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ABSTRACT. In this work, the fully parabolic chemotaxis-competition system
with loop

Orur = di1Aur — V - (u1x11(v1)Vor)
—V - (u1x12(v2) Vo) + prui (1 — w1 — ajug),
Oruz = doAug — V - (u2x21(v1)Vur)
=V - (u2x22(v2) Vv2) + pouz(l — uz — agu1),
01 = d3Avy — A1v1 + hi(u1, u2),
Orva = daAvy — Aava + ha(u1, u2)
is considered under the homogeneous Neumann boundary condition, where
z€Q,t>0,QCR"(n<3)is a bounded domain with smooth boundary. For
any regular nonnegative initial data, it is proved that if the parameters w1, pu2
are sufficiently large, then the system possesses a unique and global classical
solution for n < 3. Specifically, when n = 2, the global boundedness can be
attained without any constraints on 1, p2.

1. Introduction. In this paper, we consider the following initial boundary value
problem

Opuy = d1Auy — V- (u1x11(v1)Vor)

-V (U1X12(U2)V’U2) + ,u1u1(1 — U] — a1UQ) rzeQ, t>0,
Opus = daAus — V - (ugx21(v1)Voy)

=V - (u2x22(v2)Vug) + poug(l — uz — aguy), x €, t>0,
Oyv1 = d3Avy — \v1 + hl(ul,u2), rzeQ, t>0, (1)
0o = dgAvy — Aovg + h2(U17U2)7 x € Q, t >0,
Gur — Jup — vy — Bua — reQ, t>0,

u1(z,0) = urp(x), ua(x,0) = uge(z),v1(x,0)
= v1g(x), va(z,0) = voo(z), e

in a bounded domain 2 C R™ with smooth boundary 9S2, where a% represents differ-
entiation with respect to the outward normal on 02, dy,ds, d3, dy, pt1, fh2, A1, A2, a1,
ay are positive constants. This model comes from [5], it describes the chemotacti-
cal communication named EGF/CSF-1 paracrine invasion loop, which might be a
target to control or prevent metastasis with therapeutic methods. w1, us represent
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the densities of macrophages and tumor cells, v;(i = 1,2) denote the concentration
of the chemical. The chemotactic sensitivity functions x;;(¢,j = 1,2) are smooth
and positive. Let the initial data g, u29,v10 and vy satisfy

0<up € CO(Q), 0<ug € CO(Q), 0< v € Wl’OO(Q), 0< vy € WI’OO(Q) (2)

For the case x12 = Xx21 = 0, h1 = hy(ua), ha = ha(u1), which describes the
situation that tumor cells and macrophages mutually attract each other trough
chemotactic signals. In such a case, the global solvability, boundedness and asymp-
totic behavior have been investigated intensively, for instance, Wang et al. detected
the boundedness of solutions for n < 3 in [17], also, they explored the asymptotic
behavior of solutions for any n > 1. Choosing hq (ug) = ug, ha(u1) = w1, X11, X22 are
two constants, when 1 = pe = 0, the global boundedness and blow-up of solutions
have been considered in [6, 11, 20]. When p1, u2 # 0, for the fully parabolic case,
the global boundedness and large time behavior for n < 2 and n = 3 were detected
in [3] and [8] respectively; as for the parabolic-elliptic case, for all n > 1, the global
boundedness and asymptotic behavior were obtained in [21, 12]; afterwards, the
results in [21, 12] were partially improved by Wang et al. in [18].

When x;; (4,7 = 1,2) are constants, hq = ajus + Srug, he = asug + Bous. With-
out respect to the kinetic terms, Espejo et al. derived the simultaneous blow-up
phenomenon in [4] for the parabolic-elliptic case of (1) in the whole space R2. Con-
sidering the Lotka-Volterra-type competition, whether the parabolic-elliptic case or
the fully parabolic case of (1), the global dynamics of solutions were detected, it
was found that the solution of (1) is globally bounded without any requirement on
the size of the parameters for the fully parabolic case in the lower dimensions n < 2
[14], while the largeness of parameters p1, ps is needed to guarantee the global solv-
ability of (1) for n = 3 [15], and the global solution of this system exponentially
approaches to a steady state for all n > 1 [14], specifically, the system was shown
to exhibit the large population densities phenomenon in [16], that is, the solution
exhibits unbounded peculiarity for the proper choice of initial data. As for the
parabolic elliptic case, in [13], the global boundedness result were established for
n > 2 under the condition that %, %, % and % are suitably small, moreover,
the large time behavior of solution was derived.

In summary, for the two-species and two-stimuli chemotaxis system, most of
the results are focusing on the case that the chemotactic sensitivity functions are
constants and the signal production is linear. Therefore, the objective in the present
study is to investigate the global boundedness of solutions for (1) when x;;, (i,7 =
1,2), hy, ho are general functions. Our work is motivated by the method in [17], but
in contrast, the existence of the chemical signalling loop in our model makes the
computations and analysis fairly subtle.

We shall suppose throughout this paper that the functions x;;(s), hi(s, 7)(3, j =
1,2) satisty the following conditions:

(H1) x45(s) € C1*9(]0,00)),1,7 = 1,2, for some 6 > 0.

(H2) 0 < x11(s), x12(s) < Kj for some Ky > 0; 0 < x21(s), x22(s) < Ky for some
Ky > 0.

(H3) hi(s,7) € C9(]0,00) x [0,00)),i = 1,2, for some & > 0.

(H4) h;(0,0) = 0 and 0 < 2slen) Ohisn) o with €, > 0, = 1,2

ds or

From the above (H3) and (H4), a straight calculation yields

hi(s,7) — h;(0,0) = Ch,(s + 7) for i = 1,2. (3)
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Now we state our main results as follows.

