-1. |
[39] |
H. Brézis, E. Lieb, A relation between pointwise convergence of functions and convergence of functionals, Proc. Amer. Math. Soc., 88 (1983), 486–490. https://doi.org/10.1090/S0002-9939-1983-0699419-3 doi: 10.1090/S0002-9939-1983-0699419-3
![]() |
[40] |
M. Ben-Artzi, H. Koch, J.C. Saut, Dispersion estimates for fourth order Schrödinger equations, C. R. Acad. Sci. Paris Sér. I Math., 330 (2000), 87–92. https://doi.org/10.1016/S0764-4442(00)00120-8 doi: 10.1016/S0764-4442(00)00120-8
![]() |
[41] |
T. Gou, Z. Zhang, Normalized solutions to the Chern-Simons-Schrödinger system, J. Funct. Anal., 280 (2021), 108894, 65 pp. https://doi.org/10.1016/j.jfa.2020.108894 doi: 10.1016/j.jfa.2020.108894
![]() |
1. | Nehad Ali Shah, Ioannis Dassios, Jae Dong Chung, Numerical Investigation of Time-Fractional Equivalent Width Equations That Describe Hydromagnetic Waves, 2021, 13, 2073-8994, 418, 10.3390/sym13030418 | |
2. | Kamran Kamran, Zahir Shah, Poom Kumam, Nasser Aedh Alreshidi, A Meshless Method Based on the Laplace Transform for the 2D Multi-Term Time Fractional Partial Integro-Differential Equation, 2020, 8, 2227-7390, 1972, 10.3390/math8111972 | |
3. | Siraj Ahmad, Kamal Shah, Thabet Abdeljawad, Bahaaeldin Abdalla, On the Approximation of Fractal-Fractional Differential Equations Using Numerical Inverse Laplace Transform Methods, 2023, 135, 1526-1506, 2743, 10.32604/cmes.2023.023705 | |
4. | Xiao Qin, Xiaozhong Yang, Peng Lyu, A class of explicit implicit alternating difference schemes for generalized time fractional Fisher equation, 2021, 6, 2473-6988, 11449, 10.3934/math.2021663 | |
5. | Saman Hosseinzadeh, Seyed Mahdi Emadi, Seyed Mostafa Mousavi, Davood Domairry Ganji, Mathematical modeling of fractional derivatives for magnetohydrodynamic fluid flow between two parallel plates by the radial basis function method, 2022, 12, 20950349, 100350, 10.1016/j.taml.2022.100350 | |
6. | Ahmad Qazza, Aliaa Burqan, Rania Saadeh, Fahd Jarad, Application of ARA-Residual Power Series Method in Solving Systems of Fractional Differential Equations, 2022, 2022, 1563-5147, 1, 10.1155/2022/6939045 | |
7. | Hitesh Bansu, Sushil Kumar, Numerical Solution of Space-Time Fractional Klein-Gordon Equation by Radial Basis Functions and Chebyshev Polynomials, 2021, 7, 2349-5103, 10.1007/s40819-021-01139-7 | |
8. | Aliaa Burqan, Rania Saadeh, Ahmad Qazza, Shaher Momani, ARA-residual power series method for solving partial fractional differential equations, 2023, 62, 11100168, 47, 10.1016/j.aej.2022.07.022 | |
9. | A.S.V. Ravi Kanth, K. Aruna, K. Raghavendar, Hadi Rezazadeh, Mustafa Inc, Numerical solutions of nonlinear time fractional Klein-Gordon equation via natural transform decomposition method and iterative Shehu transform method, 2021, 24680133, 10.1016/j.joes.2021.12.002 | |
10. | Saman Hosseinzadeh, Seyed M. Mousavi, Seyed M. Emadi, Davood D. Ganji, Analytical assessment of the time‐space fractional bioheat transfer equation by the radial basis function method for living tissues, 2022, 51, 2688-4534, 6139, 10.1002/htj.22583 | |
