In this work, the fully parabolic chemotaxis-competition system with loop
{∂tu1=d1Δu1−∇⋅(u1χ11(v1)∇v1)−∇⋅(u1χ12(v2)∇v2)+μ1u1(1−u1−a1u2),∂tu2=d2Δu2−∇⋅(u2χ21(v1)∇v1)−∇⋅(u2χ22(v2)∇v2)+μ2u2(1−u2−a2u1),∂tv1=d3Δv1−λ1v1+h1(u1,u2),∂tv2=d4Δv2−λ2v2+h2(u1,u2)
is considered under the homogeneous Neumann boundary condition, where x∈Ω,t>0, Ω⊂Rn(n≤3) is a bounded domain with smooth boundary. For any regular nonnegative initial data, it is proved that if the parameters μ1,μ2 are sufficiently large, then the system possesses a unique and global classical solution for n≤3. Specifically, when n=2, the global boundedness can be attained without any constraints on μ1,μ2.
Citation: Chun Huang. Global boundedness for a chemotaxis-competition system with signal dependent sensitivity and loop[J]. Electronic Research Archive, 2021, 29(5): 3261-3279. doi: 10.3934/era.2021037
[1] | Chun Huang . Global boundedness for a chemotaxis-competition system with signal dependent sensitivity and loop. Electronic Research Archive, 2021, 29(5): 3261-3279. doi: 10.3934/era.2021037 |
[2] | Rong Zhang, Liangchen Wang . Global dynamics in a competitive two-species and two-stimuli chemotaxis system with chemical signalling loop. Electronic Research Archive, 2021, 29(6): 4297-4314. doi: 10.3934/era.2021086 |
[3] | Chang-Jian Wang, Yuan-Hao Zang . Boundedness of solutions in a two-species chemotaxis system. Electronic Research Archive, 2025, 33(5): 2862-2880. doi: 10.3934/era.2025126 |
[4] | Zihan Zheng, Juan Wang, Liming Cai . Global boundedness in a Keller-Segel system with nonlinear indirect signal consumption mechanism. Electronic Research Archive, 2024, 32(8): 4796-4808. doi: 10.3934/era.2024219 |
[5] | Ling Xue, Min Zhang, Kun Zhao, Xiaoming Zheng . Controlled dynamics of a chemotaxis model with logarithmic sensitivity by physical boundary conditions. Electronic Research Archive, 2022, 30(12): 4530-4552. doi: 10.3934/era.2022230 |
[6] | Chang-Jian Wang, Yu-Tao Yang . Boundedness criteria for the quasilinear attraction-repulsion chemotaxis system with nonlinear signal production and logistic source. Electronic Research Archive, 2023, 31(1): 299-318. doi: 10.3934/era.2023015 |
[7] | Meng Gao, Xiaohui Ai . A stochastic Gilpin-Ayala nonautonomous competition model driven by mean-reverting OU process with finite Markov chain and Lévy jumps. Electronic Research Archive, 2024, 32(3): 1873-1900. doi: 10.3934/era.2024086 |
[8] | Changjian Wang, Jiayue Zhu . Global dynamics to a quasilinear chemotaxis system under some critical parameter conditions. Electronic Research Archive, 2024, 32(3): 2180-2202. doi: 10.3934/era.2024099 |
[9] | Kai Gao . Global boundedness of classical solutions to a Keller-Segel-Navier-Stokes system involving saturated sensitivity and indirect signal production in two dimensions. Electronic Research Archive, 2023, 31(3): 1710-1736. doi: 10.3934/era.2023089 |
[10] |
Jiayi Han, Changchun Liu .
Global existence for a two-species chemotaxis-Navier-Stokes system with |
In this work, the fully parabolic chemotaxis-competition system with loop
{∂tu1=d1Δu1−∇⋅(u1χ11(v1)∇v1)−∇⋅(u1χ12(v2)∇v2)+μ1u1(1−u1−a1u2),∂tu2=d2Δu2−∇⋅(u2χ21(v1)∇v1)−∇⋅(u2χ22(v2)∇v2)+μ2u2(1−u2−a2u1),∂tv1=d3Δv1−λ1v1+h1(u1,u2),∂tv2=d4Δv2−λ2v2+h2(u1,u2)
is considered under the homogeneous Neumann boundary condition, where x∈Ω,t>0, Ω⊂Rn(n≤3) is a bounded domain with smooth boundary. For any regular nonnegative initial data, it is proved that if the parameters μ1,μ2 are sufficiently large, then the system possesses a unique and global classical solution for n≤3. Specifically, when n=2, the global boundedness can be attained without any constraints on μ1,μ2.
In this paper, we consider the following initial boundary value problem
{∂tu1=d1Δu1−∇⋅(u1χ11(v1)∇v1)−∇⋅(u1χ12(v2)∇v2)+μ1u1(1−u1−a1u2),x∈Ω,t>0,∂tu2=d2Δu2−∇⋅(u2χ21(v1)∇v1)−∇⋅(u2χ22(v2)∇v2)+μ2u2(1−u2−a2u1),x∈Ω,t>0,∂tv1=d3Δv1−λ1v1+h1(u1,u2),x∈Ω,t>0,∂tv2=d4Δv2−λ2v2+h2(u1,u2),x∈Ω,t>0,∂u1∂ν=∂u2∂ν=∂v1∂ν=∂v2∂ν=0,x∈Ω,t>0,u1(x,0)=u10(x),u2(x,0)=u20(x),v1(x,0)=v10(x),v2(x,0)=v20(x),x∈Ω | (1) |
in a bounded domain
0≤u10∈C0(ˉΩ),0≤u20∈C0(ˉΩ),0≤v10∈W1,∞(ˉΩ),0≤v20∈W1,∞(ˉΩ). | (2) |
For the case
When
In summary, for the two-species and two-stimuli chemotaxis system, most of the results are focusing on the case that the chemotactic sensitivity functions are constants and the signal production is linear. Therefore, the objective in the present study is to investigate the global boundedness of solutions for (1) when
We shall suppose throughout this paper that the functions
(H1)
(H2)
(H3)
(H4)
From the above (H3) and (H4), a straight calculation yields
hi(s,τ)−hi(0,0)=Chi(s+τ)fori=1,2. | (3) |
Now we state our main results as follows.
