Ecuador is a developing country that relies on mining as a significant source of economic income every year; however, there needs to be more studies on the soil pollution caused by mining over time. Biological remediation as an alternative to the use of physical and chemical methods offers a more cost-effective and environmentally friendly means to counteract the negative impacts that the presence of heavy metals in mining tailings soils can cause. This study focused on soil sampling from the mining tailings of the San Carlos de las Minas sector, in the Zamora Chinchipe province in Ecuador, to find potential bacterial strains that can degrade two specific contaminants, mercury (Hg) and cyanide (CN-). For this purpose, 68 soil subsamples were collected. pH, electrical conductivity, moisture, and the concentration of the contaminants were analyzed and measured. The initial concentration of CN- was 0.14 mg/kg, and of Hg was 88.76 mg/kg. From the soil samples, eight bacterial strains were isolated, characterized at macroscopic and microscopic levels, and identified at the molecular level. The bacteria were then subjected to degradability tests for CN- and Hg, obtaining interesting results. The degradation capacity of CN- stood out for the strains Micrococcus aloeverae and Pseudomonas alcaliphila, and for the degradation of Hg, the strains Hydrogenophaga laconesensis and Micrococcus aloeverae were highlighted, achieving degradation percentages of up to 98.80%. These results emphasize the discovery of these bacterial species with potential use in cyanide and mercury remediation processes.
Citation: Cristina Calderón-Tapia, Edinson Medina-Barrera, Nelson Chuquin-Vasco, Jorge Vasco-Vasco, Juan Chuquin-Vasco, Sebastian Guerrero-Luzuriaga. Exploration of bacterial strains with bioremediation potential for mercury and cyanide from mine tailings in 'San Carlos de las Minas, Ecuador'[J]. AIMS Environmental Science, 2024, 11(3): 381-400. doi: 10.3934/environsci.2024019
[1] | Subramanian Muthaiah, Manigandan Murugesan, Muath Awadalla, Bundit Unyong, Ria H. Egami . Ulam-Hyers stability and existence results for a coupled sequential Hilfer-Hadamard-type integrodifferential system. AIMS Mathematics, 2024, 9(6): 16203-16233. doi: 10.3934/math.2024784 |
[2] | Ugyen Samdrup Tshering, Ekkarath Thailert, Sotiris K. Ntouyas . Existence and stability results for a coupled system of Hilfer-Hadamard sequential fractional differential equations with multi-point fractional integral boundary conditions. AIMS Mathematics, 2024, 9(9): 25849-25878. doi: 10.3934/math.20241263 |
[3] | Kaihong Zhao, Shuang Ma . Ulam-Hyers-Rassias stability for a class of nonlinear implicit Hadamard fractional integral boundary value problem with impulses. AIMS Mathematics, 2022, 7(2): 3169-3185. doi: 10.3934/math.2022175 |
[4] | Hui Huang, Kaihong Zhao, Xiuduo Liu . On solvability of BVP for a coupled Hadamard fractional systems involving fractional derivative impulses. AIMS Mathematics, 2022, 7(10): 19221-19236. doi: 10.3934/math.20221055 |
[5] | Subramanian Muthaiah, Dumitru Baleanu, Nandha Gopal Thangaraj . Existence and Hyers-Ulam type stability results for nonlinear coupled system of Caputo-Hadamard type fractional differential equations. AIMS Mathematics, 2021, 6(1): 168-194. doi: 10.3934/math.2021012 |
[6] | Murugesan Manigandan, R. Meganathan, R. Sathiya Shanthi, Mohamed Rhaima . Existence and analysis of Hilfer-Hadamard fractional differential equations in RLC circuit models. AIMS Mathematics, 2024, 9(10): 28741-28764. doi: 10.3934/math.20241394 |
[7] | Xiaoming Wang, Rizwan Rizwan, Jung Rey Lee, Akbar Zada, Syed Omar Shah . Existence, uniqueness and Ulam's stabilities for a class of implicit impulsive Langevin equation with Hilfer fractional derivatives. AIMS Mathematics, 2021, 6(5): 4915-4929. doi: 10.3934/math.2021288 |
[8] | Thanin Sitthiwirattham, Rozi Gul, Kamal Shah, Ibrahim Mahariq, Jarunee Soontharanon, Khursheed J. Ansari . Study of implicit-impulsive differential equations involving Caputo-Fabrizio fractional derivative. AIMS Mathematics, 2022, 7(3): 4017-4037. doi: 10.3934/math.2022222 |
[9] | J. Vanterler da C. Sousa, E. Capelas de Oliveira, F. G. Rodrigues . Ulam-Hyers stabilities of fractional functional differential equations. AIMS Mathematics, 2020, 5(2): 1346-1358. doi: 10.3934/math.2020092 |
[10] | Songkran Pleumpreedaporn, Chanidaporn Pleumpreedaporn, Weerawat Sudsutad, Jutarat Kongson, Chatthai Thaiprayoon, Jehad Alzabut . On a novel impulsive boundary value pantograph problem under Caputo proportional fractional derivative operator with respect to another function. AIMS Mathematics, 2022, 7(5): 7817-7846. doi: 10.3934/math.2022438 |
Ecuador is a developing country that relies on mining as a significant source of economic income every year; however, there needs to be more studies on the soil pollution caused by mining over time. Biological remediation as an alternative to the use of physical and chemical methods offers a more cost-effective and environmentally friendly means to counteract the negative impacts that the presence of heavy metals in mining tailings soils can cause. This study focused on soil sampling from the mining tailings of the San Carlos de las Minas sector, in the Zamora Chinchipe province in Ecuador, to find potential bacterial strains that can degrade two specific contaminants, mercury (Hg) and cyanide (CN-). For this purpose, 68 soil subsamples were collected. pH, electrical conductivity, moisture, and the concentration of the contaminants were analyzed and measured. The initial concentration of CN- was 0.14 mg/kg, and of Hg was 88.76 mg/kg. From the soil samples, eight bacterial strains were isolated, characterized at macroscopic and microscopic levels, and identified at the molecular level. The bacteria were then subjected to degradability tests for CN- and Hg, obtaining interesting results. The degradation capacity of CN- stood out for the strains Micrococcus aloeverae and Pseudomonas alcaliphila, and for the degradation of Hg, the strains Hydrogenophaga laconesensis and Micrococcus aloeverae were highlighted, achieving degradation percentages of up to 98.80%. These results emphasize the discovery of these bacterial species with potential use in cyanide and mercury remediation processes.
