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Abstract. A classical stability criterion for Hill’s equation is extended to

more general families of periodic two-dimensional linear systems. The results
are motivated by the study of mechanical vibrations with friction and periodic

prey-predator systems.

1. Introduction. In Section 49 of his famous memoir [7], Lyapunov considered
the linear equation

ẍ+ α(t)x = 0, (1)

where α(t) is T -periodic. After introducing a parameter ε and expanding the so-
lutions in terms of ε, he proved that this equation is stable if α(t) is non-negative
everywhere and the inequality below holds,

0 < T

∫ T

0

α ≤ 4.

This result was the first stability criterion for an equation with periodic coefficients
and it is in the origin of an extensive theory. See [9, 3] for more information.

In this paper we will use Lyapunov’s criterion as a unifying theme and we will
obtain related stability criteria for two families of linear equations having some
unexpected connections. The first family is the dissipative Hill’s equation

ẍ+ cẋ+ α(t)x = 0, (2)

where c > 0 is a constant. The second family is the linear prey-predator system

ẋ1 = −a11(t)x1 − a12(t)x2, ẋ2 = a21(t)x1 − a22(t)x2, (3)

where all the coefficients aij(t) are T -periodic and positive. After these results
on linear equations we will look for applications to Lotka-Volterra prey-predator
systems of the type

u̇ = u(a(t)− b(t)u− c(t)v), v̇ = v(d(t) + e(t)u− f(t)v), u > 0, v > 0, (4)

where all the coefficients are T -periodic and b(t), c(t), e(t) and f(t) are positive.
The insights in the paper by Dancer [4] will play an important role. Periodic
solutions of period T are sometimes called coexistence states and the necessary and
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sufficient conditions for their existence are well understood, see [8]. However many
questions on the stability properties of these solutions remain open. With the help
of the linear criteria we will analyze two aspects. First we will present a sufficient
condition for the uniqueness and asymptotic stability of the coexistence state. In a
second part we will follow the point of view in [4] and the periodic solution of (4)
will be understood as a solution of the reaction-diffusion p.d.e. system

∂u

∂t
= r1∆xu+ u(a(t)− b(t)u− c(t)v),

∂v

∂t
= r2∆xv + v(d(t) + e(t)u− f(t)v),

∂u

∂n
=
∂v

∂n
= 0 on ∂Ω× [0,∞[,

where u = u(x, t), v = v(x, t) are functions defined on Ω × [0,∞[, Ω ⊂ Rm is a
smooth bounded domain and the numbers r1 and r2 are positive. In some cases
Turing instabilities can appear, meaning that the coexistence state is stable for the
o.d.e but unstable for the p.d.e. This phenomenon was described in [4] and we
will review it to show the connection with a well known phenomenon in dissipative
Mechanics: some equations without friction of the type (1) are stable but after
adding friction the new equation (2) is unstable.

In the previous discussions we have not paid attention to the regularity of the
coefficients appearing in the equations. In most cases it will be sufficient to assume
that they belong to the Banach space L1(R/TZ), composed by all locally integrable
and T -periodic functions. The associated norm is

||f ||L1(R/TZ) =

∫ T

0

|f |

and the average will be denoted by f = 1
T

∫ T
0
f . Sometimes the class of continuous

and T -periodic functions, denoted by C(R/TZ), will appear. Also Cω(R/TZ), the
class of real analytic and T -periodic functions.

2. An oscillator with variable elasticity. Consider the differential equation (1)
where α ∈ L1(R/TZ). This equation appears in many physical contexts such as
Hill’s Lunar theory or Quantum Mechanics. Other mechanical and electric examples
are described in Section 8.2 of [5]. As a simple interpretation (for positive α) we
can think of a harmonic oscillator with non-constant elasticity coefficient. The
variation in the elasticity will be produced by certain cyclic effects such as changes
of temperature.

In the presence of linear friction the modified equation (2) is considered, where
c > 0 is a constant parameter. The original equation (1) will be called stable in the
dissipative sense if the equation (2) is asymptotically stable for each c > 0. This
concept of stability is different from the traditional notion of Lyapunov stability.
In the next Section we will construct a function α such that (1) is Lyapunov stable
but (2) is unstable for some c > 0. At first sight this may seem counter-intuitive
because in this case friction has a destabilizing effect.

