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Abstract. In this work, the fully parabolic chemotaxis-competition system
with loop

∂tu1 = d1∆u1 −∇ · (u1χ11(v1)∇v1)

−∇ · (u1χ12(v2)∇v2) + µ1u1(1− u1 − a1u2),
∂tu2 = d2∆u2 −∇ · (u2χ21(v1)∇v1)

−∇ · (u2χ22(v2)∇v2) + µ2u2(1− u2 − a2u1),

∂tv1 = d3∆v1 − λ1v1 + h1(u1, u2),
∂tv2 = d4∆v2 − λ2v2 + h2(u1, u2)

is considered under the homogeneous Neumann boundary condition, where

x ∈ Ω, t > 0, Ω ⊂ Rn(n ≤ 3) is a bounded domain with smooth boundary. For
any regular nonnegative initial data, it is proved that if the parameters µ1, µ2
are sufficiently large, then the system possesses a unique and global classical

solution for n ≤ 3. Specifically, when n = 2, the global boundedness can be
attained without any constraints on µ1, µ2.

1. Introduction. In this paper, we consider the following initial boundary value
problem

∂tu1 = d1∆u1 −∇ · (u1χ11(v1)∇v1)
−∇ · (u1χ12(v2)∇v2) + µ1u1(1− u1 − a1u2), x ∈ Ω, t > 0,

∂tu2 = d2∆u2 −∇ · (u2χ21(v1)∇v1)
−∇ · (u2χ22(v2)∇v2) + µ2u2(1− u2 − a2u1), x ∈ Ω, t > 0,

∂tv1 = d3∆v1 − λ1v1 + h1(u1, u2), x ∈ Ω, t > 0,
∂tv2 = d4∆v2 − λ2v2 + h2(u1, u2), x ∈ Ω, t > 0,
∂u1

∂ν = ∂u2

∂ν = ∂v1
∂ν = ∂v2

∂ν = 0, x ∈ Ω, t > 0,
u1(x, 0) = u10(x), u2(x, 0) = u20(x), v1(x, 0)

= v10(x), v2(x, 0) = v20(x), x ∈ Ω

(1)

in a bounded domain Ω ⊂ Rn with smooth boundary ∂Ω, where ∂
∂ν represents differ-

entiation with respect to the outward normal on ∂Ω, d1, d2, d3, d4, µ1, µ2, λ1, λ2, a1,
a2 are positive constants. This model comes from [5], it describes the chemotacti-
cal communication named EGF/CSF-1 paracrine invasion loop, which might be a
target to control or prevent metastasis with therapeutic methods. u1, u2 represent
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the densities of macrophages and tumor cells, vi(i = 1, 2) denote the concentration
of the chemical. The chemotactic sensitivity functions χij(i, j = 1, 2) are smooth
and positive. Let the initial data u10, u20, v10 and v20 satisfy

0 ≤ u10 ∈ C0(Ω̄), 0 ≤ u20 ∈ C0(Ω̄), 0 ≤ v10 ∈W 1,∞(Ω̄), 0 ≤ v20 ∈W 1,∞(Ω̄). (2)

For the case χ12 = χ21 = 0, h1 = h1(u2), h2 = h2(u1), which describes the
situation that tumor cells and macrophages mutually attract each other trough
chemotactic signals. In such a case, the global solvability, boundedness and asymp-
totic behavior have been investigated intensively, for instance, Wang et al. detected
the boundedness of solutions for n ≤ 3 in [17], also, they explored the asymptotic
behavior of solutions for any n ≥ 1. Choosing h1(u2) = u2, h2(u1) = u1, χ11, χ22 are
two constants, when µ1 = µ2 = 0, the global boundedness and blow-up of solutions
have been considered in [6, 11, 20]. When µ1, µ2 6= 0, for the fully parabolic case,
the global boundedness and large time behavior for n ≤ 2 and n = 3 were detected
in [3] and [8] respectively; as for the parabolic-elliptic case, for all n ≥ 1, the global
boundedness and asymptotic behavior were obtained in [21, 12]; afterwards, the
results in [21, 12] were partially improved by Wang et al. in [18].

When χij(i, j = 1, 2) are constants, h1 = α1u1 + β1u2, h2 = α2u1 + β2u2. With-
out respect to the kinetic terms, Espejo et al. derived the simultaneous blow-up
phenomenon in [4] for the parabolic-elliptic case of (1) in the whole space R2. Con-
sidering the Lotka-Volterra-type competition, whether the parabolic-elliptic case or
the fully parabolic case of (1), the global dynamics of solutions were detected, it
was found that the solution of (1) is globally bounded without any requirement on
the size of the parameters for the fully parabolic case in the lower dimensions n ≤ 2
[14], while the largeness of parameters µ1, µ2 is needed to guarantee the global solv-
ability of (1) for n = 3 [15], and the global solution of this system exponentially
approaches to a steady state for all n ≥ 1 [14], specifically, the system was shown
to exhibit the large population densities phenomenon in [16], that is, the solution
exhibits unbounded peculiarity for the proper choice of initial data. As for the
parabolic elliptic case, in [13], the global boundedness result were established for
n ≥ 2 under the condition that χ11

µ1
, χ12

µ1
, χ21

µ2
and χ22

µ2
are suitably small, moreover,

the large time behavior of solution was derived.
In summary, for the two-species and two-stimuli chemotaxis system, most of

the results are focusing on the case that the chemotactic sensitivity functions are
constants and the signal production is linear. Therefore, the objective in the present
study is to investigate the global boundedness of solutions for (1) when χij , (i, j =
1, 2), h1, h2 are general functions. Our work is motivated by the method in [17], but
in contrast, the existence of the chemical signalling loop in our model makes the
computations and analysis fairly subtle.

We shall suppose throughout this paper that the functions χij(s), hi(s, τ)(i, j =
1, 2) satisfy the following conditions:
(H1) χij(s) ∈ C1+θ([0,∞)), i, j = 1, 2, for some θ > 0.
(H2) 0 < χ11(s), χ12(s) ≤ K1 for some K1 > 0; 0 < χ21(s), χ22(s) ≤ K2 for some
K2 > 0.
(H3) hi(s, τ) ∈ C1+θ([0,∞)× [0,∞)), i = 1, 2, for some θ > 0.

(H4) hi(0, 0) = 0 and 0 < ∂hi(s,τ)
∂s , ∂hi(s,τ)

∂τ < Chi , with Chi > 0, i = 1, 2.
From the above (H3) and (H4), a straight calculation yields

hi(s, τ)− hi(0, 0) = Chi(s+ τ) for i = 1, 2. (3)
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Now we state our main results as follows.

Theorem 1.1. Let Ω ⊂ Rn(n ≤ 3) be a smoothly bounded domain, and let d1, d2, d3,
d4, µ1, µ2, λ1, λ2, a1, a2 be positive constants. Assume that χij , hi(i, j = 1, 2) satisfy
(H1)-(H4), µ1, µ2 satisfy

µ1 ≥ max

{
2K2

1

d1
η1 + (2n+ 8)

C2
h1

d3
+

2K2
1

d3
+

2K2
1

d4
+ 2,

2K2
1

d1
η1 + (2n+ 8)

C2
h2

d4

+
2K2

1

d3
+

2K2
1

d4
+ 2

}
,

(4)

µ2 ≥ max

{
2K2

2

d2
η2 + (2n+ 8)

C2
h1

d3
+

2K2
2

d3
+

2K2
2

d4
+ 2,

2K2
2

d2
η2 + (2n+ 8)

C2
h2

d4

+
2K2

2

d3
+

2K2
2

d4
+ 2

} (5)

with

η1 =
2(d1 + d3)2

d1d3
+

2(d1 + d4)2

d1d4
+

2C2
h1

+ 2C2
h2

+ 1

d1
,

η2 =
2(d2 + d3)2

d2d3
+

2(d2 + d4)2

d2d4
+

2C2
h1

+ 2C2
h2

+ 1

d2
.