11. | Abdul Ghafoor, Muhammad Fiaz, Kamal Shah, Thabet Abdeljawad, Analysis of nonlinear Burgers equation with time fractional Atangana-Baleanu-Caputo derivative, 2024, 10, 24058440, e33842, 10.1016/j.heliyon.2024.e33842 | |
12. | Asmaa Baihi, Ahmed Kajouni, Khalid Hilal, Hamid Lmou, Laplace transform method for a coupled system of (p, q)-Caputo fractional differential equations, 2024, 1598-5865, 10.1007/s12190-024-02254-6 | |
13. | Aisha Subhan, Kamal Shah, Suhad Subhi Aiadi, Nabil Mlaiki, Fahad M. Alotaibi, Abdellatif Ben Makhlouf, Analysis of Volterra Integrodifferential Equations with the Fractal-Fractional Differential Operator, 2023, 2023, 1099-0526, 1, 10.1155/2023/7210126 |
, |
Error | Error Estimate | CPU time(s) | |
10 | 7.65 | 4.4187 | 0.145896 | |
15 | 2.30 | 2.6363 | 0.158580 | |
20 | 1.30 | 1.5582 | 0.169243 | |
30 | 1.38 | 0.5373 | 0.218606 | |
40 | 6.57 | 0.1836 | 0.384568 | |
50 | 1.25 | 0.0625 | 0.682311 | |
60 | 9.58 | 0.0212 | 1.143210 | |
70 | 9.70 | 0.0072 | 2.792846 | |
80 | 9.66 | 0.0024 | 5.805704 | |
[25] 1.34 |
, |
Error | Error Estimate | CPU time(s) | |
10 | 7.65 | 4.4187 | 0.151320 | |
15 | 2.30 | 2.6363 | 0.190760 | |
20 | 1.30 | 1.5582 | 0.173974 | |
30 | 1.38 | 0.5373 | 0.275586 | |
40 | 6.35 | 0.1836 | 0.483761 | |
50 | 1.19 | 0.0625 | 0.732991 | |
60 | 8.99 | 0.0212 | 1.269992 | |
70 | 9.11 | 0.0072 | 3.328360 | |
80 | 9.07 | 0.0024 | 5.789626 | |
[25] 4.45 |
, |
Error | Error Estimate | CPU time(s) | |
10 | 5.77 | 0.0024 | 0.561563 | |
20 | 1.27 | 0.0024 | 1.125699 | |
30 | 3.55 | 0.0024 | 1.252799 | |
40 | 2.43 | 0.0024 | 2.716533 | |
50 | 2.87 | 0.0024 | 4.686349 | |
60 | 3.78 | 0.0024 | 6.319554 | |
80 | 8.38 | 0.0024 | 8.773851 | |
90 | 8.20 | 0.0024 | 9.862299 | |
[25] 5.91 |
, |
Error | Error Estimate | CPU time(s) | |
10 | 3.32 | 4.4187 | 0.146540 | |
15 | 9.63 | 2.6363 | 0.160951 | |
20 | 5.71 | 1.5582 | 0.170815 | |
30 | 6.70 | 0.5373 | 0.212776 | |
40 | 7.76 | 0.1836 | 0.361477 | |
50 | 4.25 | 0.0625 | 0.585600 | |
60 | 5.48 | 0.0212 | 1.047157 | |
70 | 5.42 | 0.0072 | 1.872323 | |
80 | 5.44 | 0.0024 | 4.417500 | |
[25] 7.59 |
0 | 1.463 | 1.463 | 1.463 | 1.463 |
0.1 | 1.353 | 1.340 | 1.326 | 1.315 |
0.2 | 1.155 | 1.131 | 1.104 | 1.079 |
0.3 | 9.710 | 9.400 | 9.010 | 8.630 |
0.4 | 8.170 | 7.820 | 7.360 | 6.850 |
0.5 | 6.760 | 6.410 | 5.910 | 5.320 |
0.6 | 5.180 | 4.860 | 4.370 | 3.740 |
0.7 | 3.510 | 3.240 | 2.830 | 2.220 |
0.8 | 1.620 | 1.430 | 1.130 | 6.200 |
0.9 | 1.300 | 2.300 | 3.900 | 6.800 |
1 | 3.590 | 3.590 | 3.590 | 3.590 |
, , |
Error | Error Estimate | CPU time(s) | |
10 | 7.37 | 4.4187 | 0.168655 | |
20 | 4.14 | 1.5582 | 0.216721 | |
30 | 3.13 | 0.5373 | 0.268500 | |
40 | 9.80 | 0.1836 | 0.352215 | |
50 | 1.49 | 0.0625 | 0.480307 | |
60 | 2.60 | 0.0212 | 0.899249 | |
70 | 8.67 | 0.0072 | 2.037757 | |