Lyapunov’s criterion can be adapted to dissipative stability. In this version of
the criterion the function α can change sign and α+ denotes its positive part.

Proposition 1. Assume that α ∈ L1(R/TZ) satisfies∫ T

0

α ≥ 0 and 0 < T

∫ T

0

α+ ≤ 4.

Then (1) is stable in the dissipative sense.
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To prepare the proof of this result, let us introduce some terminology inspired by
degree theory. The functions α0, α1 ∈ L1(R/TZ) will be called homotopic if there
exists a continuous family {αλ}λ∈[0,1] in L1(R/TZ) such that the bi-parametric
family of equations

ẍ+ cẋ+ αλ(t)x = 0, λ ∈ [0, 1], c > 0 (5)

has no periodic solutions of period 2T excepting x ≡ 0.
The continuity of the family {αλ} means that, for each λ ∈ [0, 1],

lim
h→0
||αλ+h − αλ||L1(R/TZ) = 0.

The use of the double period 2T will be essential to establish a link between homo-
topy and stability.

Lemma 2.1. Assume that α0 and α1 are homotopic and the equation (1) is stable
in the dissipative sense for α = α0. Then the equation for α = α1 is also stable in
the dissipative sense.

Proof. It is a consequence of general results (see [9, 2, 11]) but we present a sketch
to show how these results are adapted to our concrete equation. Let X(t) be the
matrix solution of

Ẋ =

(
0 1

−α(t) −c

)
X, X(0) = I,

where I denotes the 2× 2 identity matrix. From Jacobi-Liouville formula we know
that

detX(T ) = e−cT .

Then it is not hard to deduce that (2) is asymptotically stable if and only if the
trace of the monodromy matrix X(T ) satisfies

|tr X(T )| < 1 + e−cT .

In the case of equality, |tr X(T )| = 1 + e−cT , the equation (2) has a non-trivial 2T -
periodic solution. Let us now take into account the dependence of α with respect to
the parameter. The continuity of {αλ} implies that the function ∆(λ) = tr X(T, λ),
λ ∈ [0, 1], is continuous. From the assumptions, |∆(0)| < 1 + e−cT and |∆(λ)| 6=
1 + e−cT . We conclude that |∆(1)| < 1 + e−cT .

Proof of Proposition 1. In view of the Lemma it will be sufficient to prove that the
function α is homotopic to a constant function α0 with 0 < α0 ≤ 4

T 2 . We consider
the family

αλ = λα+ (1− λ)α0, λ ∈ [0, 1]

and assume, by a contradiction argument, that x(t) is a non-trivial 2T -periodic
solution of (5). We distinguish two cases.

Case (i). x(t) never vanishes

We can divide (5) by x(t) and integrate from t = 0 to t = 2T . After integration
by parts,

−
∫ 2T

0

ẋ2

x2
=

∫ 2T

0

(
ẍ

x
+ c

ẋ

x
) =

∫ 2T

0

αλ ≥ 0.

This is impossible unless ẋ ≡ 0. In such a case x(t) should be constant and, from

the equation, αλ ≡ 0. This is not compatible with the assumption
∫ T
0
α+ > 0.
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Case (ii). x(t) vanishes somewhere

Assume that x(τ) = 0 for some τ ∈ R. The uniqueness for the initial value
problem associated to (5) implies that ẋ(τ) 6= 0. In consequence, x(τ) = x(τ+2T ) =
0 and ẋ(τ) = ẋ(τ + 2T ) 6= 0. The periodicity of x(t) implies the existence of an
intermediate zero τ̂ ∈]τ, τ+2T [. Taking either τ1 = τ , τ2 = τ̂ or τ1 = τ̂ , τ2 = τ+2T ,
we can assume the existence of τ1 < τ2 ≤ τ1 + T such that x(τ1) = x(τ2) = 0. Let
us now consider the function y(t) = e

c
2 tx(t). It satisfies

ÿ + [αλ(t)− c2

4
]y = 0, y(τ1) = y(τ2) = 0.

We multiply this equation by y(t) and integrate by parts over the interval I =
[τ1, τ2], to obtain ∫

I

ẏ2 =

∫
I

(αλ −
c2

4
)y2 <

∫
I

α+
λ y

2.