In last years, it was noted that several real-world phenomena cannot be modeled by partial or ordinary differential equations or classical difference equations defined using the standard integrals and derivatives. These problems required the concept of fractional calculus (fractional integrals and derivatives), where the classical calculus was insufficient. Differential equations of fractional order are considered to be interesting tools in the modeling of several problems in different fields of engineering and science, as electrochemistry, control, electromagnetic, porous media, viscoelasticity. See for example [1,2,3,4,5,6,7]. On the other hand, in the recent years impulsive differential equations have become essential as mathematical models of problems in social and physical sciences. There was a great development in impulsive theory in particular in the field of impulsive differential equations with fixed moments. For instance, see the works of Samoilenko and Perestyuk [8], Benchohra et al. [9], Lakshmikantham et al. [10], etc. Further works for differential equations at variable moments of impulse have been appeared. For example, we cite the papers of Frigon and O'Regan [11,12], Graef and Ouahab [13], Bajo and Liz [14], etc.
It is also observed that fixed point theory is an important mathematical tool to ensure the existence and uniqueness of many problems intervening nonlinear relations. As a consequence, existence and uniqueness problems of fractional differential equations have been resolved using fixed point techniques. This theory has been developed in many directions and has several applications. Moreover, we could apply it in different types of spaces, like metric spaces, abstract spaces, and Sobolev spaces. This use of fixed point theory makes very easier the resolution of many problems modeled by fractional ordinary, partial differential and difference equations. For instance, see [15,16,17,18,19,20].
The theory for impulsive fractional differential equations in Banach spaces have been sufficiently developed by Feckan et al. [21] by using fixed point techniques. In the real world, many phenomena are subject to transient external effects as they develop. In comparison to the entire duration of the phenomenon being observed, the durations of these external effects are incredibly brief. The logical conclusion is that these external forces are real impulses. Impulsive differential equations are now a major component of the modeling of physical real-world issues in order to study these abrupt shifts. Biological systems including heartbeat, blood flow, and impulse rate have been discussed in relation to many applications of this kind of impulsive differential equations. For more details, see, [22,23,24,25,26,27].
On the other hand, in last years the study of Hyers-Ulam (HU) stability analysis for nonlinear fractional differential equations has attracted the attention of several researchers. Note that HU stability is considered as an exact solution near the approximate solution for these equations with minimal error. The following works [28,29,30,31,32] deal with such a stability analysis. For Hyers-Ulam (HU) stabilities, there are generalized Hyers-Ulam (GHU), Hyers-Ulam-Rassias (HUR), and generalized Hyers-Ulam-Rassias (GHUR) stabilities.
Much of the work on the topic of fractional differential equations deals with the governing equations involving Riemann-Liouville and Caputo-type fractional derivatives. Another kind of fractional derivative is the Hadamard type [33], which was introduced in 1892. This derivative differs significantly from both the Riemann-Liouville type and the Caputo type in the sense that the kernel of the integral in the definition of the Hadamard derivative contains a logarithmic function of arbitrary exponent. It seems that the abstract fractional differential equations involving Hadamard fractional derivatives and Hilfer-Hadamard fractional derivatives have not been fully explored so far. Several applications of where the Hadamard derivative and the Hadamard integral arise can be found in the papers by Butzer, Kilbas and Trujillo [34,35,36]. Other important results dealing with Hadamard fractional calculus and Hadamard differential equations can be found in [37,38]. The presence of the δ-differential operator (δ=xddx) in the definition of Hadamard fractional derivatives could make their study uninteresting and less applicable than Riemann-Liouville and Caputo fractional derivatives. Moreover, this operator appears outside the integral in the definition of the Hadamard derivatives just like the usual derivative D=ddx is located outside the integral in the case of Riemann-Liouville, which makes the fractional derivative of a constant of these two types not equal to zero in general. Hadamard [33] proposed a fractional power of the form (xddx)α. This fractional derivative is invariant with respect to dilation on the whole axis.
The existence and HU stability of the following implicit FDEs involving Hadamard derivatives were investigated in [39] as follows:
{HDϖz(υ)=ϕ(υ,z(υ),HDϖz(υ)), ϖ∈(0,1), z(1)=z1, z1∈R, |
where υ∈[1,G], G>1, HDϖ refers to the Hadamard fractional (HF) derivative of order ϖ.