80 | 8.90 | 0.0024 | 3.956089 | |
90 | 8.12 | 8.18 | 6.517429 |
, , |
Error | Error Estimate | CPU time(s) | |
10 | 2.68 | 4.4187 | 0.158384 | |
15 | 4.53 | 2.6363 | 0.162534 | |
20 | 3.36 | 1.5582 | 0.162535 | |
30 | 1.59 | 0.5373 | 0.189903 | |
40 | 2.0 | 0.1836 | 0.245566 | |
50 | 8.70 | 0.0625 | 0.344221 | |
60 | 1.10 | 0.0212 | 0.502084 | |
70 | 6.32 | 0.0072 | 0.923548 | |
80 | 5.70 | 0.0024 | 2.520403 |
, |
Error | Error Estimate | CPU time(s) | |
10 | 7.65 | 4.4187 | 0.145896 | |
15 | 2.30 | 2.6363 | 0.158580 | |
20 | 1.30 | 1.5582 | 0.169243 | |
30 | 1.38 | 0.5373 | 0.218606 | |
40 | 6.57 | 0.1836 | 0.384568 | |
50 | 1.25 | 0.0625 | 0.682311 | |
60 | 9.58 | 0.0212 | 1.143210 | |
70 | 9.70 | 0.0072 | 2.792846 | |
80 | 9.66 | 0.0024 | 5.805704 | |
[25] 1.34 |
, |
Error | Error Estimate | CPU time(s) | |
10 | 7.65 | 4.4187 | 0.151320 | |
15 | 2.30 | 2.6363 | 0.190760 | |
20 | 1.30 | 1.5582 | 0.173974 | |
30 | 1.38 | 0.5373 | 0.275586 | |
40 | 6.35 | 0.1836 | 0.483761 | |
50 | 1.19 | 0.0625 | 0.732991 | |
60 | 8.99 | 0.0212 | 1.269992 | |
70 | 9.11 | 0.0072 | 3.328360 | |
80 | 9.07 | 0.0024 | 5.789626 | |
[25] 4.45 |
, |
Error | Error Estimate | CPU time(s) | |
10 | 5.77 | 0.0024 | 0.561563 | |
20 | 1.27 | 0.0024 | 1.125699 | |
30 | 3.55 | 0.0024 | 1.252799 | |
40 | 2.43 | 0.0024 | 2.716533 | |
50 | 2.87 | 0.0024 | 4.686349 | |
60 | 3.78 | 0.0024 | 6.319554 | |
80 | 8.38 | 0.0024 | 8.773851 | |
90 | 8.20 | 0.0024 | 9.862299 | |
[25] 5.91 |
, |
Error | Error Estimate | CPU time(s) | |
10 | 3.32 | 4.4187 | 0.146540 | |
15 | 9.63 | 2.6363 | 0.160951 | |
20 | 5.71 | 1.5582 | 0.170815 | |
30 | 6.70 | 0.5373 | 0.212776 | |
40 | 7.76 | 0.1836 | 0.361477 | |
50 | 4.25 | 0.0625 | 0.585600 | |
60 | 5.48 | 0.0212 | 1.047157 | |
70 | 5.42 | 0.0072 | 1.872323 | |
80 | 5.44 | 0.0024 | 4.417500 | |
[25] 7.59 |
0 | 1.463 | 1.463 | 1.463 | 1.463 |
0.1 | 1.353 | 1.340 | 1.326 | 1.315 |
0.2 | 1.155 | 1.131 | 1.104 | 1.079 |
0.3 | 9.710 | 9.400 | 9.010 | 8.630 |
0.4 | 8.170 | 7.820 | 7.360 | 6.850 |
0.5 | 6.760 | 6.410 | 5.910 | 5.320 |
0.6 | 5.180 | 4.860 | 4.370 | 3.740 |
0.7 | 3.510 | 3.240 | 2.830 | 2.220 |
0.8 | 1.620 | 1.430 | 1.130 | 6.200 |
0.9 | 1.300 | 2.300 | 3.900 | 6.800 |
1 | 3.590 | 3.590 | 3.590 | 3.590 |
, , |
Error | Error Estimate | CPU time(s) | |
10 | 7.37 | 4.4187 | 0.168655 | |
20 | 4.14 | 1.5582 | 0.216721 | |
30 | 3.13 | 0.5373 | 0.268500 | |
40 | 9.80 | 0.1836 | 0.352215 | |
50 | 1.49 | 0.0625 | 0.480307 | |
60 | 2.60 | 0.0212 | 0.899249 | |
70 | 8.67 | 0.0072 | 2.037757 | |
80 | 8.90 | 0.0024 | 3.956089 | |
90 | 8.12 | 8.18 | 6.517429 |
, , |
Error | Error Estimate | CPU time(s) | |
10 | 2.68 | 4.4187 | 0.158384 | |
15 | 4.53 | 2.6363 | 0.162534 | |
20 | 3.36 | 1.5582 | 0.162535 | |
30 | 1.59 | 0.5373 | 0.189903 | |
40 | 2.0 | 0.1836 | 0.245566 | |
50 | 8.70 | 0.0625 | 0.344221 | |
60 | 1.10 | 0.0212 | 0.502084 | |
70 | 6.32 | 0.0072 | 0.923548 | |
80 | 5.70 | 0.0024 | 2.520403 |