Next we invoke the inequality of Sobolev type

||ϕ̇||2L2(I) ≥
4

|I|
||ϕ||2L∞(I),

valid for any function ϕ ∈ H1
0 (I). See [18]. In particular, since the length of the

interval satisfies |I| ≤ T , for ϕ = y

4

T
||y||2L∞(I) < (

∫
I

α+
λ )||y||2L∞(I).

This last inequality is not compatible with the assumption
∫ T
0
α+ ≤ 4

T because∫
I

α+
λ ≤

∫ T

0

α+
λ ≤

∫ T

0

(λα+ + (1− λ)α0) ≤ 4

T
.

Remark 1. Using the ideas of Zhang and Li in [18] this proof can be modified to
obtain Lp-criteria (p > 1) for dissipative stability.

To finish this Section it may be worth to observe that dissipative stability is
not sufficient to guarantee the asymptotic stability of the more general class of
dissipative equations

ẍ+ c(t)ẋ+ α(t)x = 0, (6)

where c = c(t) is a positive and T -periodic function, say c ∈ L1(R/TZ). We will
construct an example in the next Section.

3. Two examples. First we will construct a function α(t) such that the equation
(1) is stable in the Lyapunov sense but the equation (2) is unstable for some c > 0.
The second example will show that dissipative stability does not extend to time
dependent friction.
First construction. Let us take a sequence of non-negative functions δn ∈ L1(R/TZ)
with the property ∫ T

0

δnφ→ φ(0) for each φ ∈ C(R/TZ).

We consider the equation

ẍ+ cẋ+ (ω2 + aδn(t))x = 0, (7)
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and we are going to select positive constants ω∗, a∗ and c∗ such that, for large n,
(7) is stable if c = 0, ω = ω∗, a = a∗ and unstable if c = c∗, ω = ω∗, a = a∗.

After the change of variables y = e
c
2 tx the equation is transformed to

ÿ + (β2 + aδn(t))y = 0, (8)

where β =
√
ω2 − c2

4 . We are assuming ω > c
2 . Let Mn be the monodromy matrix

of (8) for the initial time t0 = 0. The discriminant of (8) can be computed as the
trace of Mn and it will be denoted by Dn = tr(Mn). Sometimes it will be convenient
to interpret Dn = Dn(c) as a function of c, for fixed ω and a. We are interested in
the inequalities, for large n,

|Dn(0)| < 2, Dn(c∗) > 2 cosh(
c∗
2
T ). (9)

At this point it is convenient to recall the proof of Lemma 2.1.
The sequence of functions δn converges in a weak sense to a periodic Dirac

measure. This measure is denoted by δ = δ(t) and it is defined rigorously as the
functional on C(R/TZ),

φ 7→ 〈δ, φ〉 = φ(0).

Letting n→∞ at (8) we obtain

ÿ + (β2 + aδ(t))y = 0. (10)

This is an equation of the type considered in [10], although the notation has been
changed. It can be interpreted as a classical equation with periodic impulses.
Namely,

ÿ + β2y = 0, t 6= nT, ẏ(nT+) = ẏ(nT−)− ay(nT ), n ∈ Z.

The monodromy matrix from t0 = 0− to t1 = T− is

M =

(
cos(βT )− a sin(βT )

β
sin(βT )

β

−β sin(βT )− a cos(βT ) cos(βT )

)
.

By continuous dependence it is possible to prove that Mn converges to M . See [10]
for more details. The discriminant of (10) is

D = 2 cos(βT )− a sin(βT )

β
.

Sometimes D will be interpreted as a function of certain parameters, D = D(c),
D = D(c, ω),... As a first step we fix the frequency ω = ω0 by the formula

ω0T = 2π.

After expanding in powers of c,

D(c) = 2 +
aT 3

32π2
c2 + · · · , 2 cosh(

c

2
T ) = 2 +

T 2

4
c2 + · · ·

We select a large number a∗ and a small c∗ so that D(c∗) > 2 cosh( c∗2 T ) if a = a∗.
The parameters have been chosen appropriately in order to adjust the discriminants
to the conditions D(0, ω0) = 2, D(c∗, ω0) > 2 cosh( c∗2 T ). The last step is to define
the parameter ω∗ = ω0 + ε where ε is positive and small enough. Then −2 <
D(0, ω∗) < 2, D(c∗, ω∗) > 2 cosh( c∗2 T ). The inequalities (9) are a consequence of
the continuous dependence.
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It is convenient to observe that the functions δn can be selected in the class of
real analytic positive functions,

δn ∈ Cω(R/TZ), δn(t) > 0 for each t ∈ R.