(6)

Then for all u10, u20, v10 and v20 satisfying (2), the classical solution (u1, u2, v1, v2)
of (1) is unique and globally bounded in the sense that

‖ u1(·, t) ‖L∞(Ω) + ‖ v1(·, t) ‖L∞(Ω) + ‖ u2(·, t) ‖L∞(Ω) + ‖ v2(·, t) ‖L∞(Ω)≤ C

for all t ≥ 0, with some constant C > 0 that is independent of t.

Corollary 1. Let Ω ⊂ R2 be a smoothly bounded domain, and let d1, d2, d3, d4, µ1,
µ2, λ1, λ2, a1, a2 be positive constants. Assume that χij , hi(i, j = 1, 2) satisfy (H1)-
(H4), and χij(i, j = 1, 2) fulfill

|χ
′

ij(s)| ≤ L for all s ≥ 0 (7)

with some L > 0. Then for all u10, u20, v10 and v20 satisfying (2), the classical
solution (u1, u2, v1, v2) of (1) is globaly bounded.

Remark 1. It is obvious that there exist functions χij , hi(i, j = 1, 2) which satisfy
(H1)-(H4), such as, we can choose the standard chemotactic sensitivity functions
χij(s) = c0

(1+cs)2 with c0, c > 0, and choose hi = c1u1 + c2u2 with c1, c2 > 0.

In this paper, we deal with the quasilinear chemotaxis-competition system with
loop. First, we give the local existence and some properties to prepare for the later
work. Next, under the condition that µ1, µ2 are sufficiently large, we establish the
global boundedness result when n ≤ 3. At last, for the case n = 2, we obtain the
boundedness result without any requirement on the size of µ1, µ2.

2. Preliminary. As a preliminary, we first give the local existence and some im-
portant estimates of solutions for (1).

Lemma 2.1. Let Ω ⊂ Rn(n ≥ 1) be a smoothly bounded domain, and let χij , hi
(i, j = 1, 2) satisfy (H1)-(H4). Assume that the initial data u10, u20, v10, v20 satisfy



3264 CHUN HUANG

(2). Then there exists a maximal Tmax ∈ (0,∞] such that the system (1) has a
unique nonnegative classical solution (u1, u2, v1, v2)

u1, u2 ∈ C0(Ω× [0, Tmax)) ∩ C2,1(Ω× (0, Tmax)),

v1, v2 ∈ C0(Ω× [0, Tmax)) ∩ C2,1(Ω× (0, Tmax)),

which satisfies

either Tmax =∞, or ||u1(·, t)||L∞(Ω) + ||u2(·, t)||L∞(Ω) →∞ as t→ Tmax.

Besides, the solution fulfills∫
Ω

u1(x, t)dx ≤ m1 := max

{∫
Ω

u10(x)dx, |Ω|
}

for all t ∈ (0, Tmax) (8)

and ∫
Ω

u2(x, t)dx ≤ m2 := max

{∫
Ω

u20(x)dx, |Ω|
}

for all t ∈ (0, Tmax) (9)

as well as∫ t+τ

t

∫
Ω

u2
1(x, t)dxds ≤ κ1 := m1 +

m1

µ1
for all t ∈ [0, Tmax − τ) (10)

and ∫ t+τ

t

∫
Ω

u2
2(x, t)dxds ≤ κ2 := m2 +

m2

µ2
for all t ∈ [0, Tmax − τ), (11)

where τ = min
{

1, Tmax

2

}
.

Proof. The local existence of classical solution to (1) can be shown by using well-
established methods for chemotaxis problems in [19]. And the relation (8)-(11) can
be directly derived by a similar method in [15].

Next, we recall the following lemma (see Lemma 3.4 in [9] or Lemma 2.3 in [1]),
which is significant for our latter proof.

Lemma 2.2. Let T > 0, 0 ≤ f ∈ L1
loc([0, T )), y(t) be a nonnegative absolutely

continuous function on [0, T ). Assume that there exist a > 0, b > 0 such that∫ t+τ

t

f(s)ds ≤ b for all t ∈ [0, T − τ)

and

y
′
(t) + ay(t) ≤ f(t) for almost all t ∈ (0, T ),

then

y(t) ≤ max

{
y(0) + b,

b

a
+ 2b

}
for all t ∈ (0, T ),

where τ = min
{

1, T2
}
.

Based on Lemma 2.1 and Lemma 2.2, we can now derive some basic properties
of v1, v2.

Lemma 2.3. Let Ω ⊂ Rn(n ≥ 1) be a smooth and bounded domain, λi > 0, ai > 0,
µi > 0, dj > 0 (i = 1, 2, j = 1, 2, 3, 4). Assume that h1, h2 satisfy (H3)-(H4). Then
there exist M1,M2, N1, N2 > 0 such that the solution of (1) satisfies∫

Ω

|∇v1(x, t)|2dx ≤M1,

∫
Ω

|∇v2(x, t)|2dx ≤M2 for all t ∈ [0, Tmax), (12)
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t

∫
Ω

|∆v1(x, s)|2dxds ≤ N1,

∫ t+τ

t

∫
Ω

|∆v2(x, s)|2dxds ≤ N2 , (13)

for all t ∈ [0, Tmax − τ), where τ = min
{

1, Tmax

2

}
.

Proof. Multiplying the third equation in (1) by −∆v1 and integrating the result
equation over Ω, we have

1

2

d

dt

∫
Ω

|∇v1|2dx+ d3

∫
Ω

|∆v1|2dx+ λ1

∫
Ω

|∇v1|2dx = −
∫

Ω

h1(u1, u2)∆v1dx

≤ d3

2

∫
Ω

|∆v1|2dx+
C2
h1

d3

∫
Ω

u2
1dx+

C2
h1

d3

∫
Ω

u2
2dx for all t ∈ (0, Tmax),

therefore,

d

dt

∫
Ω

|∇v1|2dx+ d3

∫
Ω

|∆v1|2dx+ 2λ1

∫
Ω

|∇v1|2dx

≤
2C2

h1

d3

∫
Ω

u2
1dx+

2C2
h1

d3

∫
Ω

u2
2dx

(14)

for all t ∈ (0, Tmax). By denoting

y1(t) :=

∫
Ω

|∇v1(x, t)|2dx, f1(t)

=
2C2

h1

d3

∫
Ω

u2
1dx+

2C2
h1

d3

∫
Ω

u2
2dx for all t ∈ (0, Tmax),

we obtain

y
′

1(t) + 2λ1y1(t) + d3

∫
Ω

|∆v1(x, t)|2dx ≤ f1(t) for all t ∈ (0, Tmax). (15)

Lemma 2.1 and the definition of f1 entail that∫ t+τ

t

f1(s)ds ≤ c1 (16)

with some c1 > 0, then it follows from Lemma 2.2 that

y1(t) =

∫
Ω

|∇v1(x, t)|2dx ≤ c2 (17)

with some c2 > 0. Whence by an integration of (15) over (t, t+ τ) we find

y1(t+ τ) + 2λ1

∫ t+τ

t

y1(s)ds+ d3

∫ t+τ

t

∫
Ω

|∆v1(x, s)|2dxds

≤ y1(t) +

∫ t+τ

t

f1(s)ds ≤ c1 + c2 for all t ∈ [0, Tmax − τ),

along with the nonnegativity of y1, we conclude (13). The other inequalities in (12)
and (13) can be obtained by the similar method.