Theorem 1.1. Let
μ1≥max{2K21d1η1+(2n+8)C2h1d3+2K21d3+2K21d4+2,2K21d1η1+(2n+8)C2h2d4+2K21d3+2K21d4+2}, | (4) |
μ2≥max{2K22d2η2+(2n+8)C2h1d3+2K22d3+2K22d4+2,2K22d2η2+(2n+8)C2h2d4+2K22d3+2K22d4+2} | (5) |
with
η1=2(d1+d3)2d1d3+2(d1+d4)2d1d4+2C2h1+2C2h2+1d1,η2=2(d2+d3)2d2d3+2(d2+d4)2d2d4+2C2h1+2C2h2+1d2. | (6) |
Then for all
∥u1(⋅,t)∥L∞(Ω)+∥v1(⋅,t)∥L∞(Ω)+∥u2(⋅,t)∥L∞(Ω)+∥v2(⋅,t)∥L∞(Ω)≤C |
for all
Corollary 1. Let
|χ′ij(s)|≤Lforalls≥0 | (7) |
with some
Remark 1. It is obvious that there exist functions
In this paper, we deal with the quasilinear chemotaxis-competition system with loop. First, we give the local existence and some properties to prepare for the later work. Next, under the condition that
As a preliminary, we first give the local existence and some important estimates of solutions for (1).
Lemma 2.1. Let
u1,u2∈C0(¯Ω×[0,Tmax))∩C2,1(¯Ω×(0,Tmax)),v1,v2∈C0(¯Ω×[0,Tmax))∩C2,1(¯Ω×(0,Tmax)), |
which satisfies
eitherTmax=∞,or||u1(⋅,t)||L∞(Ω)+||u2(⋅,t)||L∞(Ω)→∞ast→Tmax. |
Besides, the solution fulfills
∫Ωu1(x,t)dx≤m1:=max{∫Ωu10(x)dx,|Ω|}forallt∈(0,Tmax) | (8) |
and
∫Ωu2(x,t)dx≤m2:=max{∫Ωu20(x)dx,|Ω|}forallt∈(0,Tmax) | (9) |
as well as
∫t+τt∫Ωu21(x,t)dxds≤κ1:=m1+m1μ1forallt∈[0,Tmax−τ) | (10) |
and
∫t+τt∫Ωu22(x,t)dxds≤κ2:=m2+m2μ2forallt∈[0,Tmax−τ), | (11) |
where
Proof. The local existence of classical solution to (1) can be shown by using well-established methods for chemotaxis problems in [19]. And the relation (8)-(11) can be directly derived by a similar method in [15].
Next, we recall the following lemma (see Lemma 3.4 in [9] or Lemma 2.3 in [1]), which is significant for our latter proof.
Lemma 2.2. Let
∫t+τtf(s)ds≤bforallt∈[0,T−τ) |
and
y′(t)+ay(t)≤f(t)foralmostallt∈(0,T), |
then
y(t)≤max{y(0)+b,ba+2b}forallt∈(0,T), |
where
Based on Lemma 2.1 and Lemma 2.2, we can now derive some basic properties of
Lemma 2.3. Let
∫Ω|∇v1(x,t)|2dx≤M1,∫Ω|∇v2(x,t)|2dx≤M2forallt∈[0,Tmax), | (12) |
∫t+τt∫Ω|Δv1(x,s)|2dxds≤N1,∫t+τt∫Ω|Δv2(x,s)|2dxds≤N2, | (13) |
for all
Proof. Multiplying the third equation in (1) by
12ddt∫Ω|∇v1|2dx+d3∫Ω|Δv1|2dx+λ1∫Ω|∇v1|2dx=−∫Ωh1(u1,u2)Δv1dx≤d32∫Ω|Δv1|2dx+C2h1d3∫Ωu21dx+C2h1d3∫Ωu22dxforallt∈(0,Tmax), |
therefore,
ddt∫Ω|∇v1|2dx+d3∫Ω|Δv1|2dx+2λ1∫Ω|∇v1|2dx≤2C2h1d3∫Ωu21dx+2C2h1d3∫Ωu22dx | (14) |
for all
y1(t):=∫Ω|∇v1(x,t)|2dx,f1(t) |
=2C2h1d3∫Ωu21dx+2C2h1d3∫Ωu22dxforallt∈(0,Tmax), |
we obtain
y′1(t)+2λ1y1(t)+d3∫Ω|Δv1(x,t)|2dx≤f1(t)forallt∈(0,Tmax). | (15) |
Lemma 2.1 and the definition of
∫t+τtf1(s)ds≤c1 | (16) |
with some
y1(t)=∫Ω|∇v1(x,t)|2dx≤c2 | (17) |
with some
y1(t+τ)+2λ1∫t+τty1(s)ds+d3∫t+τt∫Ω|Δv1(x,s)|2dxds≤y1(t)+∫t+τtf1(s)ds≤c1+c2forallt∈[0,Tmax−τ), |
along with the nonnegativity of
To improve the condition that warrants the global boundedness of solution for (1) when
Lemma 2.4. Let
‖φ‖3L3(Ω)≤ϵ‖∇φ‖2L2(Ω)‖φln|φ|‖L1(Ω)+C‖φ‖3L1(Ω)+Cϵ, | (18) |
The following lemma plays an important role in the proof of Corollary 1, and the proof is similar to Lemma 2.5 in [14].