Theorem 1.1. Let Q C R"(n < 3) be a smoothly bounded domain, and let dy,ds, ds,
da, 11, ph2, A1, A2, a1, az be positive constants. Assume that x;j, hi(i,j = 1,2) satisfy
(H1)-(H4), pa, pa satisfy

2K7? C?  2K? 2K? 2K7? C?
p1 > max{ Ly 4+ (2n48) 1 4 oL L T 49 Ty 4 (20 4+ 8)—2
d; ds ' ds dy dy dy n
+2K12 N 2K2 o
ds dy ’
2K?2 C?  2KZ 2K2 2K2 C?
fg > max { 2y + (2n 4 8)— 4 22 L Z22 9 T2, 4 (2 4 8) 2
dy ds ' ds dy dy dy -
L S
ds dy
with
m = 2(dy + d3)? N 2(dy +dy)? 207 +2CF +1
! dyds dydy dy ’ ©)
_ 2(dy+d3)* | 2(da +da)? n 2C}, +2C3, +1
"2 dads dadys ds '

Then for all uig,u20,v10 and vog satisfying (2), the classical solution (uy,us,v1,vs)
of (1) is unique and globally bounded in the sense that

[ u1(-t) ooy + I v1(0) L) + [l u2(t) =) + | v2(-s?) Lo ()< C
for all t > 0, with some constant C' > 0 that is independent of t.

Corollary 1. Let Q C R? be a smoothly bounded domain, and let dy,ds,ds,ds, pi1,
M2, A1, A2, a1, a2 be positive constants. Assume that x;j, hi(i,j = 1,2) satisfy (H1)-
(H4)7 and Xij (7”] = 1a 2) f’u’lﬁll

X, ()| < L for all s > 0 -

with some L > 0. Then for all uig,us0,v10 and veg satisfying (2), the classical
solution (uy,us2,v1,v2) of (1) is globaly bounded.

Remark 1. It is obvious that there exist functions x;;, h;(é, j = 1,2) which satisfy
(H1)-(H4), such as, we can choose the standard chemotactic sensitivity functions
Xij(s) = (1-%0#)2 with cg,c > 0, and choose h; = cju1 + caus with c1,c > 0.

In this paper, we deal with the quasilinear chemotaxis-competition system with
loop. First, we give the local existence and some properties to prepare for the later
work. Next, under the condition that ui, ps are sufficiently large, we establish the
global boundedness result when n < 3. At last, for the case n = 2, we obtain the
boundedness result without any requirement on the size of p1, ps.

2. Preliminary. As a preliminary, we first give the local existence and some im-
portant estimates of solutions for (1).

Lemma 2.1. Let Q@ C R™(n > 1) be a smoothly bounded domain, and let x;j, h;
(i,7 =1,2) satisfy (H1)-(H4). Assume that the initial data uig,us9, V10, V20 Satisfy
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(2). Then there exists a mazimal Tnax € (0,00] such that the system (1) has a
unique nonnegative classical solution (ui,us,v1,v2)

ug,us € CO(Q x [0, Tmax)) N C*H(Q x (0, Tnax)),
vy, 02 € CY(Q X [0, Tiax)) N C*1(Q x (0, Thax)),
which satisfies
either Tax = 00, or ||ui(-,t)|[pee(q) + [[ua (-, t)|| e (@) — 00 ast — Tiax.
Besides, the solution fulfills

/ ug (z,t)dr < mp := max {/ uio(x)de, |Q|} for allt € (0, Thaz) (8)
Q Q
and
/ us(x, t)dr < mgy := max {/ ugo(x)dx, |Q|} for allt € (0, Thax) (9)
Q Q
as well as
t+1 my
/ / u?(x,t)deds < Ky == my + m forallt € [0, Thnaz — T) (10)
t Q 1

and

t+7
/ / ul(z,t)deds < Ky := mo + m2 forallt € [0, Traz — T), (11)
t Q H2

where T = min {1, T"é‘” } .

Proof. The local existence of classical solution to (1) can be shown by using well-
established methods for chemotaxis problems in [19]. And the relation (8)-(11) can
be directly derived by a similar method in [15]. O

Next, we recall the following lemma (see Lemma 3.4 in [9] or Lemma 2.3 in [1]),
which is significant for our latter proof.

Lemma 2.2. Let T > 0, 0 < f € L} _([0,T)), y(t) be a nonnegative absolutely

loc
continuous function on [0,T). Assume that there exist a > 0,b > 0 such that

/t+T f(s)ds <b for allt € [0,T — 1)
t

and

’

y (t) + ay(t) < f(t) for almost allt € (0,T),
then

y(t) < max {y(O) + b, b + Qb} for allt € (0,7),
a
where T = min{L %} .

Based on Lemma 2.1 and Lemma 2.2, we can now derive some basic properties
of vy, vs.

Lemma 2.3. Let Q C R"(n > 1) be a smooth and bounded domain, \; > 0, a; > 0,
i >0,d; >0 (1=1,2,7=1,2,3,4). Assume that hi, ho satisfy (H3)-(H4). Then
there exist My, My, N1, No > 0 such that the solution of (1) satisfies

/ |V (z,t)|?de < My, / |Vg(,t)|*dz < My for all t € [0, Tyraz), (12)
Q Q
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t+T1 t+T1
/ / |Avy (x, s)|*dzds < Ny, / / |Avy(z,8)[Pdeds < No,  (13)
¢ Q ¢ Q

for allt € [0, Tpap — 7), where 7 = min {1, Twéam 1.