To improve the condition that warrants the global boundedness of solution for (1)
when n = 2, we recall the following generalization of Gagliardo-Nirenberg inequality
which is given in Lemma A.5 of [10].

Lemma 2.4. Let Ω ⊂ R2 be a smooth and bounded domain. Then for all ϕ ∈
W 1,2(Ω), one can find C > 0 such that for any ε > 0 there exists Cε > 0 with the
property that

‖ϕ‖3L3(Ω) ≤ ε‖∇ϕ‖
2
L2(Ω)‖ϕ ln |ϕ|‖L1(Ω) + C‖ϕ‖3L1(Ω) + Cε, (18)
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The following lemma plays an important role in the proof of Corollary 1, and the
proof is similar to Lemma 2.5 in [14].

Lemma 2.5. Let Ω ⊂ Rn(n ≥ 1) be a smooth and bounded domain, (u1, u2, v1, v2)
be the classical solution of (1). Assume that χij , hi(i = 1, 2, j = 1, 2, 3, 4) satisfy
(H1)-(H4). Let p ≥ 1 be such that n

2 < p ≤ n and

sup
t∈(0,Tmax)

(‖u1(·, t)‖Lp(Ω) + ‖u2(·, t)‖Lp(Ω)) <∞. (19)

Then Tmax =∞, and

sup
t>0

(‖u1(·, t)‖L∞(Ω) +‖u2(·, t)‖L∞(Ω) +‖v1(·, t)‖L∞(Ω) +‖v2(·, t)‖L∞(Ω)) <∞. (20)

3. The global boundedness of solutions. In this section, we first prove the
global boundedness of solutions for n ≤ 3 under the condition that µ1, µ2 are
sufficiently large; next, we remove the requirement on the largeness of parameters
µ1, µ2 when n = 2.

3.1. Proof of Theorem 1.1. To prepare our analysis, we establish several differ-
ential inequalities in the following two lemmas..

Lemma 3.1. Let Ω ⊂ Rn(n ≥ 1) be a smooth and bounded domain, λi > 0, µi > 0,
dj > 0 (i = 1, 2, j=1, 2, 3, 4). Assume that χij , hi(i = 1, 2, j = 1, 2, 3, 4) satisfy
(H1)-(H4). Then for any classical solution (u1, u2, v1, v2) of (1) we have

d

dt

∫
Ω

u2
1dx+ d1

∫
Ω

|∇u1|2dx ≤
2K2

1

d1

∫
Ω

u2
1|∇v1|2dx+

2K2
1

d1

∫
Ω

u2
1|∇v2|2dx

+ 2µ1

∫
Ω

u2
1(1− u1)dx,

(21)

d

dt

∫
Ω

u2
2dx+ d2

∫
Ω

|∇u2|2dx ≤
2K2

2

d2

∫
Ω

u2
2|∇v1|2dx+

2K2
2

d2

∫
Ω

u2
2|∇v2|2dx

+ 2µ2

∫
Ω

u2
2(1− u2)dx

(22)

for all t ∈ (0, Tmax). And

d

dt

∫
Ω

|∇v1|4dx+ 4λ1

∫
Ω

|∇v1|4dx+ d3

∫
Ω

|∇|∇v1|2|2dx

≤ (2n+ 8)
C2
h1

d3

∫
Ω

(u2
1 + u2

2)|∇v1|2dx

+ 2d3

∫
∂Ω

|∇v1|2
∂|∇v1|2

∂ν
dS for all t ∈ (0, Tmax)

(23)

as well as

d

dt

∫
Ω

|∇v2|4dx+ 4λ2

∫
Ω

|∇v2|4dx+ d4

∫
Ω

|∇|∇v2|2|2dx

≤ (2n+ 8)
C2
h2

d4

∫
Ω

(u2
1 + u2

2)|∇v2|2dx

+ 2d4

∫
∂Ω

|∇v2|2
∂|∇v2|2

∂ν
dS for all t ∈ (0, Tmax).

(24)
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Proof. Multiplying the first equation in (1) by u1 and integrating by parts over Ω,
in light of (H1)-(H2) and the Young inequality, we can see that

1

2

d

dt

∫
Ω

u2
1dx+ d1

∫
Ω

|∇u1|2dx

=

∫
Ω

u1χ11(v1)∇v1 · ∇u1dx+

∫
Ω

u1χ12(v2)∇v2 · ∇u1dx

+ µ1

∫
Ω

u2
1(1− u1 − a1u2)dx

≤ K1

∫
Ω

u1∇v1 · ∇u1dx+ K1

∫
Ω

u1∇v2 · ∇u1dx+ µ1

∫
Ω

u2
1(1− u1 − a1u2)dx

≤ d1

2

∫
Ω

|∇u1|2dx+
K2

1

d1

∫
Ω

u2
1|∇v1|2dx+

K2
1

d1

∫
Ω

u2
1|∇v2|2dx+ µ1

∫
Ω

u2
1(1− u1)dx

for all t ∈ (0, Tmax), which directly yields (21). Similarly, we can derive (22).
To derive (23), in light of the third equation in (1) and the identity 2∇v1 ·∇∆v1 =

∆|∇v1|2 − 2|D2v1|2, it follows that

1

4

d

dt

∫
Ω

|∇v1|4dx =

∫
Ω

(∇v1)3 · ∇v1tdx

= d3

∫
Ω

|∇v1|2
(

1

2
∆|∇v1|2 − |D2v1|2

)
dx− λ1

∫
Ω

|∇v1|4

−
∫

Ω

h1(u1, u2)∇ · (|∇v1|2∇v1)dx

≤ d3

2

∫
∂Ω

|∇v1|2
∂|∇v1|2

∂ν
dS − d3

2

∫
Ω

|∇|∇v1|2|2dx− d3

∫
Ω

|∇v1|2|D2v1|2dx

− λ1

∫
Ω

|∇v1|4dx−
∫

Ω

h1(u1, u2)|∇v1|2∆v1dx−
∫

Ω

h1(u1, u2)∇v1 · ∇|∇v1|2dx

(25)

for all t ∈ (0, Tmax), here, in view of (H4) and the relation |∆v1|2 ≤ n|D2v1|2, one
obtains

−
∫

Ω

h1(u1, u2)|∇v1|2∆v1dx ≤
√
nCh1

∫
Ω

(u1 + u2)|∇v1|2|D2v1|dx

≤ d3

∫
Ω

|∇v1|2|D2v1|2dx+
nC2

h1

2d3
(u2

1 + u2
2)|∇v1|2dx for all t ∈ (0, Tmax),

(26)

and

−
∫

Ω

h1(u1, u2)∇v1 · ∇|∇v1|2dx ≤ Ch1

∫
Ω

(u1 + u2)|∇v1| · ∇|∇v1|2dx

≤ d3

4

∫
Ω

|∇|∇v1|2|2dx+
C2
h1

d3
(2u2

1 + 2u2
2)|∇v1|2dx for all t ∈ (0, Tmax).