The following coupled system containing the Caputo derivative was examined in [40] for its existence, uniqueness, and several types of Hyers-Ulam stability:
{CDϖz(υ)=ϕ(υ,s(υ),CDϖz(υ)), υ∈U,CDθs(υ)=ψ(υ,z(υ),CDθs(υ)), υ∈U,z′(G)=z′′(0)=0, z(1)=ϱz(η) ϱ,η∈(0,1),s′(G)=s′′(0)=0, s(1)=ϱs(η) ϱ,η∈(0,1), |
where υ∈U=[0,1], ϖ,θ∈(2,3] and ϕ,ψ:U×R2→R are continuous functions.
For the following coupled system containing the Riemann-Liouville derivative, the authors of [41] demonstrated the existence, uniqueness, and several types of Hyers-Ulam stability:
{Dϖz(υ)=ϕ(υ,s(υ),Dϖz(υ)), υ∈U, Dθs(υ)=ψ(υ,z(υ),Dθs(υ)), υ∈U, Dϖ−2z(0+)=π1Dϖ−2z(G−), Dϖ−2z(0+)=ℓ1Dϖ−1z(G−),Dϖ−2s(0+)=π2Dϖ−2s(G−), Dϖ−2s(0+)=ℓ2Dϖ−1s(G−), |
where υ∈U=[0,G], G>0, ϖ,θ∈(1,2] and π1,π2,ℓ1,ℓ2≠1, Dϖ,Dθ are Riemann-Liouville derivatives of fractional orders ϖ, θ respectively and ϕ,ψ:U×R2→R are continuous functions.
Inspired by the previous work, we investigate the coupled impulsive implicit FDEs (CII-FDEs) incorporating Hadamard derivatives as follows:
{HDϖz(υ)=ϕ(υ,HDϖz(υ),HDθs(υ)), υ∈U, υ≠υi, i=1,2,...k,HDθs(υ)=ψ(υ,HDθs(υ),HDϖz(υ)), υ∈U, υ≠υj, j=1,2,...m,Δz(υi)=Iiz(υi), Δz′(υi)=˜Iiz(υi), i=1,2,...k, Δs(υj)=Ijs(υj), Δs′(υj)=˜Ijs(υj), j=1,2,...m, z(G)=1Γ(ϖ)∫G1ln(Gη)ϖ−1B(η,z(η))dηη, z′(G)=B∗(z), s(G)=1Γ(θ)∫G1ln(Gη)θ−1B(η,s(η))dηη, s′(G)=B∗(s), | (1.1) |
where ϖ,θ∈(1,2], ϕ,ψ:U×R2→R, B:U×C(U,R)→R and B∗:U→R are continuous functions and
Δz(υi)=z(υ+i)−z(υ−i), Δz′(υi)=z′(υ+i)−z′(υ−i),Δs(υi)=s(υ+i)−s(υ−i), Δs′(υi)=s′(υ+i)−s′(υ−i). |
The derivatives HDϖ,HDθ are the Hadamard derivative operators of order ϖ and θ, respectively; z(υ+i),s(υ+i) are right limits and z(υ−i),s(υ−i) are left limits; Ii,Ij,˜Ii,˜Ij:R→R are continuous functions. The system (1.1) is used to describe certain features of applied mathematics and physics such as blood flow problems, chemical engineering, thermoelasticity, underground water flow, and population dynamics. For more details, we refer the readers to see the monograph [42].
Using the Banach contraction and Kransnoselskii FP theorems, we establish necessary and sufficient criteria for the existence and uniqueness of a positive solution for the problem (1.1). Additionally, we analyze other Hyers-Ulam (HU) stabilities such as generalized Hyers-Ulam (GHU), Hyers-Ulam-Rassias (HUR), and generalized Hyers-Ulam-Rassias (GHUR) stabilities.
In this part, we present certain key terms and lemmas that are utilized throughout the rest of this paper, for more information, see [42,43].
Assume that PC(U,R+) equipped with the norms ‖z‖=max{|z(υ)|:υ∈U}, ‖s‖=max{|s(υ)|:υ∈U} is a Banach space (shortly, BS), then the products of these norms are also a BS under the norm ‖(z+s)‖=‖z‖+‖s‖. Assume that ℑ1 and ℑ2 represent the piecewise continuous function spaces described as
ℑ1=PC2−ϖ,ln(U,R+)={z:U→R+ so that z(υ+i),z′(υ+i) and z(υ−i),z′(υ−i) exist ,i=1,2,...k},ℑ2=PC2−θ,ln(U,R+)={s:U→R+ so that s(υ+j),s′(υ+j) and s(υ−j),s′(υ−j) exist ,j=1,2,...m}, |
with norms
‖z‖ℑ1=sup{|z(υ)ln(υ)2−ϖ|, υ∈U} and ‖s‖ℑ2=sup{|s(υ)ln(υ)2−θ|, υ∈U}, |
respectively. Clearly, the product ℑ=ℑ1×ℑ2 is a BS endowed with ‖(z+s)‖ℑ=‖z‖ℑ1+‖s‖ℑ2.
The following definitions are recalled from [44].
Definition 2.1. For the function z(υ), the Hadamard fractional (HF) integral of order ϖ is described as
HIϖz(υ)=1Γ(ϖ)∫υ1ln(υη)ϖ−1z(η)dηη, υ∈(1,G] |
where Γ(.) is the Gamma function.