Proof. Multiplying the third equation in (1) by —Awv; and integrating the result
equation over {2, we have

1
5%/ \Vvl‘Qda:—Fd:a/ \Aleda:-&-)q/ |Vv1|2dx=—/h1(U1,uQ)Av1dx
Q Q Q Q

d3 2 C}QLl 2 0}211 2
< = | |Av]°dz + uidx + uzdx for all t € (0, Tz ),
2 Jo ds Ja ds Ja

therefore,

d
%/ |Vv1|2dx+d3/ |Av1|2dx+2/\1/ |V [2dz
Q ) Q

14
202 p . ek g, (14)
< 1/u1d:v+ 1/1L2czlx
ds Ja ds Jo
for all t € (0, Tynaz)- By denoting
@) = [ IVu0Pds, i)
Q
2C3 2C3
— ’“/ufdyH hl/ugd:p for all t € (0, Tnaz),
ds Jo ds Jo
we obtain
Yo () + 20y () + ds / Avy(z,8)[2dz < fi(t) for all £ € (0, Tpas). (15
Q
Lemma 2.1 and the definition of f; entail that
t+7
fi(s)ds < e (16)

t
with some ¢; > 0, then it follows from Lemma 2.2 that

y1(t) = /Q |Vvl(x,t)|2dx < e (17)

with some ¢y > 0. Whence by an integration of (15) over (¢,t + 7) we find

t+1 t+T1
n(t+7)+2M / y1(s)ds + ds / / |Avy (, s)|*dads
t t Q

t+7
<y (t) —|—/ fi(s)ds < ¢34+ ¢ for all t € [0, Trnaw — 7)),
t
along with the nonnegativity of y1, we conclude (13). The other inequalities in (12)
and (13) can be obtained by the similar method. O

To improve the condition that warrants the global boundedness of solution for (1)
when n = 2, we recall the following generalization of Gagliardo-Nirenberg inequality
which is given in Lemma A.5 of [10].

Lemma 2.4. Let Q C R? be a smooth and bounded domain. Then for all ¢ €
W2(Q), one can find C > 0 such that for any € > 0 there exists C. > 0 with the
property that

lells) < elVellZzollenlelli@ + Clleliiq + Ce (18)
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The following lemma plays an important role in the proof of Corollary 1, and the
proof is similar to Lemma 2.5 in [14].

Lemma 2.5. Let Q C R™(n > 1) be a smooth and bounded domain, (uy,us,vi,vs)
be the classical solution of (1). Assume that x;;,hi(i = 1,2,57 = 1,2,3,4) satisfy
(H1)-(H4). Let p > 1 be such that § < p <n and

sup  (flur (-, )|l ze(e) + llua ()| 2e () < oo. (19)
t€(0,Tmax)

Then Tiax = 00, and

igg(“ul(wt)HLu%Q)4'Huz(wt)HL«wQ)4-HU1(wt)”Lu%Q)*‘HU2(wf)Hwasn) < 00. (20)

3. The global boundedness of solutions. In this section, we first prove the
global boundedness of solutions for n < 3 under the condition that pi,pe are
sufficiently large; next, we remove the requirement on the largeness of parameters
i1, w2 when n = 2.

3.1. Proof of Theorem 1.1. To prepare our analysis, we establish several differ-
ential inequalities in the following two lemmas..

Lemma 3.1. Let Q C R"(n > 1) be a smooth and bounded domain, \; > 0, u; > 0,
d; >0 (i =1,2, j=1, 2, 3, 4). Assume that x;;,h:(i = 1,2,7 = 1,2,3,4) satisfy
(H1)-(H4). Then for any classical solution (u1,us,v1,vs) of (1) we have

2K? 2K3
d d:v—f—dl/ |V |?de <=2 /u§|Vv1|2dx+—l/u%|Vv2|2dx
dt dy di Ja
(21)
+2,u1/u§(1—u1)dx,
Q
d 2K3 2K3
—/ dx—l—dg/ |Vug|?de <=2 /u2|Vv1| de + =2 [ u3|Vus|2dx
dt ds do Jo
(22)
+2,u2/ u3(1 — ug)dr
Q
forallt € (0, Thaz). And
d
dt/ V| dm+4/\1/ |w1|4dx+d3/ V|V ? 2dz
Q Q
02
< (20+8) / (12 + 12) |V [2dz (23)
Q
+2d3/ |Vo |2a\wl| dS for all t € (0, Tynax)
o0
as well as
d
ﬁ/ \va|4dx+4/\2/ |Vv2|4dx+d4/ V|V |*|2dx
Q Q Q
CQ
< (2n+8)d—h:/(u§ + u3) | Vg |2 da (24)
Q

|26‘V vl g Jor all t € (0, Trag)-

+2d4/ Vo
80
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Proof. Multiplying the first equation in (1) by u; and integrating by parts over €,
in light of (H1)-(H2) and the Young inequality, we can see that

1d 9 9
2dt/gu1daj+d1 Q|Vul| dx

= / U1X11(’U1)v1]1 . Vuldx +/ ’U,1X12(U2)V02 . Vulda:
Q Q

+ ul/ (1 — uy — ayug)dx
Q

SKl/u1VU1~Vu1dz+K1/u1Vv2~Vu1dx+,u1/u%(l—ulfallw)dz
Q Q Q

dy 2 K% 2 2 K% 2 2 2
< — | Vuil*de + — [ ui|Vui|*de + — [ ui|Vva|®dz + 1 | ui(l —uq)dz
2 Ja di Ja di Jo o)

for all t € (0, Tynax), which directly yields (21). Similarly, we can derive (22).
To derive (23), in light of the third equation in (1) and the identity 2Vv;-VAv; =
AlVv1|? — 2|D?%v1 |2, it follows that