(27)

Consequently, plugging (26) and (27) into (25), we arrive at (23). In addition, (24)
can be established in a same manner.

Lemma 3.2. Let Ω ⊂ Rn(n ≥ 1) be a smooth and bounded domain, λi > 0, µi > 0,
dj > 0 (i = 1, 2, j=1, 2, 3, 4). Assume that χij , hi(i = 1, 2, j = 1, 2, 3, 4) satisfy
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(H1)-(H4). Then for any classical solution (u1, u2, v1, v2) of (1) we have

d

dt

∫
Ω

u1|∇v1|2dx+

∫
Ω

u1|∇v1|2dx

≤ 3d3

8

∫
Ω

|∇|∇v1|2|2dx+

(
2(d1 + d3)2

d3
+ C2

h1

)∫
Ω

|∇u1|2dx+ C2
h1

∫
Ω

|∇u2|2dx

+ (µ1 − 2λ1 + 1)

∫
Ω

u1|∇v1|2dx+

(
2K2

1

d3
− µ1 + 2

)∫
Ω

u2
1|∇v1|2dx

+
2K2

1

d3

∫
Ω

u2
1|∇v2|2dx+ d3

∫
∂Ω

u1
∂|∇v1|2

∂ν
dS for all t ∈ (0, Tmax),

(28)

d

dt

∫
Ω

u1|∇v2|2dx+

∫
Ω

u1|∇v2|2dx

≤ 3d4

8

∫
Ω

|∇|∇v2|2|2dx+

(
2(d1 + d4)2

d4
+ C2

h2

)∫
Ω

|∇u1|2dx+ C2
h2

∫
Ω

|∇u2|2dx

+ (µ1 − 2λ2 + 1)

∫
Ω

u1|∇v2|2dx+

(
2K2

1

d4
− µ1 + 2

)∫
Ω

u2
1|∇v2|2dx

+
2K2

1

d4

∫
Ω

u2
1|∇v1|2dx+ d4

∫
∂Ω

u1
∂|∇v2|2

∂ν
dS for all t ∈ (0, Tmax),

(29)

d

dt

∫
Ω

u2|∇v1|2dx+

∫
Ω

u2|∇v1|2dx

≤ 3d3

8

∫
Ω

|∇|∇v1|2|2dx+

(
2(d2 + d3)2

d3
+ C2

h1

)∫
Ω

|∇u2|2dx+ C2
h1

∫
Ω

|∇u1|2dx

+ (µ2 − 2λ1 + 1)

∫
Ω

u2|∇v1|2dx+

(
2K2

2

d3
− µ2 + 2

)∫
Ω

u2
2|∇v1|2dx

+
2K2

2

d3

∫
Ω

u2
2|∇v2|2dx+ d3

∫
∂Ω

u2
∂|∇v1|2

∂ν
dS for all t ∈ (0, Tmax),

(30)

d

dt

∫
Ω

u2|∇v2|2dx+

∫
Ω

u2|∇v2|2dx

≤ 3d4

8

∫
Ω

|∇|∇v2|2|2dx+

(
2(d2 + d4)2

d4
+ C2

h2

)∫
Ω

|∇u2|2dx+ C2
h2

∫
Ω

|∇u1|2dx

+ (µ2 − 2λ2 + 1)

∫
Ω

u2|∇v2|2dx+

(
2K2

2

d4
− µ2 + 2

)∫
Ω

u2
2|∇v2|2dx

+
2K2

2

d4

∫
Ω

u2
2|∇v1|2dx+ d4

∫
∂Ω

u2
∂|∇v2|2

∂ν
dS for all t ∈ (0, Tmax).

(31)

Proof. Notice that the estimates for (28)-(31) are similar, thereupon, we only con-
sider the priori estimates for (28). Utilizing the first equation and the third equation
in (1), one finds
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d

dt

∫
Ω

u1|∇v1|2dx =

∫
Ω

|∇v1|2u1tdx+ 2

∫
Ω

u1∇v1 · ∇v1t

= −d1

∫
Ω

∇u1 · ∇|∇v1|2dx+

∫
Ω

u1χ11(v1)∇v1 · ∇|∇v1|2dx

+

∫
Ω

u1χ12(v2)∇v2 · ∇|∇v1|2dx+ µ1

∫
Ω

u1|∇v1|2(1− u1 − a1u2)dx

+ d3

∫
Ω

u1

(
∆|∇v1|2 − 2|D2v1|2

)
dx− 2λ1

∫
Ω

u1|∇v1|2dx

+ 2

∫
Ω

u1

(
∂h1(u1, u2)

∂u1
∇u1 +

∂h1(u1, u2)

∂u2
∇u2

)
· ∇v1dx

≤ −(d1 + d3)

∫
Ω

∇u1 · ∇|∇v1|2dx+

∫
Ω

u1χ11(v1)∇v1 · ∇|∇v1|2dx

+

∫
Ω

u1χ12(v2)∇v2 · ∇|∇v1|2dx+ (µ1 − 2λ1)

∫
Ω

u1|∇v1|2dx− µ1

∫
Ω

u2
1|∇v1|2dx

+ d3

∫
∂Ω

u1
∂|∇v1|2

∂ν
dS + 2

∫
Ω

∂h1(u1, u2)

∂u1
u1∇u1 · ∇v1dx

+ 2

∫
Ω

∂h1(u1, u2)

∂u2
u1∇u2 · ∇v1dx

(32)

for all t ∈ (0, Tmax), where we have used the identity 2∇v1 · ∇∆v1 = ∆|∇v1|2 −
2|D2v1|2. To estimate the right side term of (32), we apply the Young inequality
and the conditions (H2), (H4) to obtain

− (d1 + d3)

∫
Ω

∇u1 · ∇|∇v1|2dx+

∫
Ω

u1χ11(v1)∇v1 · ∇|∇v1|2dx

+

∫
Ω

u1χ12(v2)∇v2 · ∇|∇v1|2dx ≤
d3

8

∫
Ω

|∇|∇v1|2|2dx+
2(d1 + d3)2

d3

∫
Ω

|∇u1|2dx

+
d3

8

∫
Ω

|∇|∇v1|2|2dx+
2K2

1

d3

∫
Ω

u2
1|∇v1|2dx

+
d3

8

∫
Ω

|∇|∇v1|2|2dx+
2K2

1

d3

∫
Ω

u2
1|∇v2|2dx for all t ∈ (0, Tmax)

(33)

and

2

∫
Ω

∂h1(u1, u2)

∂u1
u1∇u1 · ∇v1dx+ 2

∫
Ω

∂h1(u1, u2)

∂u2
u1∇u2 · ∇v1dx

≤ C2
h1

∫
Ω

|∇u1|2dx+

∫
Ω

u2
1|∇v1|2dx+ C2

h1

∫
Ω

|∇u2|2dx+

∫
Ω

u2
1|∇v1|2dx

(34)

for all t ∈ (0, Tmax). Inserting (33) and (34) into (32), one can immediately get
(28). Analogously, we can obtain (29)-(31).

With Lemma 3.1 and Lemma 3.2 at hand, now, relying on a series of estimates,
under an additional largeness assumption on µ1, µ2, we can attain the boundedness
of
∫

Ω
u2

1dx,
∫

Ω
u2

2dx,
∫

Ω
|∇v1|4dx and

∫
Ω
|∇v2|4dx.