Definition 2.2. For the function z(υ), the HF derivative of order ϖ∈[a−1,a), a∈Z+ is described as
HDϖz(υ)=1Γ(a−ϖ)(υddυ)a∫υxln(υη)a−ϖ+1z(η)dηη, υ∈(x,G]. |
Lemma 2.3. [45] Assume that ϖ>0 and z is any function, then the derivative equation HDϖz(υ)=0 has solutions below:
z(υ)=r1(lnυ)ϖ−1+r2(lnυ)ϖ−2+r3(lnυ)ϖ−3+...+ra(lnυ)ϖ−a, |
and the formula
HIϖHDϖz(υ)=z(υ)+r1(lnυ)ϖ−1+r2(lnυ)ϖ−2+r3(lnυ)ϖ−3+...+ra(lnυ)ϖ−a, |
is satisfied, where ri∈R, i=1,2,...,a and ϖ∈(a−1,a).
Theorem 2.4. [46] Assume that Ξ is a non-empty, convex and closed subset of a BS ℑ. Let E and ˜E be operators so that
(1) for z,s∈Ξ, E(z,s)+˜E(z,s)∈Ξ;
(2) the operator ˜E is completely continuous;
(3) the operator Ξ is contractive.
Then there is a solution (z,s)∈Ξ for the operator equation E(z,s)+˜E(z,s)=(z,s).
The definitions and observations below are taken from [47,48].
Definition 3.1. The coupled problem (1.1) is called HU stable if there are Λϖ,θ=max{Λϖ,Λθ}>0 so that, for φ=max{φϖ,φθ} and for each solution (z,s)∈ℑ to inequalities
{|HDϖz(υ)−ϕ(υ,HDϖz(υ),HDθs(υ))|≤φϖ, υ∈U, |Δz(υi)−Iiz(υi)|≤φϖ, |Δz′(υi)−˜Iiz(υi)|≤φϖ, i=1,2,...k,|HDθs(υ)−ϕ(υ,HDθs(υ),HDϖz(υ))|≤φθ, υ∈U, |Δs(υj)−Ijs(υj)|≤φθ, |Δs′(υj)−˜Ijs(υj)|≤φθ, j=1,2,...m, | (3.1) |
there is a unique solution (˜z,˜s)∈ℑ with
‖(z,s)−(˜z,˜s)‖ℑ≤Λϖ,θφ, υ∈U. |
Definition 3.2. The coupled problem (1.1) is called GHU stable if there is Φ∈C(R+,R+) with ξ(0)=0, so that, for any solution (z,s)∈ℑ of (3.1), there is a unique solution (˜z,˜s)∈ℑ of with of (1.1) fulfilling
‖(z,s)−(˜z,˜s)‖ℑ≤Φ(φ), υ∈U. |
Set ℧ϖ,θ=max{℧ϖ,℧θ}∈C(U,R) and Λ℧ϖ,℧θ=max{Λ℧ϖ,Λ℧θ}>0.
Definition 3.3. The coupled problem (1.1) is called HUR stable with respect to ℧ϖ,θ if there is a constant Λ℧ϖ,℧θ so that, for any solution (z,s)∈ℑ for the inequalities below
{|HDϖz(υ)−ϕ(υ,HDϖz(υ),HDθs(υ))|≤℧ϖ(υ)φϖ, υ∈U,|HDθs(υ)−ϕ(υ,HDθs(υ),HDϖz(υ))|≤℧θ(υ)φθ, υ∈U, | (3.2) |
there is a unique solution (˜z,˜s)∈ℑ with
‖(z,s)−(˜z,˜s)‖ℑ≤Λ℧ϖ,℧θ℧ϖ,θφ, υ∈U. | (3.3) |
Definition 3.4. The coupled problem (1.1) is called GHUR stable with respect to ℧ϖ,θ if there is a constant Λ℧ϖ,℧θ so that, for any a proximate solution (z,s)∈ℑ of (3.2), there is a unique solution (˜z,˜s)∈ℑ of with of (1.1) fulfilling
‖(z,s)−(˜z,˜s)‖ℑ≤Λ℧ϖ,℧θ℧ϖ,θ(υ), υ∈U. |
Remark 3.5. If there are functions ℜϕ,ℜψ∈C(U,R) depending upon z, s, respectively, so that
(R1) |ℜϕ(υ)|≤φϖ, |ℜψ(υ)|≤φθ, υ∈U;
(R2)
{HDϖz(υ)=ϕ(υ,HDϖz(υ),HDθs(υ))+ℜϕ(υ), Δz(υi)=Ii(z(υi))+ℜϕi, Δz′(υi)=˜Ii(z(υi))+ℜϕi,HDθs(υ)=ϕ(υ,HDθs(υ),HDϖz(υ))+ℜψ(υ), Δs(υj)=Ij(s(υj))+ℜψj, Δs′(υj)=˜Ij(s(υj))+ℜψj. |
Then, (z,s)∈ℑ is a solution of the system of inequalities (3.1).