4dt/ |Vv1|4dx—/(Vv1) - Vuydx
:dg/ Vo 2 <A|Vu1|2—|D2v1|2> da:—)\l/ IV, 4
Q 2 Q
—/ hl(ul,ug)V~(|V01\2V1}1)dw
Q

d |V
< 53/ Vo[22 | ”1| dS——/ IvlvaIzdxfds/ [Vor2| D01 [Pda
oN

7)\1/ |Vv1|4dx—/ hl(ul,u2)|Vv1| A’Uldl‘f/ hl(ul,uQ)Vvl «V|Vv1|2dx
Q Q Q
(25)
for all t € (0, T4z ), here, in view of (H4) and the relation |Av;|? < n|D?v1|?, one
obtains
—/hl(ul,u2)|Vv1|2Avlda: < \/ﬁChl/(ul + ug) |V |*| D?vy |dx
Q

2
M (w2 4+ u)| Vo |2da for all t € (0, Thaz),

<d3/ Vo |? \D2v1|2dx+

2ds
(26)
and
—/hl(ul,ug)Vm . V|V’U1|2d$ S Chl /(Ul + Uz)lvv1| . V|Vvl|2dx
Q Q
2 (27)
2|2 dhl (2u? + 2u3) |V, |2da for all t € (0, Trnaz)-
3
Consequently, pluggmg (26) and (27) into (25), we arrive at (23). In addition, (24)
can be established in a same manner. O

Lemma 3.2. Let Q C R™"(n > 1) be a smooth and bounded domain, A; > 0, u; > 0,
d; >0 (i =1,2, j=1, 2, 3, 4). Assume that xi;,h;(i = 1,2,j = 1,2,3,4) satisfy
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(H1)-(H4). Then for any classical solution (u1,us,v1,vs) of (1) we have

d
u1|Vv1| dx+/u1|Vv1|2dx
at o
Sd 2(dy + dg)?
3/wwm|d+<“;3)+@J/Wmmmm@/vwwx
3 Q Q

+(u1—2/\1+1)/

2 2K3 2 2
u|Voi|?de + | — — 1 + 2 uf|Vur|“dx
Q ds Q

2K2 oV 2
+ = | @{|Vulda + d3/ u1 [Vou| dsS for allt € (0, Trmaz),
ds Ja 09 v
(28)
d 2
= u1|Vv2| dz + u1|Vv2| dx

3d 2(dq + dy)?
4/ V|V |2 2dz + <(1d+4)+c,§2)/ |Vu1|2dg;+c,§2/ [Vus|?da
4 Q Q

+(u1—2/\2+1)/

Q dy

u 8|Vv2|2
)

2 2K3 2 2
up|Vog|?de + | — — 1 + 2 uf|Vug|“dx
Q

2K2
+ — uf|Vv1|2das—|—d4/
ds Jo 09

dS for allt € (0, Tpnaz),
(29)

d
dt/U2|Vv1| dx—|—/u2|Vv1|2dJ;

3d 2(d d3)?
3/WWMFd+(“j3)+%J/WWWM¢i/vmmx
3 Q Q

K2
+ (/142 - 2)\1 + 1)/ U2|V’U1| dx + ( — M2 + 2) / u§|Vvl|2das
Q ds Q
8|Vv1|2
v

2K3

u2|Vv2|2dx—|—d3/ Usn
ds Jo B

dS for allt € (0, Trnaz),
(30)

d

dt/u2|Vv2| dx+/u2|Vv2|2dx

_3d 2(dy + dy)?
4/ V(Y02 d +<(2‘;0+c}32)/ |vu2|2dx+c,%2/ Vs 2
Q Q

2

2K
+ (/JQ — 2)\2 + 1)/ U2|V”U2|2dx —+ <d2 — U2 + 2) / U§|V’U2|2d$
Q 4 Q

8|V’U2|2
ov

2K3
dy

u2|Vv1|2dx + dy / U9 dS for allt € (0, Thaz).
Q a0

(31)
Proof. Notice that the estimates for (28)-(31) are similar, thereupon, we only con-

sider the priori estimates for (28). Utilizing the first equation and the third equation
in (1), one finds
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d
dt

= 7d1/ Vu1 . V|V”U1|2dl' +/ ’ulel(’Ul)V’Ul . V|V”Ul|2d(£
Q Q

u1|Vv1|2dx*/ [V | ultda:+2/u1V’u1 Vo

+/ w1 x12(v2) Vg - V|V [2de + M1/ w1 |V |2 (1 — uy — ayup)de
Q Q

+d3/u1 (A|Vu1|2—2|D201|2) dx—Z)\l/u1|Vv1|2dx
Q Q

+ 2/ Uy 78h1(u1,u2)vu1 + 78h1(u1,U2)Vu2 - Vuidx
Q Bul BuQ

7(d1 +d3)/ Vu1~V|Vvl|2dx+/ulxll(vl)Vv1~V\Vvl\2dx
Q Q
—|—/ulxlg(vg)va~V|Vv1\2dx+(,u1—2)\1)/u1|Vv1|2dx—y1/u%|Vv1|2dw
Q Q Q

2

h

+d3/ o 2190 dS+2/ Oh(w,u2) | o G de
ov O Ouy

+2/ Om(u1,u2) | G o de
8UQ
(32)

for all t € (0, Tinaz), where we have used the identity 2Vov; - VAv; = A|Vuy|? —
2|D?v;|%. To estimate the right side term of (32), we apply the Young inequality
and the conditions (H2), (H4) to obtain

—(d1+d3)/Vu1-V|Vvl\2dx+/ulxll(vl)V01~V|VU1|2dm
dy + ds)
+/U1X12(U2)V’U2 V|VU1|2dIB< /|V|V’U1|2|2d +(1A/ |vul|2dx