Also, the previous construction provides additional information on the Floquet mul-
tipliers, denoted by µ1, µ2. For ω = ω∗, a = a∗ the equation (7) is elliptic (µ1 = µ2,
|µ1| = 1, µ1 6= ±1) if c = 0 and hyperbolic (|µ1| < 1 < |µ2|) if c = c∗.

Second construction. Before presenting a concrete example, it is convenient to
perform some general computations on the equation (6). Let us split the function c

as c = c+ c̃ with c = 1
T

∫ T
0
c. Then we can define the change of variables y = e

C(t)
2 x

where Ċ = c̃. The equation (6) is transformed in

ÿ + cẏ + [α(t)− cc̃(t)

2
− c̃(t)2

4
− ċ(t)

2
]y = 0. (11)

The stability properties of the equations (6) and (11) are the same because C(t) is
continuous and periodic. In particular this function and its derivative are bounded
and the change of variables preserves stability and asymptotic stability.

In view of the previous computations we make a choice of c(t) and α(t). Define

c = 1, c̃(t) = ε sin t, α(t) =
c̃(t)

2
+
ċ(t)

2
=
ε

2
(sin t+ cos t),

where ε > 0 will be adjusted. For the period T = 2π,∫ T

0

α = 0, T

∫ T

0

α+ = πε

∫ 2π

0

(sin t+ cos t)+ = 2
√

2πε.

Then α satisfies the assumptions of Proposition 1 if πε ≤
√

2. Under this condition
the equation

ẍ+
ε

2
(sin t+ cos t)x = 0

is stable in the dissipative sense. In contrast, the equation with non-constant posi-
tive friction

ẍ+ (1 + ε sin t)ẋ+
ε

2
(sin t+ cos t)x = 0

is unstable.
To prove the instability we observe that this last equation is in the class (6) and

the equivalent equation in the class (11) is

ÿ + ẏ − ε2 sin2 t

4
y = 0.

We will prove that there are unbounded solutions. Let y(t) be the solution with
initial conditions y(0) = 1, ẏ(0) = 0. The theory of differential inequalities for
higher order equations (see Section 15 in [17]) implies that y(t) ≥ 1, ẏ(t) ≥ 0 for
each t ≥ 0. After integrating the equation over the interval [0, t] we obtain

ẏ(t) + y(t) ≥ 1 +

∫ t

0

ε2 sin2 s

4
ds→ +∞ as t→ +∞.
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4. A class of linear systems in the plane. Let us now consider the system (3)
where the coefficients aij belong to L1(R/TZ) and satisfy

a11 ≥ 0, a22 ≥ 0 (12)

a12(t) ≥ δ, a21(t) ≥ δ a.e. t ∈ R (13)

for some δ > 0.
With the choice x1 = ẋ, x2 = x, the equations (1) and (2) are in this class when

α(t) is positive.
Next we present an adaptation of Lyapunov’s criterion to this setting.

Proposition 2. In the previous conditions assume also that the inequality below
holds (∫ T

0

a12

)1/2(∫ T

0

a21

)1/2

+
1

2

∫ T

0

|a11 − a22| ≤ 2. (14)

Then the system (3) is stable. Moreover, it is asymptotically stable if a11 +a22 > 0.

In the case a11 = a22 = 0 the previous result is essentially contained in Lemma
5.2 of [14]. The proof in that paper employed the same ideas of the previous proof of
Proposition 1. We will present a different proof for Proposition 2 which is somehow
related to the proof of Lemma 3.4 in [12].

As in the previous Section it will be convenient to introduce homotopies. We
consider families of systems

ẋ = Aλ(t)x, λ ∈ [0, 1] (15)

where {Aλ}λ∈[0,1] is a continuous matrix in L1(R/TZ) whose coefficients

Aλ(t) =

(
−a11(t, λ) −a12(t, λ)
a21(t, λ) −a22(t, λ)

)
satisfy the conditions (12) and (13) for each λ.