In the following part, we establish requirements for the existence and uniqueness of solutions to the suggested system (1.1)
Theorem 4.1. For the function w, the solutions of the following subsequent linear impulsive BVP
{HDϖz(υ)=w(υ), υ∈U, υ≠υi, i=1,2,...k,Δz(υi)=Ii(z(υi)), Δz′(υi)=˜Ii(z(υi)), υ≠υi, i=1,2,...k,z(G)=1Γ(ϖ)∫G1ln(Gη)ϖ−1B(η,z(η))dηη, z′(G)=B∗(z), |
takes the form
z(υ)=GD0(ϖ)B∗(z)(lnυ)ϖ−2+u∑i=1D1i(ϖ)(lnυ)ϖ−2Iiz(υi)+u∑i=1D2i(ϖ)(lnυ)ϖ−2˜Iiz(υi)+D3(ϖ)(lnυ)ϖ−2Γ(ϖ)∫G1ln(Gη)ϖ−1B(η,z(η))dηη+D0(ϖ)(lnυ)ϖ−2Γ(ϖ−1)∫Gυuln(Gη)ϖ−2w(η)dηη+D4(ϖ)(lnυ)ϖ−2Γ(ϖ)∫Gυuln(Gη)ϖ−1w(η)dηη+u∑i=1D5i(ϖ)(lnυ)ϖ−2Γ(ϖ)∫υiυi−1ln(υiη)ϖ−1w(η)dηη+u∑i=1lnυ3−ϖ(logυiυ)ϖ−2D5i(ϖ)(lnυ)ϖ−2Γ(ϖ−1)∫υiυi−1ln(υiη)ϖ−2w(η)dηη+1Γ(ϖ)∫υυuln(υη)ϖ−1w(η)dηη, | (4.1) |
where u=1,2,...,k and
D0(ϖ)=ln(υG)ln(G)2−ϖ,D1i(ϖ)=(ϖ−1)(lnυ−ϖ+2)(lnυi)3−ϖ−(ϖ−2)(lnυ2−ϖ+1)(lnυi)2−ϖlnυi,D2i(ϖ)=lnυυi(3−ϖ)(lnυi)2−ϖ,D3(ϖ)=(ϖ−1−logGυϖ−2)(lnυ)2−ϖ,D4(ϖ)=logGυGϖ−1(lnG)2−ϖ,D5i(ϖ)=(lnυϖ−1Gϖ−2+logυi(Gυiυ2)ϖ−2)(lnυi)2−ϖ. |
Proof. Assume that
HDϖz(υ)=w(υ), ϖ∈(1,2], υ∈U. | (4.2) |
Using Lemma 2.3, for υ∈(1,υ1], we have
z(υ)=r1(lnυ)ϖ−1+r2(lnυ)ϖ−2+1Γ(ϖ)∫υ1ln(υη)ϖ−1w(η)dηη,z′(υ)=r1(ϖ−1)υ(lnυ)ϖ−2+r2(ϖ−2)υ(lnυ)ϖ−3+1Γ(ϖ−1)∫υ11υln(υη)ϖ−2w(η)dηη. | (4.3) |
Again, applying Lemma 2.3, for υ∈(υ1,υ2], we get
z(υ)=l1(lnυ)ϖ−1+l2(lnυ)ϖ−2+1Γ(ϖ)∫υυ1ln(υη)ϖ−1w(η)dηη,z′(υ)=l1(ϖ−1)υ(lnυ)ϖ−2+l2(ϖ−2)υ(lnυ)ϖ−3+1Γ(ϖ−1)∫υυ11υln(υη)ϖ−2w(η)dηη. | (4.4) |
Using initial impulses
l1=r1−(ϖ−2)(lnυ1)1−ϖI1(z(υ1))+υ1(lnυ1)2−ϖ˜I1(z(υ1))+(lnυ1)2−ϖΓ(ϖ−1)∫υ11ln(υ1η)ϖ−2w(η)dηη−(ϖ−2)(lnυ1)1−ϖΓ(ϖ)∫υ11ln(υ1η)ϖ−1w(η)dηη,l2=r2+(ϖ−1)(lnυ1)2−ϖI1(z(υ1))−υ1(lnυ1)3−ϖ˜I1(z(υ1))−(lnυ1)3−ϖΓ(ϖ−1)∫υ11ln(υ1η)ϖ−2w(η)dηη+(ϖ−1)(lnυ1)2−ϖΓ(ϖ)∫υ11ln(υ1η)ϖ−1w(η)dηη. |
From l1 and l2 on (4.4), one has
z(υ)=r1(lnυ)ϖ−1−r2(lnυ)ϖ−2+((ϖ−1)−(ϖ−2)(logυ1υ))(logυ1υ)ϖ−2I1(z(υ1))+υ1(lnυ−lnυ1)(logυ1υ)ϖ−2˜I1(z(υ1))+(lnυ−lnυ1)(logυ1υ)ϖ−2Γ(ϖ−1)∫υ11ln(υ1η)ϖ−2w(η)dηη+((ϖ−1)−(ϖ−2)(logυ1υ))(logυ1υ)ϖ−2Γ(ϖ)∫υ11ln(υ1η)ϖ−2w(η)dηη+1Γ(ϖ)∫υυ1ln(υη)ϖ−1w(η)dηη. |
Analogously for υ∈(υu,G), we have
z(υ)=r1(lnυ)ϖ−1+r2(lnυ)ϖ−2+u∑i=1((ϖ−1)−(ϖ−2)(logυiυ))(logυiυ)ϖ−2Ii(z(υi))+u∑i=1υi(lnυ−lnυi)(logυiυ)ϖ−2˜Ii(z(υi))+u∑i=1(lnυ−lnυi)(logυiυ)ϖ−2Γ(ϖ−1)∫υiυi−1ln(υiη)ϖ−2w(η)dηη+u∑i=1((ϖ−1)−(ϖ−2)(logυiυ))(logυiυ)ϖ−2Γ(ϖ)∫υiυi−1ln(υiη)ϖ−2w(η)dηη+1Γ(ϖ)∫υυuln(υη)ϖ−1w(η)dηη, | (4.5) |