Lemma 2.5. Let
supt∈(0,Tmax)(‖u1(⋅,t)‖Lp(Ω)+‖u2(⋅,t)‖Lp(Ω))<∞. | (19) |
Then
supt>0(‖u1(⋅,t)‖L∞(Ω)+‖u2(⋅,t)‖L∞(Ω)+‖v1(⋅,t)‖L∞(Ω)+‖v2(⋅,t)‖L∞(Ω))<∞. | (20) |
In this section, we first prove the global boundedness of solutions for
To prepare our analysis, we establish several differential inequalities in the following two lemmas..
Lemma 3.1. Let
ddt∫Ωu21dx+d1∫Ω|∇u1|2dx≤2K21d1∫Ωu21|∇v1|2dx+2K21d1∫Ωu21|∇v2|2dx+2μ1∫Ωu21(1−u1)dx, | (21) |
ddt∫Ωu22dx+d2∫Ω|∇u2|2dx≤2K22d2∫Ωu22|∇v1|2dx+2K22d2∫Ωu22|∇v2|2dx+2μ2∫Ωu22(1−u2)dx | (22) |
for all
ddt∫Ω|∇v1|4dx+4λ1∫Ω|∇v1|4dx+d3∫Ω|∇|∇v1|2|2dx≤(2n+8)C2h1d3∫Ω(u21+u22)|∇v1|2dx+2d3∫∂Ω|∇v1|2∂|∇v1|2∂νdSforallt∈(0,Tmax) | (23) |
as well as
ddt∫Ω|∇v2|4dx+4λ2∫Ω|∇v2|4dx+d4∫Ω|∇|∇v2|2|2dx≤(2n+8)C2h2d4∫Ω(u21+u22)|∇v2|2dx+2d4∫∂Ω|∇v2|2∂|∇v2|2∂νdSforallt∈(0,Tmax). | (24) |
Proof. Multiplying the first equation in (1) by
12ddt∫Ωu21dx+d1∫Ω|∇u1|2dx=∫Ωu1χ11(v1)∇v1⋅∇u1dx+∫Ωu1χ12(v2)∇v2⋅∇u1dx+μ1∫Ωu21(1−u1−a1u2)dx≤K1∫Ωu1∇v1⋅∇u1dx+K1∫Ωu1∇v2⋅∇u1dx+μ1∫Ωu21(1−u1−a1u2)dx≤d12∫Ω|∇u1|2dx+K21d1∫Ωu21|∇v1|2dx+K21d1∫Ωu21|∇v2|2dx+μ1∫Ωu21(1−u1)dx |
for all
To derive (23), in light of the third equation in (1) and the identity
14ddt∫Ω|∇v1|4dx=∫Ω(∇v1)3⋅∇v1tdx=d3∫Ω|∇v1|2(12Δ|∇v1|2−|D2v1|2)dx−λ1∫Ω|∇v1|4−∫Ωh1(u1,u2)∇⋅(|∇v1|2∇v1)dx≤d32∫∂Ω|∇v1|2∂|∇v1|2∂νdS−d32∫Ω|∇|∇v1|2|2dx−d3∫Ω|∇v1|2|D2v1|2dx−λ1∫Ω|∇v1|4dx−∫Ωh1(u1,u2)|∇v1|2Δv1dx−∫Ωh1(u1,u2)∇v1⋅∇|∇v1|2dx | (25) |
for all
−∫Ωh1(u1,u2)|∇v1|2Δv1dx≤√nCh1∫Ω(u1+u2)|∇v1|2|D2v1|dx≤d3∫Ω|∇v1|2|D2v1|2dx+nC2h12d3(u21+u22)|∇v1|2dxforallt∈(0,Tmax), | (26) |
and
−∫Ωh1(u1,u2)∇v1⋅∇|∇v1|2dx≤Ch1∫Ω(u1+u2)|∇v1|⋅∇|∇v1|2dx≤d34∫Ω|∇|∇v1|2|2dx+C2h1d3(2u21+2u22)|∇v1|2dxforallt∈(0,Tmax). | (27) |
Consequently, plugging (26) and (27) into (25), we arrive at (23). In addition, (24) can be established in a same manner.