Lemma 3.3. Let Ω ⊂ Rn(n ≥ 1) be a smooth and bounded domain, λi > 0, µi > 0,
dj > 0 (i = 1, 2, j=1, 2, 3, 4). Assume that χij , hi(i = 1, 2, j = 1, 2, 3, 4) satisfy
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(H1)-(H4), and (u1, u2, v1, v2) is a classical solution of (1). Then if µ1, µ2 satisfy
(4) and (5) in Theorem 1.1, one can find C1 > 0 such that∫

Ω

u2
1dx+

∫
Ω

u2
2dx+

∫
Ω

|∇v1|4dx+

∫
Ω

|∇v2|4dx ≤ C1 for all t ∈ (0, Tmax). (35)

Proof. It follows from Lemma 3.1 and Lemma 3.2 that

d

dt

(
η1

∫
Ω

u2
1 + η2

∫
Ω

u2
2 +

∫
Ω

|∇v1|4 +

∫
Ω

|∇v2|4 +

∫
Ω

u1|∇v1|2 +

∫
Ω

u1|∇v2|2

+

∫
Ω

u2|∇v1|2 +

∫
Ω

u2|∇v2|2
)

+

∫
Ω

u2
1 +

∫
Ω

u2
2 +

∫
Ω

|∇u1|2 +

∫
Ω

|∇u2|2

+ 4λ1

∫
Ω

|∇v1|4 + 4λ2

∫
Ω

|∇v2|4 +
d3

4

∫
Ω

|∇|∇v1|2|2 +
d4

4

∫
Ω

|∇|∇v2|2|2

+

∫
Ω

u1|∇v1|2 +

∫
Ω

u1|∇v2|2 +

∫
Ω

u2|∇v1|2 +

∫
Ω

u2|∇v2|2

≤ (2η1µ1 + 1)

∫
Ω

u2
1 − 2η1µ1

∫
Ω

u3
1 + (2η2µ2 + 1)

∫
Ω

u2
2 − 2η2µ2

∫
Ω

u3
2

+ (µ1 − 2λ1 + 1)

∫
Ω

u1|∇v1|2 + (µ1 − 2λ2 + 1)

∫
Ω

u1|∇v2|2

+ (µ2 − 2λ1 + 1)

∫
Ω

u2|∇v1|2 + (µ2 − 2λ2 + 1)

∫
Ω

u2|∇v2|2

+ 2d3

∫
∂Ω

|∇v1|2
∂|∇v1|2

∂ν
+ 2d4

∫
∂Ω

|∇v2|2
∂|∇v2|2

∂ν

+ d3

∫
∂Ω

u1
∂|∇v1|2

∂ν
+ d4

∫
∂Ω

u1
∂|∇v2|2

∂ν
+ d3

∫
∂Ω

u2
∂|∇v1|2

∂ν
+ d4

∫
∂Ω

u2
∂|∇v2|2

∂ν

+

(
2K2

1

d1
η1 + (2n+ 8)

C2
h1

d3
+

2K2
1

d3
+

2K2
1

d4
+ 2− µ1

)∫
Ω

u2
1|∇v1|2

+

(
2K2

1

d1
η1 + (2n+ 8)

C2
h2

d4
+

2K2
1

d3
+

2K2
1

d4
+ 2− µ1

)∫
Ω

u2
1|∇v2|2

+

(
2K2

2

d2
η2 + (2n+ 8)

C2
h1

d3
+

2K2
2

d3
+

2K2
2

d4
+ 2− µ2

)∫
Ω

u2
2|∇v1|2

+

(
2K2

2

d2
η2 + (2n+ 8)

C2
h2

d4
+

2K2
2

d3
+

2K2
2

d4
+ 2− µ2

)∫
Ω

u2
2|∇v2|2.

(36)

Making use of the Young inequality, for any ε1, ε2, ε3, ε4 ∈ (0, 1), it is clear that

(µ1 − 2λ1 + 1)

∫
Ω

u1|∇v1|2dx ≤ ε1
∫

Ω

|∇v1|4dx+
(µ1 − 2λ1 + 1)2

4ε1

∫
Ω

u2
1dx,

(µ1 − 2λ2 + 1)

∫
Ω

u1|∇v2|2dx ≤ ε2
∫

Ω

|∇v2|4dx+
(µ1 − 2λ2 + 1)2

4ε2

∫
Ω

u2
1dx,

(µ2 − 2λ1 + 1)

∫
Ω

u2|∇v1|2dx ≤ ε3
∫

Ω

|∇v1|4dx+
(µ2 − 2λ1 + 1)2

4ε3

∫
Ω

u2
2dx,

(µ2 − 2λ2 + 1)

∫
Ω

u2|∇v2|2dx ≤ ε4
∫

Ω

|∇v2|4dx+
(µ2 − 2λ2 + 1)2

4ε4

∫
Ω

u2
2dx.

(37)



GLOBAL BOUNDEDNESS FOR A CHEMOTAXIS-COMPETITION SYSTEM 3271

According to Lemma 4.2 in [7], there exists C > 0 such that

∂|∇vi|2

∂ν
≤ C|∇vi|2, i = 1, 2, for all t ∈ (0, Tmax), x ∈ ∂Ω. (38)

And thanks to the boundary trace embedding:

W 1,2(Ω) ↪→↪→W
1
2 ,2(Ω) ↪→ L2(∂Ω), (39)

which warrants that for any ε5 > 0, one can find C(ε5) > 0 such that∫
∂Ω

φ2dS ≤ ε5
∫

Ω

|∇φ|2dx+ C(ε5)

(∫
Ω

|φ|dx
)2

(40)

holds for all φ ∈ W 1,2(Ω). Thereupon, invoking Young’s inequality, (38) and (40),
we can see that

2d3

∫
∂Ω

|∇v1|2
∂|∇v1|2

∂ν
+ 2d4

∫
∂Ω

|∇v2|2
∂|∇v2|2

∂ν
+ d3

∫
∂Ω

(u1 + u2)
∂|∇v1|2

∂ν

+ d4

∫
∂Ω

(u1 + u2)
∂|∇v2|2

∂ν

≤ 2d3C
∫
∂Ω

|∇v1|4 + 2d4C
∫
∂Ω

|∇v2|4 + d3C
∫
∂Ω

(u1 + u2)|∇v1|2

+ d4C
∫
∂Ω

(u1 + u2)|∇v2|2

≤ C(2d3 + 2d2
3)

∫
∂Ω

|∇v1|4 + C(2d4 + 2d2
4)

∫
∂Ω

|∇v2|4 + 2C
∫
∂Ω

u2
1 + 2C

∫
∂Ω

u2
2

≤ ε̂
∫

Ω

|∇|∇v1|2|2 + C1(ε̂)

(∫
Ω

|∇v1|2
)2

+ ε̂

∫
Ω

|∇|∇v2|2|2 + C2(ε̂)

(∫
Ω

|∇v2|2
)2

+ ε̂

∫
Ω

|∇u1|2 + C3(ε̂)

(∫
Ω

u1

)2

+ ε̂

∫
Ω

|∇u2|2 + C4(ε̂)

(∫
Ω

u2

)2

,

(41)

where 0 < ε̂ < min
{
d3
4 ,

d4
4 , 1

}
. Inserting (37) and (41) into (36), utilizing (4) and

(5), we can see that

d

dt

(
η1

∫
Ω

u2
1 + η2

∫
Ω

u2
2 +

∫
Ω

|∇v1|4 +

∫
Ω

|∇v2|4 +

∫
Ω

u1|∇v1|2 +

∫
Ω

u1|∇v2|2

+

∫
Ω

u2|∇v1|2 +

∫
Ω

u2|∇v2|2
)