The family {Aλ} defines a homotopy when the system (15) has no 2T -periodic
solutions excepting x ≡ 0. The same type of reasoning as in Lemma 2.1 allows to
prove that stability is preserved by homotopies. This is also the case for asymptotic
stability whenever a11(·, λ) + a22(·, λ) > 0 for each λ ∈ [0, 1].

Another tool for the proof will be the argument function associated to each
non-trivial solution. This argument will be defined with respect to a system of
elliptic-polar coordinates in R2 \ {0},

x1 =
√
µr cos θ, x2 =

1
√
µ
r sin θ,

where µ > 0 is a parameter that will be determined later. Given (x1(t), x2(t)),
non-trivial solution of (3), there is an absolutely continuous branch of the argument
θ = θ(t) satisfying the equation

θ̇ = µa21(t) cos2 θ +
1

µ
a12(t) sin2 θ + (a11(t)− a22(t)) cos θ sin θ. (16)

Note that θ(t) also depends continuously upon µ but this dependence will not be
made explicit.

An important property of this argument is that its crossings with the lines θ =
mπ

2 , m ∈ Z, are always positive. This means that (t − t0)(θ(t) − mπ
2 ) > 0 if

θ(t0) = mπ
2 and |t−t0| > 0 is small. In terms of the Cartesian coordinates this means

that the solution (x1(t), x2(t)) crosses the axes in the counter-clockwise sense. To
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prove it assume for instance that x1(t0) = 1 and x2(t0) = 0. Then d
dt (e

A22(t)x2(t)) =

a21(t)eA22(t)x1(t) > 0 almost everywhere in a small neighbourhood of t0. Here A22

is a primitive of a22. The conclusion follows because the function eA22(t)x2(t) is
increasing around t0.

We are ready for the proof.

Proof of Proposition 2. Let us start with the

Claim. The system (3) has no 2T -periodic solutions (excepting x ≡ 0) if the
conditions (12), (13) and (14) hold.

Let us assume, by a contradiction argument, that (x1(t), x2(t)) is a non-trivial
2T -periodic solution. Then there exists an integer k ∈ Z such that for every t ∈ R,

θ(t+ 2T ) = θ(t) + 2πk. (17)

The above discussions on the crossing with the axes allow to deduce that k should
be non-negative. We distinguish two cases.
Case i) k = 0

The solution (x1(t), x2(t)) must lie in one open quadrant, for otherwise some
crossing with the axes should be negative. There are two possibilities, either x1(t) ·
x2(t) > 0 for every t ∈ R or x1(t) · x2(t) < 0. In the first case we divide the first
equation by x1 and integrate over a period to obtain

−a11 =
1

T

∫ T

0

a12
x2
x1
.

This identity is not consistent with (12) and (13). In the second case we divide
the second equation by x2 and integrate in order to obtain a second inconsistent
identity. We have proved that (17) cannot hold for k = 0.
Case ii) k > 0

The sets

C = {t ∈ R : | sin θ(t)| < | cos θ(t)|}, S = {t ∈ R : | cos θ(t)| < | sin θ(t)|}

have infinitely many connected components. In particular, for each m ∈ Z there are
intervals Im =]t0, t1[ and Jm =]τ0, τ1[ which are connected components of C and S
respectively and satisfy

θ(t0) = (m− 1

4
)π, θ(t1) = (m+

1

4
)π, θ(τ0) = (m+

1

4
)π, θ(τ1) = (m+

3

4
)π.

Since the crossings with the axes are positive it is clear that these components are
unique, although the sets C and S could have additional components of different
nature. The condition (17) can be invoked to infer that the diameter of the set
Im ∪ Jm ∪ Im+1 ∪ Jm+1 cannot be greater than 2T .

From the equation (16) we deduce that the inequality below holds on the interval
Im,

θ̇ < Dµ(t) cos2 θ,

where Dµ := µa21 + 1
µa12 + |a11 − a22|. Then

2 =

∫ (m+ 1
4 )π

(m− 1
4 )π

dθ

cos2 θ
<

∫
Im

Dµ.
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Analogous inequalities can be obtained on Jm. Therefore,

8 <

∫
Im∪Jm∪Im+1∪Jm+1

Dµ ≤
∫ 2T

0

Dµ.