Lemma 3.2. Let
ddt∫Ωu1|∇v1|2dx+∫Ωu1|∇v1|2dx≤3d38∫Ω|∇|∇v1|2|2dx+(2(d1+d3)2d3+C2h1)∫Ω|∇u1|2dx+C2h1∫Ω|∇u2|2dx+(μ1−2λ1+1)∫Ωu1|∇v1|2dx+(2K21d3−μ1+2)∫Ωu21|∇v1|2dx+2K21d3∫Ωu21|∇v2|2dx+d3∫∂Ωu1∂|∇v1|2∂νdSforallt∈(0,Tmax), | (28) |
ddt∫Ωu1|∇v2|2dx+∫Ωu1|∇v2|2dx≤3d48∫Ω|∇|∇v2|2|2dx+(2(d1+d4)2d4+C2h2)∫Ω|∇u1|2dx+C2h2∫Ω|∇u2|2dx+(μ1−2λ2+1)∫Ωu1|∇v2|2dx+(2K21d4−μ1+2)∫Ωu21|∇v2|2dx+2K21d4∫Ωu21|∇v1|2dx+d4∫∂Ωu1∂|∇v2|2∂νdSforallt∈(0,Tmax), | (29) |
ddt∫Ωu2|∇v1|2dx+∫Ωu2|∇v1|2dx≤3d38∫Ω|∇|∇v1|2|2dx+(2(d2+d3)2d3+C2h1)∫Ω|∇u2|2dx+C2h1∫Ω|∇u1|2dx+(μ2−2λ1+1)∫Ωu2|∇v1|2dx+(2K22d3−μ2+2)∫Ωu22|∇v1|2dx+2K22d3∫Ωu22|∇v2|2dx+d3∫∂Ωu2∂|∇v1|2∂νdSforallt∈(0,Tmax), | (30) |
ddt∫Ωu2|∇v2|2dx+∫Ωu2|∇v2|2dx≤3d48∫Ω|∇|∇v2|2|2dx+(2(d2+d4)2d4+C2h2)∫Ω|∇u2|2dx+C2h2∫Ω|∇u1|2dx+(μ2−2λ2+1)∫Ωu2|∇v2|2dx+(2K22d4−μ2+2)∫Ωu22|∇v2|2dx+2K22d4∫Ωu22|∇v1|2dx+d4∫∂Ωu2∂|∇v2|2∂νdSforallt∈(0,Tmax). | (31) |
Proof. Notice that the estimates for (28)-(31) are similar, thereupon, we only consider the priori estimates for (28). Utilizing the first equation and the third equation in (1), one finds
ddt∫Ωu1|∇v1|2dx=∫Ω|∇v1|2u1tdx+2∫Ωu1∇v1⋅∇v1t=−d1∫Ω∇u1⋅∇|∇v1|2dx+∫Ωu1χ11(v1)∇v1⋅∇|∇v1|2dx+∫Ωu1χ12(v2)∇v2⋅∇|∇v1|2dx+μ1∫Ωu1|∇v1|2(1−u1−a1u2)dx+d3∫Ωu1(Δ|∇v1|2−2|D2v1|2)dx−2λ1∫Ωu1|∇v1|2dx+2∫Ωu1(∂h1(u1,u2)∂u1∇u1+∂h1(u1,u2)∂u2∇u2)⋅∇v1dx≤−(d1+d3)∫Ω∇u1⋅∇|∇v1|2dx+∫Ωu1χ11(v1)∇v1⋅∇|∇v1|2dx+∫Ωu1χ12(v2)∇v2⋅∇|∇v1|2dx+(μ1−2λ1)∫Ωu1|∇v1|2dx−μ1∫Ωu21|∇v1|2dx+d3∫∂Ωu1∂|∇v1|2∂νdS+2∫Ω∂h1(u1,u2)∂u1u1∇u1⋅∇v1dx+2∫Ω∂h1(u1,u2)∂u2u1∇u2⋅∇v1dx | (32) |
for all
−(d1+d3)∫Ω∇u1⋅∇|∇v1|2dx+∫Ωu1χ11(v1)∇v1⋅∇|∇v1|2dx+∫Ωu1χ12(v2)∇v2⋅∇|∇v1|2dx≤d38∫Ω|∇|∇v1|2|2dx+2(d1+d3)2d3∫Ω|∇u1|2dx+d38∫Ω|∇|∇v1|2|2dx+2K21d3∫Ωu21|∇v1|2dx+d38∫Ω|∇|∇v1|2|2dx+2K21d3∫Ωu21|∇v2|2dxforallt∈(0,Tmax) | (33) |
and
2∫Ω∂h1(u1,u2)∂u1u1∇u1⋅∇v1dx+2∫Ω∂h1(u1,u2)∂u2u1∇u2⋅∇v1dx≤C2h1∫Ω|∇u1|2dx+∫Ωu21|∇v1|2dx+C2h1∫Ω|∇u2|2dx+∫Ωu21|∇v1|2dx | (34) |
for all
With Lemma 3.1 and Lemma 3.2 at hand, now, relying on a series of estimates, under an additional largeness assumption on
Lemma 3.3. Let
∫Ωu21dx+∫Ωu22dx+∫Ω|∇v1|4dx+∫Ω|∇v2|4dx≤C1forallt∈(0,Tmax). | (35) |
Proof. It follows from Lemma 3.1 and Lemma 3.2 that
