A classical stability criterion for Hill's equation is extended to more general families of periodic two-dimensional linear systems. The results are motivated by the study of mechanical vibrations with friction and periodic prey-predator systems.
Citation: Rafael Ortega. Variations on Lyapunov's stability criterion and periodic prey-predator systems[J]. Electronic Research Archive, 2021, 29(6): 3995-4008. doi: 10.3934/era.2021069
[1] | Tasnim Fatima, Ekeoma Ijioma, Toshiyuki Ogawa, Adrian Muntean . Homogenization and dimension reduction of filtration combustion in heterogeneous thin layers. Networks and Heterogeneous Media, 2014, 9(4): 709-737. doi: 10.3934/nhm.2014.9.709 |
[2] | Markus Gahn, Maria Neuss-Radu, Peter Knabner . Effective interface conditions for processes through thin heterogeneous layers with nonlinear transmission at the microscopic bulk-layer interface. Networks and Heterogeneous Media, 2018, 13(4): 609-640. doi: 10.3934/nhm.2018028 |
[3] | Tom Freudenberg, Michael Eden . Homogenization and simulation of heat transfer through a thin grain layer. Networks and Heterogeneous Media, 2024, 19(2): 569-596. doi: 10.3934/nhm.2024025 |
[4] | François Murat, Ali Sili . A remark about the periodic homogenization of certain composite fibered media. Networks and Heterogeneous Media, 2020, 15(1): 125-142. doi: 10.3934/nhm.2020006 |
[5] | Vivek Tewary . Combined effects of homogenization and singular perturbations: A bloch wave approach. Networks and Heterogeneous Media, 2021, 16(3): 427-458. doi: 10.3934/nhm.2021012 |
[6] | María Anguiano, Renata Bunoiu . Homogenization of Bingham flow in thin porous media. Networks and Heterogeneous Media, 2020, 15(1): 87-110. doi: 10.3934/nhm.2020004 |
[7] | Iryna Pankratova, Andrey Piatnitski . Homogenization of convection-diffusion equation in infinite cylinder. Networks and Heterogeneous Media, 2011, 6(1): 111-126. doi: 10.3934/nhm.2011.6.111 |
[8] | Grigory Panasenko, Ruxandra Stavre . Asymptotic analysis of a non-periodic flow in a thin channel with visco-elastic wall. Networks and Heterogeneous Media, 2008, 3(3): 651-673. doi: 10.3934/nhm.2008.3.651 |
[9] | Mohamed Belhadj, Eric Cancès, Jean-Frédéric Gerbeau, Andro Mikelić . Homogenization approach to filtration through a fibrous medium. Networks and Heterogeneous Media, 2007, 2(3): 529-550. doi: 10.3934/nhm.2007.2.529 |
[10] | Mustapha El Jarroudi, Youness Filali, Aadil Lahrouz, Mustapha Er-Riani, Adel Settati . Asymptotic analysis of an elastic material reinforced with thin fractal strips. Networks and Heterogeneous Media, 2022, 17(1): 47-72. doi: 10.3934/nhm.2021023 |
A classical stability criterion for Hill's equation is extended to more general families of periodic two-dimensional linear systems. The results are motivated by the study of mechanical vibrations with friction and periodic prey-predator systems.