For the choice µ =
( ∫ T

0
a12∫ T

0
a21

)1/2
we conclude that

4 < 2

(∫ T

0

a12

)1/2(∫ T

0

a21

)1/2

+

∫ T

0

|a11 − a22|

and this is against (14). Note that this value of µ minimizes Dµ.
The claim has been proved and we are going to apply it to the family (15) with

Aλ(t) = (1− λ)A(t) + λA,

where A is the averaged constant matrix

(
−a11 −a12
a21 −a22

)
. The coefficients of Aλ

satisfy (12) and (13). Also, from |a11 − a22| ≤ 1
T

∫ T
0
|a11 − a22| we observe that the

assumption (14) also holds. From the claim we deduce that the family (15) has no
2T -periodic solutions excepting x ≡ 0. The proof is complete because the system
of constant coefficients ẋ = Ax is stable in all cases and asymptotically stable when
a11 + a22 > 0.

5. Asymptotic stability of coexistence states. Consider the system

u̇ = u(a(t)− bu− cv), v̇ = v(d(t) + eu− fv), u > 0, v > 0, (18)

with a, d ∈ L1(R/TZ) and b, c, e, f positive constants. This particular situation
allows to formulate the results in a more elegant way. At the end of the Section
we will discuss the extension to general systems where all the coefficients are time
dependent. It is convenient to stress that we will be interested in solutions lying in
the first open quadrant, denoted by int(R2

+) =]0,∞[×]0,∞[.
Let E ∈ R2 be the solution of the linear system

ME =

(
a

d

)

with E =

(
E1
E2

)
and M =

(
b c
−e f

)
. The point E can be interpreted as the

equilibrium of the averaged system and it plays an important role in the dynamics
of the periodic system. In fact it is well known that the system (18) has a T -periodic
solution if and only if E ∈ int(R2

+), see [6, 1]. Next we will impose an additional
condition on E in order to guarantee the uniqueness and asymptotic stability of the
periodic solution.

Theorem 5.1. Assume that the equilibrium point satisfies E ∈ int(R2
+) and

T (
√
ceE1E2 +

1

2
(bE1 + fE2)) ≤ 2. (19)

Then the system (18) has a unique T -periodic solution and this solution is asymp-
totically stable.
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Remark 2. a) In [1] the condition E ∈ int(R2
+) was reformulated in terms of the

equivalent inequalities

a > 0, −e
b
<
d

a
<
f

c
.

b) I do not know if the periodic solution given by the Theorem is always a global
attractor. In [16] Tineo proved the existence of a globally asymptotically stable
T -periodic solution when E ∈ int(R2

+) and some additional conditions on the coeffi-
cients hold. Note that, in constrast to (19), Tineo’s condition is independent of the
period.
c) The number 2 is optimal in the inequality (19). We will be more precise about
this statement after proving the above result.

Proof of Theorem 5.1. The first step will be to observe that the equilibrium coincides
with the average of any T -periodic solution. Given (u(t), v(t)), T -periodic solution
of (18), we divide the first equation by u and the second by v. After integrating

over a period we obtain the identity M

(
u
v

)
=

(
a

d

)
and therefore

(
u
v

)
= E .

The next step will be to analyze the stability properties of the variational system

ẏ1 = (a(t)− bu(t)− cv(t))y1 − u(t)(by1 + cy2), (20)

ẏ2 = (d(t) + eu(t)− fv(t))y2 + v(t)(ey1 − fy2). (21)

As noticed in [4], the change of variables y1 = u(t)x1, y2 = v(t)x2 preserves the
stability properties and transforms the linear system into

ẋ1 = −bu(t)x1 − cv(t)x2, ẋ2 = eu(t)x1 − fv(t)x2. (22)

This new system is in the class considered in Section 4. In order to apply Proposition
2 we observe that ∫ T

0

|bu(t)− fv(t)|dt ≤ T (bu+ fv)

and u = E1, v = E2. The condition (14) is implied by the inequality (19). At this
point we know, by the linearization principle, that all T -periodic solutions of (18) are
asymptotically stable. It remains to prove that there is only one of these solutions
and this follows from a degree argument. Similar proofs can be found in the recent
paper [15]. With respect to degree we follow the notation and terminology of [13].
Let P : int(R2

+)→ int(R2
+) be the Poincaré map associated to (18). The condition

E ∈ int(R2
+) implies the existence of Ω, an open and bounded subset of the plane,

satisfying: Ω ⊂ int(R2
+), all fixed points of P lie in Ω, deg(id − P,Ω) = 1. See [1]

for more details. Asymptotically stable T -periodic solutions produce isolated fixed
points of P whose fixed point index is one. In our situation this is the case for all
fixed points. In particular there is a finite number of them, say ξ1, . . . , ξr ∈ Ω with
I(P, ξk) = 1 for each k = 1, . . . , r. From the additivity property of degree,

1 = deg(id− P,Ω) =

r∑
k=1

I(P, ξk),

and we must conclude that r = 1.