+

∫
Ω

u2
1dx+

∫
Ω

u2
2 + (1− ε̂)

∫
Ω

|∇u1|2

+ (1− ε̂)
∫

Ω

|∇u2|2 + (4λ1 − ε1 − ε3)

∫
Ω

|∇v1|4 + (4λ2 − ε2 − ε4)

∫
Ω

|∇v2|4

+

(
d3

4
− ε̂
)∫

Ω

|∇|∇v1|2|2 +

(
d4

4
− ε̂
)∫

Ω

|∇|∇v2|2|2

+

∫
Ω

(u1 + u2)(|∇v1|2 + |∇v2|2)

≤
(

2η1µ1 + 1 +
(µ1 − 2λ1 + 1)2

4ε1
+

(µ1 − 2λ2 + 1)2

4ε2

)∫
Ω

u2
1 − 2η1µ1

∫
Ω

u3
1

+

(
2η2µ2 + 1 +

(µ2 − 2λ1 + 1)2

4ε3
+

(µ2 − 2λ2 + 1)2

4ε4

)∫
Ω

u2
2 − 2η2µ2

∫
Ω

u3
2

(42)



3272 CHUN HUANG

+ C1(ε̂)

(∫
Ω

|∇v1|2
)2

+ C2(ε̂)

(∫
Ω

|∇v2|2
)2

+ C3(ε̂)

(∫
Ω

u1

)2

+ C4(ε̂)

(∫
Ω

u2

)2

for all t ∈ (0, Tmax) and εi ∈ (0, 1), (i = 1, 2, 3, 4). Let

Y (t) := η1

∫
Ω

u2
1dx+ η2

∫
Ω

u2
2dx+

∫
Ω

|∇v1|4dx+

∫
Ω

|∇v2|4dx+

∫
Ω

u1|∇v1|2dx

+

∫
Ω

u1|∇v2|2dx+

∫
Ω

u2|∇v1|2dx+

∫
Ω

u2|∇v2|2dx,

(43)

selecting εi, (i = 1, 2, 3, 4) satisfying

ε1 + ε3 < 2λ1, ε2 + ε4 < 2λ2,

applying Young’s inequality, Lemma 2.1, Lemma 2.3 and (42), we can find δ > 0
and C1 > 0 such that

d

dt
Y (t) + δY (t) ≤ C1 for all t ∈ (0, Tmax), (44)

which with the ODE comparison principle means that (35) holds for all t ∈ (0,
Tmax).

On the basis of the L2 bound for u1, u2, we can now establish the Lp estimates
for u1, u2.

Lemma 3.4. Let Ω ⊂ Rn(n ≤ 3) be a smooth and bounded domain, λi > 0, µi > 0,
dj > 0 (i = 1, 2, j=1, 2, 3, 4). Assume that χij , hi(i = 1, 2, j = 1, 2, 3, 4) satisfy
(H1)-(H4), and (u1, u2, v1, v2) is a classical solution of (1). If there exists C2 > 0
such that∫

Ω

u2
1dx+

∫
Ω

u2
2dx+

∫
Ω

|∇v1|4dx+

∫
Ω

|∇v2|4dx ≤ C2 for all t ∈ (0, Tmax). (45)

Then for all p > 1, one can find a positive constant C3 such that

‖u1‖Lp(Ω) + ‖u2‖Lp(Ω) ≤ C3 for all t ∈ (0, Tmax). (46)

Proof. Testing the first equation of (1) by up−1
1 to obtain

1

p

d

dt

∫
Ω

up1

= −d1(p− 1)

∫
Ω

up−2
1 |∇u1|2 + (p− 1)

∫
Ω

up−1
1 χ11(v1)∇v1 · ∇u1

+ (p− 1)

∫
Ω

up−1
1 χ12(v2)∇v2 · ∇u1 + µ1

∫
Ω

up1(1− u1 − a1u2)

≤ −d1(p− 1)

∫
Ω

up−2
1 |∇u1|2 +

d1(p− 1)

4

∫
Ω

up−2
1 |∇u1|2 +

p− 1

d1
K2

1

∫
Ω

up1|∇v1|2

+
d1(p− 1)

4

∫
Ω

up−2
1 |∇u1|2 +

p− 1

d1
K2

1

∫
Ω

up1|∇v2|2 + µ1

∫
Ω

up1(1− u1)

≤ −d1(p− 1)

2

∫
Ω

up−2
1 |∇u1|2

+
p− 1

d1
K2

1

∫
Ω

up1
(
|∇v1|2 + |∇v2|2

)
+ µ1

∫
Ω

up1(1− u1)

(47)
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for all t ∈ (0, Tmax). Since (45) entails that∫
Ω

|∇vi|4dx ≤ C2 for all t ∈ (0, Tmax), i = 1, 2, (48)

with C2 > 0, and thus we apply the Hölder inequality to obtain

p− 1

d1
K2

1

∫
Ω

up1
(
|∇v1|2 + |∇v2|2

)
dx

≤ p− 1

d1
K2

1

(∫
Ω

u2p
1 dx

) 1
2
(∫

Ω

|∇v1|4dx
) 1

2

+
p− 1

d1
K2

1

(∫
Ω

u2p
1 dx

) 1
2
(∫

Ω

|∇v2|4dx
) 1

2

≤ C3
(∫

Ω

u2p
1 dx

) 1
2

for all t ∈ (0, Tmax)

(49)

with C3 > 0, to estimate the term
(∫

Ω
u2p

1 dx
) 1

2

, fixing

λ̂ :=
pn
2 −

n
4

1− n
2 + pn

2

,

due to the fact that n ≤ 3, this guarantees that λ̂ ∈ (0, 1), then we can employ the
Gagliardo-Nirenberg inequality, Lemma 2.1 and Young’s inequality to get

C3
(∫

Ω

u2p
1 dx

) 1
2

= C3‖u
p
2
1 ‖2L4(Ω) ≤ C4

(
‖∇u

p
2
1 ‖2λ̂L2(Ω)‖u

p
2
1 ‖

2(1−λ̂)

L
2
p (Ω)

+ ‖u
p
2
1 ‖2

L
2
p (Ω)

)
≤ C5

(
‖∇u

p
2
1 ‖2λ̂L2(Ω) + 1

)
≤ d1(p− 1)

2

∫
Ω

up−2
1 |∇u1|2dx+ C6

(50)

with C4, C5, C6 > 0. A combination of (47), (49) and (50) yields

1

p

d

dt

∫
Ω

up1dx+

∫
Ω

up1dx ≤ µ1

∫
Ω

up1(1− u1)dx+

∫
Ω

up1dx+ C6 ≤ C7 (51)

with C7 > 0. Therefore, we apply a comparison argument to establish the bound-
edness of ‖u1‖Lp(Ω). Applying the same arguments as above, we can easily obtain
the boundedness of ‖u2‖Lp(Ω). This completes the proof of this lemma.

Proof of Theorem 1.1. In light of Lemma 3.4, it follows from the well known Moser-
type iterations and Lemma 2.1 that Theorem 1.1 holds.