ddt(η1∫Ωu21+η2∫Ωu22+∫Ω|∇v1|4+∫Ω|∇v2|4+∫Ωu1|∇v1|2+∫Ωu1|∇v2|2+∫Ωu2|∇v1|2+∫Ωu2|∇v2|2)+∫Ωu21+∫Ωu22+∫Ω|∇u1|2+∫Ω|∇u2|2+4λ1∫Ω|∇v1|4+4λ2∫Ω|∇v2|4+d34∫Ω|∇|∇v1|2|2+d44∫Ω|∇|∇v2|2|2+∫Ωu1|∇v1|2+∫Ωu1|∇v2|2+∫Ωu2|∇v1|2+∫Ωu2|∇v2|2≤(2η1μ1+1)∫Ωu21−2η1μ1∫Ωu31+(2η2μ2+1)∫Ωu22−2η2μ2∫Ωu32+(μ1−2λ1+1)∫Ωu1|∇v1|2+(μ1−2λ2+1)∫Ωu1|∇v2|2+(μ2−2λ1+1)∫Ωu2|∇v1|2+(μ2−2λ2+1)∫Ωu2|∇v2|2+2d3∫∂Ω|∇v1|2∂|∇v1|2∂ν+2d4∫∂Ω|∇v2|2∂|∇v2|2∂ν+d3∫∂Ωu1∂|∇v1|2∂ν+d4∫∂Ωu1∂|∇v2|2∂ν+d3∫∂Ωu2∂|∇v1|2∂ν+d4∫∂Ωu2∂|∇v2|2∂ν+(2K21d1η1+(2n+8)C2h1d3+2K21d3+2K21d4+2−μ1)∫Ωu21|∇v1|2+(2K21d1η1+(2n+8)C2h2d4+2K21d3+2K21d4+2−μ1)∫Ωu21|∇v2|2+(2K22d2η2+(2n+8)C2h1d3+2K22d3+2K22d4+2−μ2)∫Ωu22|∇v1|2+(2K22d2η2+(2n+8)C2h2d4+2K22d3+2K22d4+2−μ2)∫Ωu22|∇v2|2. | (36) |
Making use of the Young inequality, for any
(μ1−2λ1+1)∫Ωu1|∇v1|2dx≤ϵ1∫Ω|∇v1|4dx+(μ1−2λ1+1)24ϵ1∫Ωu21dx,(μ1−2λ2+1)∫Ωu1|∇v2|2dx≤ϵ2∫Ω|∇v2|4dx+(μ1−2λ2+1)24ϵ2∫Ωu21dx,(μ2−2λ1+1)∫Ωu2|∇v1|2dx≤ϵ3∫Ω|∇v1|4dx+(μ2−2λ1+1)24ϵ3∫Ωu22dx,(μ2−2λ2+1)∫Ωu2|∇v2|2dx≤ϵ4∫Ω|∇v2|4dx+(μ2−2λ2+1)24ϵ4∫Ωu22dx. | (37) |
According to Lemma 4.2 in [7], there exists
∂|∇vi|2∂ν≤C|∇vi|2,i=1,2,forallt∈(0,Tmax),x∈∂Ω. | (38) |
And thanks to the boundary trace embedding:
W1,2(Ω)↪↪W12,2(Ω)↪L2(∂Ω), | (39) |
which warrants that for any
∫∂Ωϕ2dS≤ϵ5∫Ω|∇ϕ|2dx+C(ϵ5)(∫Ω|ϕ|dx)2 | (40) |
holds for all
2d3∫∂Ω|∇v1|2∂|∇v1|2∂ν+2d4∫∂Ω|∇v2|2∂|∇v2|2∂ν+d3∫∂Ω(u1+u2)∂|∇v1|2∂ν+d4∫∂Ω(u1+u2)∂|∇v2|2∂ν≤2d3C∫∂Ω|∇v1|4+2d4C∫∂Ω|∇v2|4+d3C∫∂Ω(u1+u2)|∇v1|2+d4C∫∂Ω(u1+u2)|∇v2|2≤C(2d3+2d23)∫∂Ω|∇v1|4+C(2d4+2d24)∫∂Ω|∇v2|4+2C∫∂Ωu21+2C∫∂Ωu22≤ˆϵ∫Ω|∇|∇v1|2|2+C1(ˆϵ)(∫Ω|∇v1|2)2+ˆϵ∫Ω|∇|∇v2|2|2+C2(ˆϵ)(∫Ω|∇v2|2)2+ˆϵ∫Ω|∇u1|2+C3(ˆϵ)(∫Ωu1)2+ˆϵ∫Ω|∇u2|2+C4(ˆϵ)(∫Ωu2)2, | (41) |
where
ddt(η1∫Ωu21+η2∫Ωu22+∫Ω|∇v1|4+∫Ω|∇v2|4+∫Ωu1|∇v1|2+∫Ωu1|∇v2|2+∫Ωu2|∇v1|2+∫Ωu2|∇v2|2)+∫Ωu21dx+∫Ωu22+(1−ˆϵ)∫Ω|∇u1|2+(1−ˆϵ)∫Ω|∇u2|2+(4λ1−ϵ1−ϵ3)∫Ω|∇v1|4+(4λ2−ϵ2−ϵ4)∫Ω|∇v2|4+(d34−ˆϵ)∫Ω|∇|∇v1|2|2+(d44−ˆϵ)∫Ω|∇|∇v2|2|2+∫Ω(u1+u2)(|∇v1|2+|∇v2|2)≤(2η1μ1+1+(μ1−2λ1+1)24ϵ1+(μ1−2λ2+1)24ϵ2)∫Ωu21−2η1μ1∫Ωu31+(2η2μ2+1+(μ2−2λ1+1)24ϵ3+(μ2−2λ2+1)24ϵ4)∫Ωu22−2η2μ2∫Ωu32 | (42) |
+C1(ˆϵ)(∫Ω|∇v1|2)2+C2(ˆϵ)(∫Ω|∇v2|2)2+C3(ˆϵ)(∫Ωu1)2+C4(ˆϵ)(∫Ωu2)2 |
for all
Y(t):=η1∫Ωu21dx+η2∫Ωu22dx+∫Ω|∇v1|4dx+∫Ω|∇v2|4dx+∫Ωu1|∇v1|2dx+∫Ωu1|∇v2|2dx+∫Ωu2|∇v1|2dx+∫Ωu2|∇v2|2dx, | (43) |
selecting
ϵ1+ϵ3<2λ1,ϵ2+ϵ4<2λ2, |
applying Young's inequality, Lemma 2.1, Lemma 2.3 and (42), we can find
ddtY(t)+δY(t)≤C1forallt∈(0,Tmax), | (44) |
which with the ODE comparison principle means that (35) holds for all
On the basis of the
Lemma 3.4. Let
∫Ωu21dx+∫Ωu22dx+∫Ω|∇v1|4dx+∫Ω|∇v2|4dx≤C2forallt∈(0,Tmax). | (45) |
Then for all