Once we have completed the proof of the Theorem we can explain why the
number 2 is optimal in the inequality (19). Let us fix δ > 0 and select an analytic,
positive and T -periodic function αδ(t) such that the equation (1) with α = αδ is
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unstable and T
∫ T
0
αδ < 4+δ. This function exists because the number 4 is optimal

in Lyapunov’s criterion. Indeed it can be assumed that the equation

ẍ+ αδ(t)x = 0 (23)

is hyperbolic, meaning that the Floquet multipliers do not lie in S1. We consider a
system of the type (18) with c = e = 1 and b = f = ε. The functions a(t) and b(t)
are adjusted so that u(t) = 1, v(t) = αδ(t) is a T -periodic solution of (18). Then
E1 = u = 1, E2 = v = αδ. The linearized system is equivalent to (22),

ẋ1 = −εx1 − αδ(t)x2, ẋ2 = x1 − εαδ(t)x2.

For ε = 0 we obtain a system equivalent to the equation (23) with x = x2. Due to
the hyperbolicity of this equation we deduce that the perturbed system is unstable
for small ε. The quantity appearing in (19) becomes

T (α
1/2
δ +

1

2
ε(1 + αδ))→ Tα

1/2
δ , as ε→ 0.

Since Tα
1/2
δ < (4 + δ)1/2, we have constructed a system of the type (18) having an

unstable T -periodic solution and such that the inequality (19) holds if 2 is replaced
by (4 + δ)1/2.

To finish this Section we notice that the previous techniques can be applied to a
general prey-predator system of the type described by the equations in (4), where
a, d ∈ L1(R/TZ) and the coefficients b, c, e, f are positive functions in C(R/TZ).
It is well known that the existence of a T -periodic solution of (4) is equivalent to
the linear instability of the trivial and semi-trivial states. See [8] for more details.
From now on we assume that (u(t), v(t)) is a T -periodic solution. The information
on the average is now less precise. After integrating in (4) we obtain the identities

a =
1

T

∫ T

0

bu+
1

T

∫ T

0

cv, d = − 1

T

∫ T

0

eu+
1

T

∫ T

0

fv.

In consequence the point

(
u
v

)
will belong to the set C composed by all points

E =

(
E1
E2

)
∈ int(R2

+) satisfying the linear inequalities

bLE1 + cLE2 ≤ a ≤ bME1 + cME2,

−eME1 + fLE2 ≤ d ≤ −eLE1 + fME2.
Here bL = min[0,T ] b(t), bM = max[0,T ] b(t),...

In particular C is convex and non-empty. The same techniques of the previous
proof can be applied to the system (4) if we assume that the inequality TΦ(E1, E2) ≤
2 is valid for each E ∈ C. Here Φ is the function

Φ(E1, E2) :=
√
cMeME1E2 +

1

2
(bME1 + fME2).

Taking into account that this function is increasing in each variable and the ge-
ometry of the set C it is not hard to observe the the maximum of Φ over C
must be reached on a certain segment contained in the boundary. More precisely,
maxC Φ = maxC∩` Φ, where ` is the straight line with equation bLE1 + eLE2 = a. In
this way we have obtained an extension of Theorem 5.1.
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Theorem 5.2. Assume that the system (4) has a T -periodic solution and the in-
equality

TΦ(E1, E2) ≤ 2

holds for each E ∈ C ∩ `. Then this T -periodic solution is unique and asymptotically
stable.

6. Turing instabilities for coexistence states. In [4] Dancer constructed an
example of a prey-predator system having a T -periodic solution which is asymp-
totically stable as a solution of the o.d.e. system but it becomes unstable when it
is interpreted as a solution of a reaction-diffusion system. In this Section we will
review Dancer’s example and it will be observed that it is somehow linked to the
phenomenon of dissipative instability described in the first Example of Section 3.