3.2. The improvement of boundedness for n = 2: proof of Corollary 1.1.
In the above section, the global boundedness of solution is derived under the con-
dition that µ1, µ2 are sufficiently large. In this section, motivated by the method
in [2, 3, 17], we remove the restriction on µ1, µ2 when n = 2. The key point of
the proof is to establish the boundedness of

∫
Ω
|∇v1|4dx and

∫
Ω
|∇v1|4dx, to this

end, we first establish the boundedness of
∫ t+τ
t

∫
Ω
|∇vi|4dx, i = 1, 2 in the following

lemma.
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Lemma 3.5. Let Ω ⊂ Rn(n ≤ 2) be a smooth and bounded domain, λi > 0, µi > 0,
dj > 0 (i = 1, 2, j=1, 2, 3, 4). Assume that hi(i = 1, 2) satisfy (H3)-(H4), and
(u1, u2, v1, v2) is a classical solution of (1). Then one can find a constant C4 > 0
such that∫ t+τ

t

∫
Ω

|∇v1|4dxds+

∫ t+τ

t

∫
Ω

|∇v2|4dxds ≤ C4 for all t ∈ (0, Tmax), (52)

where τ = min
{

1, Tmax

2

}
.

Proof. Since n ≤ 2, we can apply the Gagliardo-Nirenberg inequality to obtain∫
Ω

|∇v1|4dx = ‖∇v1‖4L4(Ω) ≤ C(GN)4
(
‖∆v1‖λL2(Ω)‖∇v1‖1−λL2(Ω) + ‖∇v1‖L2(Ω)

)4

≤ C8
(
‖∆v1‖2L2(Ω) + 1

)
(53)

with C8 > 0, λ = n
4 ∈ (0, 1

2 ], where we have used the boundedness result of
‖∇v1‖L2(Ω) in Lemma 2.3. Integrating (53) over (t, t+ τ), and by virtue of Lemma
2.3, we can compute∫ t+τ

t

∫
Ω

|∇v1|4dxds ≤ C9 for all t ∈ (0, Tmax), (54)

where C9 > 0. Similarly, we can derive∫ t+τ

t

∫
Ω

|∇v1|4dxds ≤ C10 for all t ∈ (0, Tmax) (55)

with C10 > 0, this readily yields (52).

In the second step, we derive the boundedness of
∫

Ω
|ui lnui|dx, i = 1, 2.

Lemma 3.6. Let Ω ⊂ Rn(n ≤ 2) be a smooth and bounded domain, λi > 0, µi > 0,
dj > 0 (i = 1, 2, j=1, 2, 3, 4). Assume that χij(i = 1, 2, j = 1, 2) satisfy

0 < χ
′

ij(s) ≤ L for all s ≥ 0 (56)

with L > 0, and (u1, u2, v1, v2) is a classical solution of (1). Then there exists
C4 > 0 such that∫

Ω

|u1 lnu1|dx ≤ C4,

∫
Ω

|u2 lnu2|dx ≤ C4 for all t ∈ (0, Tmax). (57)

Proof. Multiplying the first equation in (1) by (1 + lnu1) and integrating it over Ω,
one obtains

d

dt

∫
Ω

u1 lnu1dx

= −d1

∫
Ω

|∇u1|2

u1
dx+

∫
Ω

χ11(v1)∇v1 · ∇u1dx+

∫
Ω

χ12(v2)∇v2 · ∇u1dx

+ µ1

∫
Ω

u1(1− u1 − a1u2)(1 + lnu1)

= −d1

∫
Ω

|∇u1|2

u1
dx+

∫
Ω

∇
(∫ v1

1

χ11(s)ds

)
· ∇u1dx

+

∫
Ω

∇
(∫ v2

1

χ12(s)ds

)
· ∇u1dx

(58)
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+ µ1

∫
Ω

u1(1− u1 − a1u2)(1 + lnu1)

= −d1

∫
Ω

|∇u1|2

u1
dx−

∫
Ω

∆

(∫ v1

1

χ11(s)ds

)
u1dx−

∫
Ω

∆

(∫ v2

1

χ12(s)ds

)
u1dx

+ µ1

∫
Ω

u1(1− u1 − a1u2)(1 + lnu1) for all t ∈ (0, Tmax).

To estimate −
∫

Ω
∆
(∫ v1

1
χ11(s)ds

)
u1dx, utilizing the Young inequality and (56), it

follows

−
∫

Ω

∆

(∫ v1

1

χ11(s)ds

)
u1dx ≤

1

2

∫
Ω

u2
1dx+

1

2

∫
Ω

∣∣∣∆(∫ v1

1

χ11(s)ds

) ∣∣∣2dx
=

1

2
‖u1‖2L2(Ω) +

1

2

∥∥χ′

11(v1)|∇v1|2 + χ11(v1)∆v1

∥∥2

L2(Ω)

≤ 1

2
‖u1‖2L2(Ω) + L2‖∇v1‖4L4(Ω) +K2

1‖∆v1‖2L2(Ω).

(59)

Like wise, we have

−
∫

Ω

∆

(∫ v2

1

χ12(s)ds

)
u1dx ≤

1

2
‖u1‖2L2(Ω)+L2‖∇v2‖4L4(Ω)+K2

1‖∆v2‖2L2(Ω). (60)

As for µ1

∫
Ω
u1(1−u1− a1u2)(1 + lnu1), in view of the boundedness of

∫
Ω
uidx(i =

1, 2) in Lemma 2.1, and the inequalities ρ(1 − ρ) ≤ 1
4 , ρ(1 − ρ) ln ρ ≤ 0 as well as

−ρ ln ρ ≤ 1
e for all ρ > 0, it holds that

µ1

∫
Ω

u1(1− u1 − a1u2)(1 + lnu1)

≤ µ1

∫
Ω

u1(1− u1)dx+ µ1

∫
Ω

u1(1− u1) lnu1dx− a1µ1

∫
Ω

u1u2 lnu1dx

≤ µ1|Ω|
4

+
a1µ1m2

e
for all t ∈ (0, Tmax).

(61)

Plugging (59)-(61) into (58), we can see that

d

dt

∫
Ω

u1 lnu1dx+ d1

∫
Ω

|∇u1|2

u1
dx ≤ ‖u1‖2L2(Ω) + (L+K1)2

(
‖∇v1‖4L4(Ω)

+‖∆v1‖2L2(Ω) + ‖∇v2‖4L4(Ω) + ‖∆v2‖2L2(Ω)

)
+
µ1|Ω|

4
+
a1µ1m2

e

(62)

for all t ∈ (0, Tmax). According to n ≤ 2, we can utilize the Gagliardo-Nirenberg
inequality to derive∫

Ω

u1 lnu1dx ≤
∫

Ω

u2
1dx = ‖u

1
2
1 ‖4L4(Ω) ≤ C11‖∇u

1
2
1 ‖4λL2(Ω)‖u

1
2
1 ‖

4(1−λ)
L2(Ω) + C11‖u

1
2
1 ‖4L2(Ω)

≤ C12

(∫
Ω

|∇u1|2

u1
+ 1

)
(63)
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where λ = n
4 ∈ (0, 1

2 ], C12 > 0. Together with (62) and (63), we arrive at

d

dt

∫
Ω

u1 lnu1dx+
d1

C12

∫
Ω

u1 lnu1dx

≤ ‖u1‖2L2(Ω) + (L+K1)2
(
‖∇v1‖4L4(Ω) + ‖∆v1‖2L2(Ω) + ‖∇v2‖4L4(Ω) + ‖∆v2‖2L2(Ω)

)
+
µ1|Ω|

4
+
a1µ1m2

e
+ d1

(64)

for all t ∈ (0, Tmax). Thus, we infer from (10), (13), (52) and Lemma 2.2 that∫
Ω
|u1 lnu1|dx is bounded. Equally, we can establish the boundedness for

∫
Ω
|u2 ln

u2|dx. Whereby the proof is completed.