K2
+ 5 [19I9n PP+ 53 [ ivnfa
Q
+—3/ |V|Vv1|2|2dx+—1/ u?| Vo ?dx for all t € (0, Tnaz)
8 Ja ds Ja
(33)
and
oh Ooh
2/ MmVul-Vvlda:—&—Z/ MmVuQ-Vvldx
[¢) 8u1 QO 8U2
(34)
SC’}ZH/ |Vu1|2dz—|—/u%|VU1\2dI+C}ZL1/ |Vu2|2dz—|—/u%|Vv1\2da:
Q Q Q Q

for all ¢ € (0,Tmaz). Inserting (33) and (34) into (32), one can immediately get
(28). Analogously, we can obtain (29)-(31). O

With Lemma 3.1 and Lemma 3.2 at hand, now, relying on a series of estimates,
under an additional largeness assumption on pu1, 2, we can attain the boundedness
of [quidz, [ouzdx, [, |Vui[*de and [, |[Vvs|*da.

Lemma 3.3. Let Q C R™"(n > 1) be a smooth and bounded domain, A; > 0, u; > 0,
d; >0 (i =1,2, j=1, 2, 3, 4). Assume that xi;,h;(i = 1,2,j = 1,2,3,4) satisfy
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(H1)-(H4), and (u1,us,v1,v2) is a classical solution of (1). Then if p1, pe satisfy
(4) and (5) in Theorem 1.1, one can find Cy1 > 0 such that

/ufdac—k/ u%dsc—k/ |VU1|4dx—|—/ |Vuo|tda < Cy for allt € (0, Tpnaz). (35)
Q Q Q Q

Proof. Tt follows from Lemma 3.1 and Lemma 3.2 that

7 <771/u1+772/u2 /|Vv1\4 /|V1)2|4 /u1|Vv1| +/u1|Vv2|2
+ [ualvul s [wlvep) s [as [ [ 9ups [ v
+4>\1/ |W1|4+4/\2/ |w2|4+—/ \V|vm2|2+—/ |V | Vs |22
Q Q 4 Q 4 Q
+/U1|VU1‘2+/U1|VUQ‘2+/UQ‘VU1|2+/U2‘VU2|2
Q Q Q Q

< (2mm +1)/ uf *%1#1/ U?+(2U2M2+1)/ U§*2772ﬂ2/ uj
Q Q Q Q
+ (/Ll —2)\1 +1)/ U1|V1)1|2+(/1,1 —2)\2+1)/ ’U,1|V’UQ|2
Q Q

+ (/LQ - 2)\1 + 1)/ ’LL2|V’01|2 + (/1,2 — 2)\2 + 1)/ U2|V’U2|2
Q

Q
2
+2d3/ Vv |28|W1| +2d/ |wg|2M
o0 o9 v
0|V |? 0| Vs |? |V |? 0| Vs |?
+d3/ ulﬂwﬂx/ P A Ly N Y B 1
50 31/ o0 31/ 80 81/ a0 aV

Ch 2K} 2K?
d3 ds dy

2K2
+< 0 Lo + (2n + 8)—2

Ch, 2K} N K2+2
o a4 i

2K2 Ch,  2K3 2K3?
+ (d 2y + (20 + 8)— 2 ) / u3| Vo |2
2 Q

2K?
+ 7771 + (2TL + 8)
1

d3 ds da

2K2 Ch,  2K3 2K3
9 4“0y 2 1 9_ 2 2
+< A 20y + (20 4 8)—2 d4 0 + i +2— po /Qu2|Vv2|

(36)

Making use of the Young inequality, for any €1, €2, €3,€4 € (0,1), it is clear that

-2 1)?
(1 — 221 + 1)/ up |V |2dr < 61/ |V |*de + w/ uide,
Q Q Q

461
-2\ 1)2
(1 —2X2 + 1)/ uy | Vg |*dr < 62/ | Vg |*da + M/ uidz,
Q Q 4e Q (37)
—2A 1)2
(2 — 221 + 1)/ up| Vo |*dx < 63/ |V [*da + M/ uddz,
Q Q des Q

-2 1)?
(o — 22X + 1)/ ug\Vv2|2da: < 64/ |Vv2|4dx + M/ u%dm.
Q Q dey Q
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According to Lemma 4.2 in [7], there exists C > 0 such that
8|Vui|2

5 < C|Vul?, i =1,2, for all t € (0, Tpaz), z € ON. (38)
And thanks to the boundary trace embedding:
WL2(Q) e W22(Q) < L2(89), (39)
which warrants that for any €5 > 0, one can find C(e5) > 0 such that
s < [ wolaa+ ctes) ([ o) (40)
o0 Q Q

holds for all ¢ € W12(Q). Thereupon, invoking Young’s inequality, (38) and (40),
we can see that

0 0 0 2
2d3/ |v |2 ‘V’Ul| +2d / |v |2M +d / (Ul +U2) |V'U1|
o0 o0 o0 ov

8|V’U2|2
+d/ Uy + u
4 89( 1 2) By

< 2d3(3/ |V’Ul|4 + 2d4C/ |V'U2|4 + dgC/ (u1 + ’LL2)‘V1)1|2
o0 o0 o

+d4C/ (U1 +UQ)|V’U2|2
o0

§6(2d3+2d§)/ |w1|4+6(2d4+2di)/ |W2|4+2c/ u1+2C u2

g/ V|V 2|2 + Cy(é (/ |w12> +e/ V| Vg |22 + Co(8) (/ IVv2I2>
+€/Q|Vu1|2+c3(e) </Qu1> +@/Q|Vu2\2+c4(e) (/QUQ) ;

where 0 < ¢ < min {%, % 1} Inserting (37) and (41) into (36), utilizing (4) and

(5), we can see that

d
— (771/“14'772/ |Vv1|4 /|Vv2|4 /u1|Vv1|2+/u1|Vv2|2
dt Q Q
+/u2|Vv1|2+/U2|VU2|2> +/u%dm+/u§+(1—é)/ |V, |?