Following along the lines of the previous Section we consider the system (18) and
the reaction-diffusion system

∂u

∂t
= r1∆xu+ u(a(t)− bu− cv),

∂v

∂t
= r2∆xv + v(d(t) + eu− fv),

∂u

∂n
=
∂v

∂n
= 0 on ∂Ω× [0,∞[,

where u = u(x, t), v = v(x, t) are functions defined on Ω × [0,∞[, Ω ⊂ Rm is a
smooth bounded domain and the numbers r1 and r2 are positive.

Since the boundary conditions are of Neumann type, every T -periodic solution
of (18) is also a periodic solution of the p.d.e. system. As we saw in the previous
Section, the variational system associated to this solution is

Ẏ = A(t)Y, Y =

(
y1
y2

)
, (24)

where A(t) is the 2× 2 periodic matrix defined by the equations (20) and (21).
Let R = diag(r1, r2) be the diagonal matrix determined by the diffusion coeffi-

cients and let us assume that for some λ > 0 the system

Ẏ = (A(t)− λR)Y (25)

has a Floquet multiplier outside the unit disk, |µ| > 1. According to [4] we know
that the solution (u(t), v(t)) will be unstable with respect to the p.d.e. system on
some domain Ω. To explain why the system (25) plays a role we assume that Y∗(t)
is a non-trivial solution of (25) with Y∗(t + T ) = µY∗(t). After selecting a domain
Ω such that the Neumann problem

∆φ+ λφ = 0 in Ω,
∂φ

∂n
= 0 on ∂Ω

has a non-trivial solution, we observe that ξ(x, t) = φ(x)Y∗(t) is a solution of the
linearization of the parabolic system. Moreover, ξ(x, t+ T ) = µξ(x, t).

Motivated by the above discussions we construct a system of the type (18) having
a T -periodic solution such that the Floquet multipliers of (24) satisfy |µi| < 1,
i = 1, 2 and the multipliers of (25) satisfy |µ1| < 1 < |µ2| for some λ > 0.

The change of variables y1 = u(t)x1, y2 = v(t)x2 preserves the Floquet multipli-
ers and transforms (24) into the system

Ẋ = B(t)X, X =

(
x1
x2

)
, (26)
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where B(t) is defined by (22). Similarly this change of variables transforms (25)
into

Ẋ = (B(t)− λR)X. (27)

Next we go back to the first example in Section 3 and select a positive, analytic
and T -periodic function α(t) such that (1) is elliptic and there exists c∗ > 0 such
that ẍ+ c∗ẋ+α(t)x = 0 is hyperbolic. To define the system (18) we take b = f = ε
where ε > 0 is a small parameter, c = e = 1. The coefficients a(t) and d(t) are
computed after imposing that u(t) ≡ 1, v(t) = α(t) is a T -periodic solution of (18).
Finally, the diffusion coefficients in the p.d.e. are r1 = ε, r2 = 1. The system (26)
is defined by the equations

ẋ1 = −εx1 − α(t)x2, ẋ2 = x1 − εα(t)x2. (28)

The corresponding multipliers µ1,ε, µ2,ε are the roots of a quadratic polynomial
with real coefficients. These coefficients are continuous functions of the parameter
ε. For ε = 0 we obtain the equation (1) with x = x2 and therefore the multipliers
are complex conjugate numbers. In consequence this property is also valid for small
ε, µ2,ε = µ1,ε, µ1,ε ∈ C \ R. The application of Jacobi-Liouville formula to the
system (28) implies that

|µ1,ε|2 = µ1,ε · µ2,ε = e−ε(T+
∫ T
0
α) < 1.

Therefore the system (28) is asymptotically stable and the same can be said about
(26).

Analogously the system (27) is defined by the equations

ẋ1 = −ε(1 + λ)x1 − α(t)x2, ẋ2 = x1 − (εα(t) + λ)x2. (29)

For ε = 0 and λ = c∗ we obtain the equation ẍ+ c∗ẋ+ α(t)x = 0 with x = x2. We
know that we are in the hyperbolic case and by continuous dependence the system
(29) will have a multiplier outside the unit circle when ε is small and λ = c∗
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