and
z′(υ)=(ϖ−1)r1υ(lnυ)ϖ−2+(ϖ−1)r2υ(lnυ)ϖ−3+u∑i=1(ϖ−1)(ϖ−2)υ(logυe−logeυi)(logυiυ)ϖ−2Ii(z(υi))+u∑i=1υiυ[(ϖ−1)−(ϖ−2)logυυi](logυiυ)ϖ−2˜Ii(z(υi))+1υΓ(ϖ−1)∫υυuln(υη)ϖ−2w(η)dηη,+u∑i=1((ϖ−1)−(ϖ−2)logυυi)(logυiυ)ϖ−2υΓ(ϖ−1)∫υiυi−1ln(υiη)ϖ−2w(η)dηη+u∑i=1(ϖ−1)(ϖ−2)(logυe−logeυi)(logυiυ)ϖ−2υΓ(ϖ)∫υiυi−1ln(υiη)ϖ−2w(η)dηη. | (4.6) |
Applying the boundary stipulations z(G)=1Γ(ϖ)∫G1ln(Gη)ϖ−1B(η,z(η))dηη and z′(G)=B∗(z), we obtain that
r1=GB∗(z)ln(G)2−ϖ−(lnG)1−ϖ(ϖ−2)Γ(ϖ)∫G1ln(Gη)ϖ−1B(η,z(η))dηη+(lnG)1−ϖΓ(ϖ)∫Gυuln(Gη)ϖ−1w(η)dηη+u∑i=1(lnυϖ−1i−ϖ−2lnυi)(lnυi)2−ϖIi(z(υi))−(ϖ−2)u∑i=1υi(lnυi)ϖ−1˜Ii(z(υi))−(ϖ−2)Γ(ϖ−1)u∑i=1(lnυi)2−ϖ∫υiυi−1ln(υiη)ϖ−2w(η)dηη−(lnG)2−ϖΓ(ϖ−1)∫Gυuln(Gη)ϖ−2w(η)dηη+1Γ(ϖ)u∑i=1(lnυϖ−1i−ϖ−2lnυi)(lnυi)2−ϖ∫υiυi−1ln(υiη)ϖ−1w(η)dηη, |
and
r2=(lnG)2−ϖΓ(ϖ−1)∫G1ln(Gη)ϖ−1B(η,z(η))dηη−GB∗(z)ln(G)3−ϖ+u∑i=1υi(lnυi)3−ϖ˜Ii(z(υi))+(ϖ−1)u∑i=1(lnG(ϖ−2)(logυie−logeυi)−1)(lnυi)2−ϖIi(z(υi))+(lnG)3−ϖΓ(ϖ−1)∫υυuln(Gη)ϖ−2w(η)dηη+1Γ(ϖ−1)u∑i=1(lnG(ϖ−2)(logυie−logeυi)−1)(lnυi)2−ϖ∫υiυi−1ln(υiη)ϖ−1w(η)dηη+1Γ(ϖ−1)u∑i=1(lnυi)3−ϖ∫υiυi−1ln(υiη)ϖ−2w(η)dηη−(lnG)2−ϖΓ(ϖ−1)∫Gυiln(Gη)ϖ−1w(η)dηη, |
for u=1,2,...,k. Substituting r1 and r2 in (4.5), we have (4.1).
Corollary 4.2. Theorem 2.4 provides the following solution for our coupled problem (1.1):
z(υ)=GD0(ϖ)B∗(z)(lnυ)ϖ−2+u∑i=1D1i(ϖ)(lnυ)ϖ−2Ii(zi)+u∑i=1D2i(ϖ)(lnυ)ϖ−2˜Ii(zi)+D3(ϖ)(lnυ)ϖ−2Γ(ϖ)∫G1ln(Gη)ϖ−1B(η,z(η))dηη+D0(ϖ)(lnυ)ϖ−2Γ(ϖ−1)∫Gυuln(Gη)ϖ−2ϕ(η,HDϖz(η),HDθs(η))dηη+D4(ϖ)(lnυ)ϖ−2Γ(ϖ)∫Gυuln(Gη)ϖ−1ϕ(η,HDϖz(η),HDθs(η))dηη+u∑i=1D5i(ϖ)(lnυ)ϖ−2Γ(ϖ)∫υiυi−1ln(υiη)ϖ−1ϕ(η,HDϖz(η),HDθs(η))dηη+u∑i=1lnυ3−ϖ(logυiυ)ϖ−2D5i(ϖ)(lnυ)ϖ−2Γ(ϖ−1)∫υiυi−1ln(υiη)ϖ−2ϕ(η,HDϖz(η),HDθs(η))dηη+1Γ(ϖ)∫υυuln(υη)ϖ−1ϕ(η,HDϖz(η),HDθs(η))dηη, | (4.7) |
where u=1,2,...,k and
s(υ)=GD0(θ)B∗(s)(lnυ)θ−2+u∑j=1D1j(θ)(lnυ)θ−2Ij(sj)+u∑j=1D2j(θ)(lnυ)θ−2˜Ij(sj)+D3(θ)(lnυ)θ−2Γ(θ)∫G1ln(Gη)θ−1B(η,s(η))dηη+D0(θ)(lnυ)θ−2Γ(θ−1)∫Gυuln(Gη)θ−2ψ(η,HDθs(η),HDϖz(η))dηη+D4(θ)(lnυ)θ−2Γ(θ)∫Gυuln(Gη)θ−1ψ(η,HDθs(η),HDϖz(η))dηη+u∑j=1D5i(θ)(lnυ)θ−2Γ(θ)∫υjυj−1ln(υjη)θ−1ψ(η,HDθs(η),HDϖz(η))dηη+u∑j=1lnυ3−θ(logυjυ)θ−2D5j(θ)(lnυ)θ−2Γ(θ−1)∫υjυj−1ln(υiη)θ−2ψ(η,HDθs(η),HDϖz(η))dηη,+1Γ(θ)∫υυuln(υη)θ−1ψ(η,HDθs(η),HDϖz(η))dηη, | (4.8) |
where u=1,2,...,m.