Q Q Q Q Q

+ (1 - €)/ |VU2‘2 + (4)\1 — €1 — 63)/ |VU1|4 + (4)\2 — €3 — 64)/ |V’U2|4
Q Q Q

d d
+ (3—6)/|vw1|“+ (4—6)/ V|V |??
4 o 4 o

+ / (U1 + Ug)(|v111|2 + |V’U2|2)
Q

—2X\; +1)2 —2Xy +1)2
< 2mm+1+(u1 1 ) +(M1 2 ) /U%—2771M1/U:1)’
462 Q O

(41)

461
— 2\ +1)2 — 2\ +1)2
+ (2?72u2+1+ (22 1 1+ + (12 1 2+ 1) /u§—2n2u2/ug
€3 €4 O Q
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+Ci(o) (/va|2)2+cz(e) (/Q|wg|2>2+cg(g) </Qu1>2+04(€) </Qu2>2

for all t € (0, Thhae) and €; € (0,1), (i = 1,2,3,4). Let
Y(t) := 771/ uldr + 772/ uida +/ |V, [*da +/ | Vo |*da +/ up |V [2da
Q Q Q Q Q

—|—/ up| Vg |2 da —|—/ ug| Vo [2da —|—/ u| Vg |*dr,
Q Q Q
(43)
selecting €;, (i = 1,2, 3,4) satisfying
€1+ €3 < 2A1, €2+ €4 < 29,

applying Young’s inequality, Lemma 2.1, Lemma 2.3 and (42), we can find 6 > 0
and C; > 0 such that

d

21 (O +0Y(t) < C forall t € (0, Trnaz), (44)
which with the ODE comparison principle means that (35) holds for all ¢ € (0,
Tmaw)- O

On the basis of the L? bound for u;, us, we can now establish the LP estimates
for wy, us.

Lemma 3.4. Let Q C R™(n < 3) be a smooth and bounded domain, A; > 0, u; > 0,
d; >0 (i =1,2, j=1, 2, 3, 4). Assume that x;;,h:(1 = 1,2,7 = 1,2,3,4) satisfy
(H1)-(Hj), and (uy,us,v1,v2) is a classical solution of (1). If there exists Co > 0
such that

/ufdx+/ ugdx+/ |Vv1|4das+/ |Vus|tda < Cy for all t € (0, Tynas). (45)
Q Q Q Q
Then for all p > 1, one can find a positive constant Cs such that

luil ey + lluzllLeo) < Cs for all t € (0, Trnaz)- (46)

Proof. Testing the first equation of (1) by ulf_l to obtain
1d
pdt Jg

=—di(p— 1)/ u’f_2|Vu1\2 +(p— 1)/ W a1 (v1) Vg - Vg
Q Q

p
uy

+(p— 1)/ P 12 (v2) Vg - Vg + ,u1/ uf (1 — w1 — ajug)
Q

Q
B di(p—1 B 1
g—dl(p—l)/u’f 2|Vu1\2+L/u’f 2\Vu1|2+LK§/uf;|wl\2
Q 4 0 dy 0
di(p—1 B 1
—I—L/u’f 2|Vu1\2+p—K%/u1f|Vv2|2—|—u1/uf(1—u1)
4 ) di Q )

di(p—1
S* 1(p )/u€72|vu1‘2
2 Q

-1

+ pTK%/ ul (\Vvl|2 + |Vv2|2) +,LL1/ ufl (1 —uy)
1 Q Q

(47)
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for all t € (0, Tynaz)- Since (45) entails that
/Q |V;|*de < Cy for all t € (0, Thnas),i = 1,2, (48)
with Co > 0, and thus we apply the Holder inequality to obtain

pd KQ/ ul (|V1}1|2 + |va\2) dx
Q

_p% K%(@u?@ﬁ (/ﬁvmﬁmoé
i K2 (/ pd:v) (/ |Vv2|4dm>

2
<Cs (/ ufpdx> for all t € (0, Trnaz)
)

SIS

(49)

+

1
with C3 > 0, to estimate the term (fﬂ u%pdm) *, fixing

pn n

_ 2 4
T 1 _n 4 pno
7 T3

due to the fact that n < 3, this guarantees that \ € (0,1), then we can employ the
Gagliardo-Nirenberg inequality, Lemma 2.1 and Young’s inequality to get

1

2
C Par) = <c (v (1-3) 2
3(/9% x) |t 1740 4<| uf |2 (ml\ul || 2o + [lu 1HL 20

< G (IIVuf [y + 1)

< dilp = 1) / ud 2|V, da + Ce
2 Q
(50)
with C4,Cs5,C6 > 0. A combination of (47), (49) and (50) yields

1d

1dx—|—/u’1’dx§u1/uf(l—ul)dx—k/ufdx+C6§C7 (51)
pdt Q Q Q

with C; > 0. The]refore7 we apply a comparison argument to establish the bound-
edness of ||u1][zr(). Applying the same arguments as above, we can easily obtain
the boundedness of ||ual|zr(q). This completes the proof of this lemma. O

Proof of Theorem 1.1. In light of Lemma 3.4, it follows from the well known Moser-
type iterations and Lemma 2.1 that Theorem 1.1 holds. O