[1] |
A periodic prey-predator system. J. Math. Anal. Appl. (1994) 185: 477-489. ![]() |
[2] |
B. M. Brown, M. S. P. Eastham and K. M. Schmidt, Periodic Differential Operators, Birkhäuser, New York, 2013. doi: 10.1007/978-3-0348-0528-5
![]() |
[3] | L. Cesari, Asymptotic Behavior and Stability Problems in Ordinary Differential Equations, Springer-Verlag, New York, 1971. |
[4] | Turing instabilities for systems of two equations with periodic coefficients. Differential Integral Equations (1994) 7: 1253-1264. |
[5] | J. P. Den Hartog, Mechanical Vibrations, Dover Pub., New York, 1985. |
[6] |
A priori bounds and periodic solutions for a class of planar systems with applications to Lotka-Volterra equations. Discrete Contin. Dynam. Systems (1995) 1: 103-117. ![]() |
[7] | Problème général de la stabilité du mouvement. Ann. Fac. Sci. Toulouse Sci. Math. Sci. Phys. (2) (1907) 9: 203-474. |
[8] | The periodic predator-prey Lotka-Volterra model. Adv. in Differential Equations (1996) 1: 403-423. |
[9] | W. Magnus and S. Winkler, Hill's Equation, Dover Pub., New York, 1979. |
[10] |
Dependence of solutions and eigenvalues of measure differential equations on measures. J. Differential Equations (2013) 254: 2196-2232. ![]() |
[11] |
The first interval of stability of a periodic equation of Duffing type. Proc. Am. Math. Soc. (1992) 115: 1061-1067. ![]() |
[12] |
Periodic solutions of a Newtonian equation: Stability by the third approximation. J. Differential Equations (1996) 128: 491-518. ![]() |
[13] | R. Ortega, Periodic Differential Equations in the Plane. A Topological Perspective, De Gruyter, Berlin, 2019. |
[14] |
Optimal bounds for bifurcation values of a superlinear periodic problem. Proc. Roy. Soc. Edinburgh Sect. A (2005) 135: 119-132. ![]() |
[15] |
C. Rebelo and C. Soresina, Coexistence in seasonally varying predator-prey systems with Allee effect, Nonlinear Anal. Real World Appl., 55 (2020), 103140, 21 pp. doi: 10.1016/j.nonrwa.2020.103140
![]() |
[16] |
On the asymptotic behavior of some population models, II. J. Math. Anal. Appl. (1996) 197: 249-258. ![]() |
[17] |
W. Walter, Differential- Und Integral- Ungleichungen, Springer-Verlag, Berlin, 1964. doi: 10.1007/978-3-662-42030-0
![]() |
[18] |
A Lyapunov-type stability criterion using norms. Proc. Amer. Math. Soc. (2002) 130: 3325-3333. ![]() |
1. | Renata Bunoiu, Claudia Timofte, Upscaling of a double porosity problem with jumps in thin porous media, 2022, 101, 0003-6811, 3497, 10.1080/00036811.2020.1854232 | |
2. | M. Amar, D. Andreucci, R. Gianni, C. Timofte, Concentration and homogenization in electrical conduction in heterogeneous media involving the Laplace–Beltrami operator, 2020, 59, 0944-2669, 10.1007/s00526-020-01749-x | |
3. | Ekeoma Rowland Ijioma, Hirofumi Izuhara, Masayasu Mimura, Traveling Waves in a Reaction-Diffusion System Describing Smoldering Combustion, 2017, 77, 0036-1399, 614, 10.1137/16M1089915 | |
4. | Ekeoma R. Ijioma, Hirofumi Izuhara, Masayasu Mimura, Toshiyuki Ogawa, Homogenization and fingering instability of a microgravity smoldering combustion problem with radiative heat transfer, 2015, 162, 00102180, 4046, 10.1016/j.combustflame.2015.07.044 | |
5. | M. Amar, D. Andreucci, C. Timofte, Asymptotic analysis for non-local problems in composites with different imperfect contact conditions, 2022, 0003-6811, 1, 10.1080/00036811.2022.2120867 | |
6. | A. Chakib, A. Hadri, A. Nachaoui, M. Nachaoui, Homogenization of parabolic problem with nonlinear transmission condition, 2017, 37, 14681218, 433, 10.1016/j.nonrwa.2017.03.004 | |
7. | Iuliu Sorin Pop, Jeroen Bogers, Kundan Kumar, Analysis and Upscaling of a Reactive Transport Model in Fractured Porous Media with Nonlinear Transmission Condition, 2017, 45, 2305-221X, 77, 10.1007/s10013-016-0198-7 | |
8. | Emilio N. M. Cirillo, Ida de Bonis, Adrian Muntean, Omar Richardson, Upscaling the interplay between diffusion and polynomial drifts through a composite thin strip with periodic microstructure, 2020, 55, 0025-6455, 2159, 10.1007/s11012-020-01253-8 | |
9. | Vishnu Raveendran, Emilio Cirillo, Ida de Bonis, Adrian Muntean, Scaling effects on the periodic homogenization of a reaction-diffusion-convection problem posed in homogeneous domains connected by a thin composite layer, 2021, 80, 0033-569X, 157, 10.1090/qam/1607 | |
10. | Renata Bunoiu, Karim Karim, Claudia Timofte, T-coercivity for the asymptotic analysis of scalar problems with sign-changing coefficients in thin periodic domains, 2021, 2021, 1072-6691, 59, 10.58997/ejde.2021.59 | |
11. | Renata Bunoiu, Claudia Timofte, Upscaling of a diffusion problem with flux jump in high contrast composites, 2024, 103, 0003-6811, 2269, 10.1080/00036811.2023.2291810 | |
12. | Matteo Colangeli, Manh Hong Duong, Adrian Muntean, Model reduction of Brownian oscillators: quantification of errors and long-time behavior, 2023, 56, 1751-8113, 345003, 10.1088/1751-8121/ace948 |