‖u1‖Lp(Ω)+‖u2‖Lp(Ω)≤C3forallt∈(0,Tmax). | (46) |
Proof. Testing the first equation of (1) by
1pddt∫Ωup1=−d1(p−1)∫Ωup−21|∇u1|2+(p−1)∫Ωup−11χ11(v1)∇v1⋅∇u1+(p−1)∫Ωup−11χ12(v2)∇v2⋅∇u1+μ1∫Ωup1(1−u1−a1u2)≤−d1(p−1)∫Ωup−21|∇u1|2+d1(p−1)4∫Ωup−21|∇u1|2+p−1d1K21∫Ωup1|∇v1|2+d1(p−1)4∫Ωup−21|∇u1|2+p−1d1K21∫Ωup1|∇v2|2+μ1∫Ωup1(1−u1)≤−d1(p−1)2∫Ωup−21|∇u1|2+p−1d1K21∫Ωup1(|∇v1|2+|∇v2|2)+μ1∫Ωup1(1−u1) | (47) |
for all
∫Ω|∇vi|4dx≤C2forallt∈(0,Tmax),i=1,2, | (48) |
with
p−1d1K21∫Ωup1(|∇v1|2+|∇v2|2)dx≤p−1d1K21(∫Ωu2p1dx)12(∫Ω|∇v1|4dx)12+p−1d1K21(∫Ωu2p1dx)12(∫Ω|∇v2|4dx)12≤C3(∫Ωu2p1dx)12forallt∈(0,Tmax) | (49) |
with
ˆλ:=pn2−n41−n2+pn2, |
due to the fact that
C3(∫Ωu2p1dx)12=C3‖up21‖2L4(Ω)≤C4(‖∇up21‖2ˆλL2(Ω)‖up21‖2(1−ˆλ)L2p(Ω)+‖up21‖2L2p(Ω))≤C5(‖∇up21‖2ˆλL2(Ω)+1)≤d1(p−1)2∫Ωup−21|∇u1|2dx+C6 | (50) |
with
1pddt∫Ωup1dx+∫Ωup1dx≤μ1∫Ωup1(1−u1)dx+∫Ωup1dx+C6≤C7 | (51) |
with
Proof of Theorem 1.1. In light of Lemma 3.4, it follows from the well known Moser-type iterations and Lemma 2.1 that Theorem 1.1 holds.
In the above section, the global boundedness of solution is derived under the condition that
Lemma 3.5. Let
∫t+τt∫Ω|∇v1|4dxds+∫t+τt∫Ω|∇v2|4dxds≤C4forallt∈(0,Tmax), | (52) |
where
Proof. Since
∫Ω|∇v1|4dx=‖∇v1‖4L4(Ω)≤C(GN)4(‖Δv1‖¯λL2(Ω)‖∇v1‖1−¯λL2(Ω)+‖∇v1‖L2(Ω))4≤C8(‖Δv1‖2L2(Ω)+1) | (53) |
with
∫t+τt∫Ω|∇v1|4dxds≤C9forallt∈(0,Tmax), | (54) |
where
∫t+τt∫Ω|∇v1|4dxds≤C10forallt∈(0,Tmax) | (55) |
with
In the second step, we derive the boundedness of
Lemma 3.6. Let
0<χ′ij(s)≤Lforalls≥0 | (56) |
with
∫Ω|u1lnu1|dx≤C4,∫Ω|u2lnu2|dx≤C4forallt∈(0,Tmax). | (57) |
Proof. Multiplying the first equation in (1) by
ddt∫Ωu1lnu1dx=−d1∫Ω|∇u1|2u1dx+∫Ωχ11(v1)∇v1⋅∇u1dx+∫Ωχ12(v2)∇v2⋅∇u1dx+μ1∫Ωu1(1−u1−a1u2)(1+lnu1)=−d1∫Ω|∇u1|2u1dx+∫Ω∇(∫v11χ11(s)ds)⋅∇u1dx+∫Ω∇(∫v21χ12(s)ds)⋅∇u1dx | (58) |
+μ1∫Ωu1(1−u1−a1u2)(1+lnu1)=−d1∫Ω|∇u1|2u1dx−∫ΩΔ(∫v11χ11(s)ds)u1dx−∫ΩΔ(∫v21χ12(s)ds)u1dx+μ1∫Ωu1(1−u1−a1u2)(1+lnu1)forallt∈(0,Tmax). |
To estimate
−∫ΩΔ(∫v11χ11(s)ds)u1dx≤12∫Ωu21dx+12∫Ω|Δ(∫v11χ11(s)ds)|2dx=12‖u1‖2L2(Ω)+12‖χ′11(v1)|∇v1|2+χ11(v1)Δv1‖2L2(Ω)≤12‖u1‖2L2(Ω)+L2‖∇v1‖4L4(Ω)+K21‖Δv1‖2L2(Ω). | (59) |
Like wise, we have
−∫ΩΔ(∫v21χ12(s)ds)u1dx≤12‖u1‖2L2(Ω)+L2‖∇v2‖4L4(Ω)+K21‖Δv2‖2L2(Ω). | (60) |
As for
μ1∫Ωu1(1−u1−a1u2)(1+lnu1)≤μ1∫Ωu1(1−u1)dx+μ1∫Ωu1(1−u1)lnu1dx−a1μ1∫Ωu1u2lnu1dx≤μ1|Ω|4+a1μ1m2eforallt∈(0,Tmax). | (61) |