For convenience, we use the notations below:
p(υ)=ϕ(υ,a1(υ),a2(υ))≤ϕ(υ,z(υ),a(υ)) and a(υ)=ψ(υ,p1(υ),p2(υ))≤ψ(υ,s(υ),p(υ)). |
Hence, for υ∈U, Eqs (4.7) and (4.8) can be written as
z(υ)=GD0(ϖ)B∗(z)(lnυ)ϖ−2+u∑i=1D1i(ϖ)(lnυ)ϖ−2Ii(zi)+u∑i=1D2i(ϖ)(lnυ)ϖ−2˜Ii(zi)+D3(ϖ)(lnυ)ϖ−2Γ(ϖ)∫G1ln(Gη)ϖ−1B(η,z(η))dηη+D0(ϖ)(lnυ)ϖ−2Γ(ϖ−1)∫Gυuln(Gη)ϖ−2p(η)dηη+D4(ϖ)(lnυ)ϖ−2Γ(ϖ)∫Gυuln(Gη)ϖ−1p(η)dηη+u∑i=1D5i(ϖ)(lnυ)ϖ−2Γ(ϖ)∫υiυi−1ln(υiη)ϖ−1p(η)dηη+u∑i=1lnυ3−ϖ(logυiυ)ϖ−2D5i(ϖ)(lnυ)ϖ−2Γ(ϖ−1)∫υiυi−1ln(υiη)ϖ−2p(η)dηη+1Γ(ϖ)∫υυuln(υη)ϖ−1p(η)dηη, |
for u=1,2,...,k and
s(υ)=GD0(θ)B∗(s)(lnυ)θ−2+u∑j=1D1j(θ)(lnυ)θ−2Ij(sj)+u∑j=1D2j(θ)(lnυ)θ−2˜Ij(sj)+D3(θ)(lnυ)θ−2Γ(θ)∫G1ln(Gη)θ−1B(η,s(η))dηη+D0(θ)(lnυ)θ−2Γ(θ−1)∫Gυuln(Gη)θ−2a(η)dηη+D4(θ)(lnυ)θ−2Γ(θ)∫Gυuln(Gη)θ−1a(η)dηη+u∑j=1D5i(θ)(lnυ)θ−2Γ(θ)∫υjυj−1ln(υjη)θ−1a(η)dηη+u∑j=1lnυ3−θ(logυjυ)θ−2D5j(θ)(lnυ)θ−2Γ(θ−1) intυjυj−1ln(υiη)θ−2a(η)dηη+1Γ(θ)∫υυuln(υη)θ−1a(η)dηη, |
for u=1,2,...,m.
If z and s are solutions to the CII-FDEs (1.1), then for υ∈U, we can write
z(υ)=GD0(ϖ)B∗(z)(lnυ)ϖ−2+u∑i=1D1i(ϖ)(lnυ)ϖ−2Ii(zi)+u∑i=1D2i(ϖ)(lnυ)ϖ−2˜Ii(zi)+D3(ϖ)(lnυ)ϖ−2Γ(ϖ)∫G1ln(Gη)ϖ−1B(η,z(η))dηη+D0(ϖ)(lnυ)ϖ−2Γ(ϖ−1)∫Gυuln(Gη)ϖ−2ϕ(η,a1(η),a2(η))dηη+D4(ϖ)(lnυ)ϖ−2Γ(ϖ)∫Gυuln(Gη)ϖ−1ϕ(η,a1(η),a2(η))dηη+u∑i=1D5i(ϖ)(lnυ)ϖ−2Γ(ϖ)∫υiυi−1ln(υiη)ϖ−1ϕ(η,a1(η),a2(η))dηη+u∑i=1lnυ3−ϖ(logυiυ)ϖ−2D5i(ϖ)(lnυ)ϖ−2Γ(ϖ−1)∫υiυi−1ln(υiη)ϖ−2ϕ(η,a1(η),a2(η))dηη+1Γ(ϖ)∫υυuln(υη)ϖ−1ϕ(η,a1(η),a2(η))dηη, |
for u=1,2,...,k and
s(υ)=GD0(θ)B∗(s)(lnυ)θ−2+u∑j=1D1j(θ)(lnυ)θ−2Ij(sj)+u∑j=1D2j(θ)(lnυ)θ−2˜Ij(sj)+D3(θ)(lnυ)θ−2Γ(θ)∫G1ln(Gη)θ−1B(η,s(η))dηη+D0(θ)(lnυ)θ−2Γ(θ−1)∫Gυuln(Gη)θ−2ψ(η,p1(η),p2(η))dηη+D4(θ)(lnυ)θ−2Γ(θ)∫Gυuln(Gη)θ−1ψ(η,p1(η),p2(η))dηη+u∑j=1D5i(θ)(lnυ)θ−2Γ(θ)∫υjυj−1ln(υjη)θ−1ψ(η,p1(η),p2(η))dηη+u∑j=1lnυ3−θ(logυjυ)θ−2D5j(θ)(lnυ)θ−2Γ(θ−1)∫υjυj−1ln(υiη)θ−2ψ(η,p1(η),p2(η))dηη+1Γ(θ)∫υυuln(υη)θ−1ψ(η,p1(η),p2(η))dηη, |
for u=1,2,...,m.