In what follows, we proceed to show that
∫

Ω
u2

1dx +
∫

Ω
u2

2dx +
∫

Ω
|∇v1|4dx +∫

Ω
|∇v2|4dx is bounded for all µ1, µ2 > 0.

Lemma 3.7. Let Ω ⊂ R2 be a smooth and bounded domain, λi > 0, µi > 0, dj > 0
(i = 1, 2, j = 1, 2, 3, 4). Assume that the conditions in Lemma 3.6 are satisfied, and
(u1, u2, v1, v2) is a classical solution of (1). Then there exists C5 > 0 such that∫

Ω

u2
1dx+

∫
Ω

u2
2dx+

∫
Ω

|∇v1|4dx+

∫
Ω

|∇v2|4dx ≤ C5 for all t ∈ (0, Tmax). (65)

Proof. From (21)-(24), we deduce that

d

dt

(∫
Ω

u2
1dx+

∫
Ω

u2
2dx+

∫
Ω

|∇v1|4dx+

∫
Ω

|∇v2|4dx
)

+ d1

∫
Ω

|∇u1|2dx

+ d2

∫
Ω

|∇u2|2dx+ 4λ1

∫
Ω

|∇v1|4dx+ d3

∫
Ω

|∇|∇v1|2|2dx+ 4λ2

∫
Ω

|∇v2|4dx

+ d4

∫
Ω

|∇|∇v2|2|2dx+

∫
Ω

(u2
1 + u2

2)dx

≤

(
(2n+ 8)

C2
h1

d3
+

2K2
1

d1

)∫
Ω

u2
1|∇v1|2dx+

(
(2n+ 8)

C2
h1

d3
+

2K2
2

d2

)∫
Ω

u2
2|∇v1|2dx

+

(
(2n+ 8)

C2
h2

d4
+

2K2
1

d1

)∫
Ω

u2
1|∇v2|2dx+

(
(2n+ 8)

C2
h2

d4
+

2K2
2

d2

)∫
Ω

u2
2|∇v2|2dx

+ 2d3

∫
∂Ω

|∇v1|2
∂|∇v1|2

∂ν
dS + 2d4

∫
∂Ω

|∇v2|2
∂|∇v2|2

∂ν
dS +

∫
Ω

(u2
1 + u2

2)dx

+ 2µ1

∫
Ω

u2
1(1− u1)dx+ 2µ2

∫
Ω

u2
2(1− u2)dx for all t ∈ (0, Tmax).

(66)

To handle the first term on the right side of (66), we notice that n = 2, accordingly,
in view of (18), the following inequality

‖u1‖3L3(Ω) ≤ ε‖∇u1‖2L2(Ω)‖u1 ln |u1|‖L1(Ω) + C‖u1‖3L1(Ω) + Cε (67)

holds for all ε > 0, then, the boundedness of ‖u1 ln |u1|‖L1(Ω) and ‖u1‖L1(Ω) in
Lemma 3.6 and Lemma 2.1 guarantees that

‖u1‖3L3(Ω) ≤ C13ε‖∇u1‖2L2(Ω) + C13 for all t ∈ (0, Tmax) and ε > 0 (68)
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with C13 > 0. Therefore, utilizing the Hölder inequality, the Gagliardo-Nirenberg
inequality and the Young inequality, it follows from (12), (67) as well as (68) that(

(2n+ 8)
C2
h1

d3
+

2K2
1

d1

)∫
Ω

u2
1|∇v1|2dx

≤

(
(2n+ 8)

C2
h1

d3
+

2K2
1

d1

)
‖u1‖2L3(Ω)‖|∇v1|2‖L3(Ω)

≤

(
(2n+ 8)

C2
h1

d3
+

2K2
1

d1

)
‖u1‖2L3(Ω)

(
CGN‖∇|∇v1|2‖

2
3

L2(Ω)‖|∇v1|2‖
1
3

L1(Ω) + CGN‖|∇v1|2‖L1(Ω)

)
≤

(
(2n+ 8)

C2
h1

d3
+

2K2
1

d1

)
‖u1‖2L3(Ω)

(
C14‖∇|∇v1|2‖

2
3

L2(Ω) + C14

)
≤ d3

4
‖∇|∇v1|2‖2L2(Ω) + C15‖u1‖3L3(Ω) + C15

≤ d3

4
‖∇|∇v1|2‖2L2(Ω) +

d1

2
‖∇u1‖2L2(Ω) + C16 for all t ∈ (0, Tmax)

(69)

with C14, C15, C16 > 0, where we have fixed ε = d1
2C13C15 when using (68).

In a similar way, we can find C17, C18, C19 > 0 such that(
(2n+ 8)

C2
h1

d3
+

2K2
2

d2

)∫
Ω

u2
2|∇v1|2dx ≤

d3

4
‖∇|∇v1|2‖2L2(Ω) +

d2

2
‖∇u2‖2L2(Ω) + C17

(70)
and(

(2n+ 8)
C2
h2

d4
+

2K2
1

d1

)∫
Ω

u2
1|∇v2|2dx ≤

d4

4
‖∇|∇v2|2‖2L2(Ω) +

d1

2
‖∇u1‖2L2(Ω) + C18

(71)
as well as(

(2n+ 8)
C2
h2

d4
+

2K2
2

d2

)∫
Ω

u2
2|∇v2|2dx ≤

d4

4
‖∇|∇v2|2‖2L2(Ω) +

d2

2
‖∇u2‖2L2(Ω) + C19

(72)
for all t ∈ (0, Tmax).

For the term 2d3

∫
∂Ω
|∇v1|2 ∂|∇v1|

2

∂ν dS + 2d4

∫
∂Ω
|∇v2|2 ∂|∇v2|

2

∂ν dS, (12) and (38)-
(40) enable us to see that

2d3

∫
∂Ω

|∇v1|2
∂|∇v1|2

∂ν
dS + 2d4

∫
∂Ω

|∇v2|2
∂|∇v2|2

∂ν
dS

≤ d3

2
‖∇|∇v1|2‖2L2(Ω) +

d4

2
‖∇|∇v2|2‖2L2(Ω) + C20 for all t ∈ (0, Tmax)

(73)

with C20 > 0.
What’s more, making use of the identity s2(1 − s) ≤ 4

27 for all s > 0, the last
two terms in (66) can be bounded as

2µ1

∫
Ω

u2
1(1− u1)dx+ 2µ2

∫
Ω

u2
2(1− u2)dx ≤ 8|Ω|

27
(µ1 + µ2) for all t ∈ (0, Tmax).

(74)
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Thus, plugging (69)-(74) into (66), we can conclude that

d

dt
Ỹ (t) + δ̃Ỹ (t) ≤

∫
Ω

(u2
1 + u2

2)dx+ C21 for all t ∈ (0, Tmax), (75)

where Ỹ (t) :=
∫

Ω
u2

1dx+
∫

Ω
u2

2dx+
∫

Ω
|∇v1|4dx+

∫
Ω
|∇v2|4dx, δ̃ := min{4λ1, 4λ2, 1},

C21 > 0, which combined with (10), (11) and Lemma 2.2 show (65).

Proof of Corollary 1. A combination of Lemma 2.5 and Lemma 3.7 directly yields
Corollary 1.
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