Plugging (59)-(61) into (58), we can see that
ddt∫Ωu1lnu1dx+d1∫Ω|∇u1|2u1dx≤‖u1‖2L2(Ω)+(L+K1)2(‖∇v1‖4L4(Ω)+‖Δv1‖2L2(Ω)+‖∇v2‖4L4(Ω)+‖Δv2‖2L2(Ω))+μ1|Ω|4+a1μ1m2e | (62) |
for all
∫Ωu1lnu1dx≤∫Ωu21dx=‖u121‖4L4(Ω)≤C11‖∇u121‖4¯λL2(Ω)‖u121‖4(1−¯λ)L2(Ω)+C11‖u121‖4L2(Ω)≤C12(∫Ω|∇u1|2u1+1) | (63) |
where
ddt∫Ωu1lnu1dx+d1C12∫Ωu1lnu1dx≤‖u1‖2L2(Ω)+(L+K1)2(‖∇v1‖4L4(Ω)+‖Δv1‖2L2(Ω)+‖∇v2‖4L4(Ω)+‖Δv2‖2L2(Ω))+μ1|Ω|4+a1μ1m2e+d1 | (64) |
for all
In what follows, we proceed to show that
Lemma 3.7. Let
∫Ωu21dx+∫Ωu22dx+∫Ω|∇v1|4dx+∫Ω|∇v2|4dx≤C5forallt∈(0,Tmax). | (65) |
Proof. From (21)-(24), we deduce that
ddt(∫Ωu21dx+∫Ωu22dx+∫Ω|∇v1|4dx+∫Ω|∇v2|4dx)+d1∫Ω|∇u1|2dx+d2∫Ω|∇u2|2dx+4λ1∫Ω|∇v1|4dx+d3∫Ω|∇|∇v1|2|2dx+4λ2∫Ω|∇v2|4dx+d4∫Ω|∇|∇v2|2|2dx+∫Ω(u21+u22)dx≤((2n+8)C2h1d3+2K21d1)∫Ωu21|∇v1|2dx+((2n+8)C2h1d3+2K22d2)∫Ωu22|∇v1|2dx+((2n+8)C2h2d4+2K21d1)∫Ωu21|∇v2|2dx+((2n+8)C2h2d4+2K22d2)∫Ωu22|∇v2|2dx+2d3∫∂Ω|∇v1|2∂|∇v1|2∂νdS+2d4∫∂Ω|∇v2|2∂|∇v2|2∂νdS+∫Ω(u21+u22)dx+2μ1∫Ωu21(1−u1)dx+2μ2∫Ωu22(1−u2)dxforallt∈(0,Tmax). | (66) |
To handle the first term on the right side of (66), we notice that
‖u1‖3L3(Ω)≤ϵ‖∇u1‖2L2(Ω)‖u1ln|u1|‖L1(Ω)+C‖u1‖3L1(Ω)+Cϵ | (67) |
holds for all
‖u1‖3L3(Ω)≤C13ϵ‖∇u1‖2L2(Ω)+C13forallt∈(0,Tmax)andϵ>0 | (68) |
with
((2n+8)C2h1d3+2K21d1)∫Ωu21|∇v1|2dx≤((2n+8)C2h1d3+2K21d1)‖u1‖2L3(Ω)‖|∇v1|2‖L3(Ω)≤((2n+8)C2h1d3+2K21d1)‖u1‖2L3(Ω)(CGN‖∇|∇v1|2‖23L2(Ω)‖|∇v1|2‖13L1(Ω)+CGN‖|∇v1|2‖L1(Ω))≤((2n+8)C2h1d3+2K21d1)‖u1‖2L3(Ω)(C14‖∇|∇v1|2‖23L2(Ω)+C14)≤d34‖∇|∇v1|2‖2L2(Ω)+C15‖u1‖3L3(Ω)+C15≤d34‖∇|∇v1|2‖2L2(Ω)+d12‖∇u1‖2L2(Ω)+C16forallt∈(0,Tmax) | (69) |
with
In a similar way, we can find
((2n+8)C2h1d3+2K22d2)∫Ωu22|∇v1|2dx≤d34‖∇|∇v1|2‖2L2(Ω)+d22‖∇u2‖2L2(Ω)+C17 | (70) |
and
((2n+8)C2h2d4+2K21d1)∫Ωu21|∇v2|2dx≤d44‖∇|∇v2|2‖2L2(Ω)+d12‖∇u1‖2L2(Ω)+C18 | (71) |
as well as
((2n+8)C2h2d4+2K22d2)∫Ωu22|∇v2|2dx≤d44‖∇|∇v2|2‖2L2(Ω)+d22‖∇u2‖2L2(Ω)+C19 | (72) |
for all
For the term
2d3∫∂Ω|∇v1|2∂|∇v1|2∂νdS+2d4∫∂Ω|∇v2|2∂|∇v2|2∂νdS≤d32‖∇|∇v1|2‖2L2(Ω)+d42‖∇|∇v2|2‖2L2(Ω)+C20forallt∈(0,Tmax) | (73) |
with
What's more, making use of the identity
2μ1∫Ωu21(1−u1)dx+2μ2∫Ωu22(1−u2)dx≤8|Ω|27(μ1+μ2)forallt∈(0,Tmax). | (74) |
Thus, plugging (69)-(74) into (66), we can conclude that
ddt˜Y(t)+˜δ˜Y(t)≤∫Ω(u21+u22)dx+C21forallt∈(0,Tmax), | (75) |
where
Proof of Corollary 1. A combination of Lemma 2.5 and Lemma 3.7 directly yields Corollary 1.