3.2. The improvement of boundedness for n = 2: proof of Corollary 1.1.
In the above section, the global boundedness of solution is derived under the con-
dition that pi, ps are sufficiently large. In this section, motivated by the method
n [2, 3, 17], we remove the restriction on g, e when n = 2. The key point of
the proof is to establish the boundedness of [, |V |*dz and Jo |V |*dz, to this

end, we first establish the boundedness of ftt+T fQ |Vv;|*dx,i = 1,2 in the following
lemma.
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Lemma 3.5. Let Q C R™"(n < 2) be a smooth and bounded domain, A; > 0, u; > 0,
d; >0 (i=1,2, j=1, 2, 8, 4). Assume that h;(i = 1,2) satisfy (H3)-(H4), and
(u1,ug,v1,v2) 18 a classical solution of (1). Then one can find a constant Cy > 0
such that

t+7 t+1
/ / |V |*dxds +/ / |Vug|*dads < Cy for all t € (0, Trnaz),  (52)
t Q t Q

where T = min{l7 %} .

Proof. Since n < 2, we can apply the Gagliardo-Nirenberg inequality to obtain
_ - 4
/Q [Vor|'de = [|[Vor |14 q) < C(GN)? (HAvl”%\/Q(Q)val“};()\ﬂ) + HVUlHL?(Q))

g@OMmﬁmn+0

(53)
with Cs > 0, A = 2 € (0, 3], where we have used the boundedness result of
Vil r2(0) in Lemma 2.3. Integrating (53) over (t,t+7), and by virtue of Lemma
2.3, we can compute

/ o / |Voy [*dads < Cg for all t € (0, Thax), (54)
where Cg > 0. Simil;rly, \:e can derive

/ o /Q |Vui|*deds < Cig for all t € (0, Thaz) (55)
with C19 > 0, this retadily yields (52). O

In the second step, we derive the boundedness of fQ lu; Inw;|de,i =1,2.

Lemma 3.6. Let Q C R™(n < 2) be a smooth and bounded domain, A; > 0, u; > 0,
d; >0 (i=1,2, j=1, 2, 3, 4). Assume that x;;(i = 1,2,j = 1,2) satisfy

0<xy;(s) < L foralls>0 (56)

with L > 0, and (u1,us,v1,v2) is a classical solution of (1). Then there exists
C4 > 0 such that

/ |ur Inwug|de < Cy, / lug Inug|dz < Cy for allt € (0, Thaz)- (57)
Q Q

Proof. Multiplying the first equation in (1) by (14 1nwu;) and integrating it over 2,
one obtains

T ; uy Inuidz

\V4 2
= —dl/ | U1| dx —|—/ X11(U1)VU1 -Vurdr +/ Xlg(’Ug)V’Ug -Vurdx
Q W Q Q

+ m/ up (1 —wuy —ajug)(1 4+ Inwuy) (58)
Q

2 v1
= —dl/ Mdl’ +/ \% (/ Xll(s)ds) Vuldx
Q W Q 1
+/ Vv (/ Xu(s)ds) -Vurdz
Q 1



GLOBAL BOUNDEDNESS FOR A CHEMOTAXIS-COMPETITION SYSTEM 3275

—|—,u1/u1(1—u1—aluQ)(l—i—lnul)
Q

|vu1|2 U1 v2
=—d, | ——dx— | A x11(s)ds | uzde — [ A X12(s)ds | urdz
Q W Q 1 Q 1

+ ,ul/ ur(l —uy —ajug)(l +1Inwy) for all ¢ € (0, Traz)-
Q

To estimate — fQ A (flvl Xn(s)ds) updz, utilizing the Young inequality and (56), it
follows

_/QA</1MX11(8)058> urde < = / 2dx 4 = /’A (/ Y11(s )ds) ‘Qdm

1 2
=§||U1||%2(Q) + 5”9(11(111)|V111|2 + X11(Ul)AU1HL2(Q)

1
< §Hul\|iz(n) + L[| Vui[| 4oy + Kil|Avi[|72q)
(59)

Like wise, we have
v 1 2 2 4 2 2
—/QA (/1 X12(S)d5> urde < §||U1||L2(Q)+L ||VU2HL4(Q)+K1 HAU2HL2(Q)~ (60)
As for py o, u1(1—u1 —ayup)(1+1nwuy), in view of the boundedness of [, u;dx(i =

1,2) in Lemma 2.1, and the inequalities p(1 — p) < 2, p(1 — p)lnp < 0 as well as
—plnp <! < for all p > 0, it holds that

_47

,ul/ u1(1 — Uy — Cl1U2)(1 + 11111,1)
Q

Sul/ul(l—ul)dx—Fm/ul(l—ul)lnmda:—alm/ulqunuldx (61)
Q Q Q

< 1|92 L Game
- 4 e

for all ¢t € (0, Thhax)-
Plugging (59)-(61) into (58), we can see that

d V|
d—/ uy Inuidr + dl/ de < ||u1||2L2(Q) + (L + K,)* (||Vv1||‘i4(m
t Jo Q U

M1|Q| + a1 1M
4 e

(62)
HlAvt [z + V02l Loy + 18022y ) +

for all t € (0,T)n42). According to n < 2, we can utilize the Gagliardo-Nirenberg
inequality to derive

4(1-X) 1
[t < [ wtde = uf i < CalVul 1 luf 1195 + Culuf Iz

2
< Ci2 (/ Ne” +1>
Q w
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where A = 2 € (0, 1], C12 > 0. Together with (62) and (63), we arrive at

d
— | wylnude + L uy Inuidx
dt Jo 12 Jo

< ||U1||2L2(Q) + (L + Ky)? (||VU1||%4(Q) + ||AU1||2L2(Q) + ||VU2||%,4(Q) + HAU2H%2(Q)>

u1|Q| + Q1112

+ 4 e

+dy
(64)

for all t € (0,Tjnaz)- Thus, we infer from (10), (13), (52) and Lemma 2.2 that
Jo lu1 Inwy |dz is bounded. Equally, we can establish the boundedness for [, [ug In
us|dz. Whereby the proof is completed.