We would like to thank the anonymous reviewers for their valuable suggestions and fruitful comments which lead to significant improvement of this work.
[1] |
Equilibration in a fully parabolic two-species chemotaxis system with competitive kinetics. Indiana Univ. Math. J. (2016) 65: 553-583. ![]() |
[2] |
Toward a mathematical theory of Keller-Segel models of pattern formation in biological tissues. Math. Models Methods Appl. Sci. (2015) 25: 1663-1763. ![]() |
[3] |
Global existence and asymptotic stability in a competitive two-species chemotaxis system with two signals. Discrete Contin. Dyn. Syst. Ser. B (2017) 22: 1253-1272. ![]() |
[4] |
A simultaneous blow-up problem arising in tumor Modeling. J. Math. Biol. (2019) 79: 1357-1399. ![]() |
[5] |
Mathematical model of macrophage-facilitated breast cancer cells invasion. J. Theor. Biol. (2014) 357: 184-199. ![]() |
[6] |
Boundedness in a two-species chemotaxis parabolic system with two chemicals. Discrete Contin. Dyn. Syst. Ser. B (2017) 22: 2717-2729. ![]() |
[7] |
Nondegeneracy of blow-up points for the parabolic Keller-Segel system. Ann. Inst. H. Poincar'e Anal. Non Lin'eaire (2014) 31: 851-875. ![]() |
[8] |
X. Pan, L. Wang, J. Zhang and J. Wang, Boundedness in a three-dimensional two-species chemotaxis system with two chemicals, Z. Angew. Math. Phys., 71 (2020). doi: 10.1007/s00033-020-1248-2
![]() |
[9] |
Global weak solutions in a PDE-ODE system modeling multiscale cancer cell invasion. SIAM J. Math. Anal. (2014) 46: 1969-2007. ![]() |
[10] |
Energy-type estimates and global solvability in a two-dimensional chemotaxis-haptotaxis model with remodeling of non-diffusible attractant. J. Differential Equations (2014) 257: 784-815. ![]() |
[11] |
Boundedness vs. blow-up in a two-species chemotaxis system with two chemicals. Discrete Contin. Dyn. Syst. Ser. B (2015) 20: 3165-3183. ![]() |
[12] |
Global dynamics in a two species chemotaxis competition system with two signals. Discrete Contin. Dyn. Syst. (2018) 38: 3617-3636. ![]() |
[13] |
X. Tu, C. Mu and S. Qiu, Global asymptotic stability in a parabolic-elliptic chemotaxis system with competitive kinetics and loop, Appl. Anal., (2020). doi: 10.1080/00036811.2020.1783536
![]() |
[14] |
X. Tu, C. Mu and S. Qiu, Boundedness and convergence of constant equilibria in a two-species chemotaxis-competition system with loop, Nonlinear Anal., 198 (2020), 111923. doi: 10.1016/j.na.2020.111923
![]() |
[15] |
X. Tu, C. Mu, S. Qiu and L. Yang, Boundedness in the higher-dimensional fully parabolic chemotaxis-competition system with loop, Z. Angew. Math. Phys., 71 (2020), 185. doi: 10.1007/s00033-020-01413-6
![]() |
[16] |
X. Tu, C.-L. Tang and S. Qiu, The phenomenon of large population densities in a chemotaxis-competition system with loop, J. Evol. Equ., (2020). doi: 10.1007/s00028-020-00650-6
![]() |
[17] |
L. Wang, J. Zhang C. Mu and X. Hu, Boundedness and stabilization in a two-species chemotaxis system with two Chemicals, Discrete Contin. Dyn. Syst. B, 25 (2020), 191-221. doi: 10.3934/dcdsb.2019178
![]() |
[18] |
L. Wang and C. Mu, A new result for boundedness and stabilization in a two-species chemotaxis system with two chemicals, Discrete Contin. Dyn. Syst. B, 25 (2020), 4585-4601. doi: 10.3934/dcdsb.2020114
![]() |
[19] |
M. Winkler, Boundedness in the higher-dimensional parabolic-parabolic chemotaxis system with logistic source, Comm. Partial Differential Equations, 35 (2010), 1516-1537. doi: 10.1080/03605300903473426
![]() |
[20] |
H. Yu, W. Wang and S. Zheng, Criteria on global boundedness versus finite time blow-up to a two-species chemotaxis system with two chemicals, Nonlinearity, 31 (2018), 502-514. doi: 10.1088/1361-6544/aa96c9
![]() |
[21] |
Q. Zhang, Competitive exclusion for a two-species chemotaxis system with two chemicals, Appl. Math. Lett., 83 (2018), 27-32. doi: 10.1016/j.aml.2018.03.012
![]() |
1. | Rong Zhang, Liangchen Wang, Global dynamics in a competitive two-species and two-stimuli chemotaxis system with chemical signalling loop, 2021, 29, 2688-1594, 4297, 10.3934/era.2021086 | |
2. | Xu Pan, Chunlai Mu, Weirun Tao, Global dynamics and spatiotemporal patterns of a two‐species chemotaxis system with chemical signaling loop and Lotka–Volterra competition, 2024, 0022-2526, 10.1111/sapm.12746 |