In what follows, we proceed to show that [, uidz + [,u3dx + [, |Vui|*dz +
Jo [Vva]*da is bounded for all i1, pup > 0.

Lemma 3.7. Let Q C R? be a smooth and bounded domain, \; > 0, p; > 0, d; >0
(i=1,2,j=1,2,3,4). Assume that the conditions in Lemma 3.6 are satisfied, and
(u1,ug,v1,v2) is a classical solution of (1). Then there exists Cs > 0 such that

/u%dx—k/ u%dsc—k/ |Vv1|4dx—|—/ |Vus|tda < Cs for all t € (0, Tppaz). (65)
Q Q Q Q

Proof. From (21)-(24), we deduce that
4 </ u?dm—&—/u%dz—i—/ |Vvl\4da:+/ va|4da:> —|—d1/ |V [2de
dt \Jo ) Q ) Q
+d2/ |VuQ|2dac+4)\1/ |Vv1|4dfr+d3/ |V|Vv1|2|2dx+4)\2/ | Vo |*da
Q Q Q Q
+d4/ |V|W2|2|2dx+/(u§+u§)dx
Q Q
Cr, 2K2 Cr 2K2
(2n +8) o 4 2L /uf|Vv1|2dx+ (2n +8)—to 4 222 /u§|Vv1|2dx
d3 di | Jo d3 d | Jo
Cp, 2K? Cr, 2K2
+ [ (2n+8)—2 /u§|V1}2|2dfc+ (2n +8)—12 4 222 /ug|Vv2|2dx
d4 dq d4 d2 ) Jo
|23IVU1\2

+2d3/ Vv dS +2ds [ Vv |28‘W2| ds+/(u§+u§)dag
o0 ov o v Q

+ 2,ul/ u? (1 — up)dx + 2,u2/ u3(1 — uy)dx for all t € (0, Thnaz)-
Q Q
(66)

To handle the first term on the right side of (66), we notice that n = 2, accordingly,
in view of (18), the following inequality

||“1||i3(9) < €HVU1H%2(Q)HU1 I fus ||| 1) + CH“lHil(Q) + Ce (67)

holds for all € > 0, then, the boundedness of [luiIn|uy|l|z1(q) and [Jui]/z1(q) in
Lemma 3.6 and Lemma 2.1 guarantees that

HU]||%3(Q) S 0136|‘VU1||%2(Q) + C]3 for all t € (O,Tmaw) and € >0 (68)
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with Ci13 > 0. Therefore, utilizing the Holder inequality, the Gagliardo-Nirenberg
inequality and the Young inequality, it follows from (12), (67) as well as (68) that

Ch  2K?
(2n + 8)— / u? |V |2dx
d3 dy Q

Ch  2K2
< <(2n+8) dzl +d711 H“l||2L3(Q)|||VU1|2||L3(Q)

< (2018 Ch,  2K?
n
= d3 dy

2 23 2|3 2 o)
[ (CGN||V|VU1| 122 lIVOLZl1 21 () + Conll[ Vi ||L1(Q)>
C'2 2K?
<(2n+8) . >|u1“L3(Q (CLallVIV0r gy + Cua)

ds
< Z||V|Vvl|2”2L2(Q) + Cisllua[|7s () + Cis

d d
< LIVIVOPE a0 + G IVulfa) + Cuo for all £ € (0, Tona)

with Ci4,C15,C16 > 0, where we have fixed € = 261{131615 when using (68).
In a similar way, we can find Ci7,Cy8,C19 > 0 such that

Ci 2K2 d d
(2n +8) 11 4 =22 / w3V Pdr < 2 |VIV0rP|3 ) + = | Vuall32 o) + Cir
d3 da Q 4 2

(70)
and

Ch,  2K? 5 )
n+8) 72+ 51 ) [ diVnlds < F VIVl + 1Tl +
()

as well as

((Qn +38)

c? K2 d d
g 22 / u3[VoalPde < (| VIValll720) + 5 [ Vuzl 72 +Cro
4 2 Q

(72)

for all t € (0, Thnaz)-
2 2
For the term 2d3 [, Vo1 |?2%8EdS + 2dy [, Va2 222048 (12) and (38)-
(40) enable us to see that

2d3/ Vo |28|V“1‘ dS+2d4/ Vv 2|28|V”2| ds
o0

d
< 33HV|V1)1|2”%2(Q) + 54||V|w2| 122y + Cao for all t € (0, Trnac)

(73)

with Cog > 0.
What’s more, making use of the identity s%(1 — s) < % for all s > 0, the last
two terms in (66) can be bounded as

Q
2u1/u%(lful)dx+2u2/u2(1—u2)dx< it
Q Q

o —— (1 + p2) for all t € (0, Thaz)-
(74)
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Thus, plugging (69)-(74) into (66), we can conclude that

d ~ ~
£Y(t) +0Y(t) < /(uf +ud)dx + Cop for all t € (0, Tynaz), (75)
Q
where Y () := Jouida+ [ uddz+ [, |Voi|*dz+ [, [V |*da, 6 := min{4\;, 4o, 1},
Co1 > 0, which combined with (10), (11) and Lemma 2.2 show (65). O

Proof of Corollary 1. A combination of Lemma 2.5 and Lemma 3.7 directly yields
Corollary 1. O
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