Our next step is to convert the considered system (1.1) into a FP problem. Give the definition of the operators E,˜E:ℑ→ℑ as
E(z,s)(υ)=(E1z(υ),E2z(υ)) and ˜E(z,s)(υ)=(E1(z,s)(υ),E2(s,z)(υ)), |
where
{E1(z(υ))=GD0(ϖ)B∗(z)(lnυ)ϖ−2+∑ui=1D1i(ϖ)(lnυ)ϖ−2Ii(zi)+∑ui=1D2i(ϖ)(lnυ)ϖ−2˜Ii(zi)+D3(ϖ)(lnυ)ϖ−2Γ(ϖ)∫G1ln(Gη)ϖ−1B(η,z(η))dηη, u=1,2,...,k,E2(s(υ))=GD0(θ)B∗(s)(lnυ)θ−2+∑uj=1D1j(θ)(lnυ)θ−2Ij(sj)+∑uj=1D2j(θ)(lnυ)θ−2˜Ij(sj)+D3(θ)(lnυ)θ−2Γ(θ)∫G1ln(Gη)θ−1B(η,s(η))dηη, u=1,2,...,m, | (4.9) |
and
{E1(z,s)(υ)=D0(ϖ)(lnυ)ϖ−2Γ(ϖ−1)∫Gυuln(Gη)ϖ−2ϕ(η,HDϖz(η),HDθs(η))dηη+D4(ϖ)(lnυ)ϖ−2Γ(ϖ)∫Gυuln(Gη)ϖ−1ϕ(η,HDϖz(η),HDθs(η))dηη+∑ui=1D5i(ϖ)(lnυ)ϖ−2Γ(ϖ)∫υiυi−1ln(υiη)ϖ−1ϕ(η,HDϖz(η),HDθs(η))dηη+∑ui=1lnυ3−ϖ(logυiυ)ϖ−2Γ(ϖ−1)∫υiυi−1ln(υiη)ϖ−2ϕ(η,HDϖz(η),HDθs(η))dηη+1Γ(ϖ)∫υυuln(υη)ϖ−1ϕ(η,a1(η),a2(η))dηη, u=1,2,...,k,E2(s,z)(υ)=D0(θ)(lnυ)θ−2Γ(θ−1)∫Gυuln(Gη)θ−2ψ(η,HDθs(η),HDϖz(η))dηη+D4(θ)(lnυ)θ−2Γ(θ)∫Gυuln(Gη)θ−1ψ(η,HDθs(η),HDϖz(η))dηη+∑uj=1D5i(θ)(lnυ)θ−2Γ(θ)∫υjυj−1ln(υjη)θ−1ψ(η,HDθs(η),HDϖz(η))dηη+∑uj=1lnυ3−θ(logυjυ)θ−2Γ(θ−1)∫υjυj−1ln(υiη)θ−2ψ(η,HDθs(η),HDϖz(η))dηη+1Γ(θ)∫υυuln(υη)θ−1ψ(η,HDθs(η),HDϖz(η))dηη, u=1,2,...,m. | (4.10) |
The preceding assertions must be true in order to conduct further analysis:
(A1) For υ∈U and a1,a2,p1,p2∈R, there exist ℓ0,ℓ1,ℓ2,ρ0,ρ1,ρ2∈C(U,R+), so that
|ϕ(υ,a1(υ),a2(υ))|≤ℓ0(υ)+ℓ1(υ)|a1(υ)|+ℓ2(υ)|a2(υ)|,|ψ(υ,p1(υ),p2(υ))|≤ρ0(υ)+ρ1(υ)|p1(υ)|+ρ2(υ)|p2(υ)|, |
with ˜ℓ0=supυ∈Uℓ0(υ), ˜ℓ1=supυ∈Uℓ1(υ), ˜ℓ2=supυ∈Uℓ2(υ), ˜ρ0=supυ∈Uρ0(υ), ˜ρ1=supυ∈Uρ1(υ), and ˜ρ2=supυ∈Uρ2(υ)<1.
(A2) For the continuous functions B∗,Iu,˜Iu:R→R there are positive constants
OB,OI,O˜I,O′′I,O′′˜I,˜OB,˜OI,˜O˜I,˜O′′I,˜O′′˜I so that for any (z,s)∈ℑ
|B∗(z)|≤OB∗, |Iu(z(υ))|≤OI|z|+O′′I, |˜Iu(z(υ))|≤O˜I|z|+O′′˜I,|B∗(s)|≤˜OB∗, |Iu(s(υ))|≤˜OI|s|+˜O′′I, |˜Iu(s(υ))|≤˜O˜I|s|+˜O′′˜I, |
where u={0,1,2,...,k}.
(A3) For all υ∈U and s,z∈R, there are ϱ1,δ1,ϱ2,δ2∈C(U,R+), so that
|B(υ,z(υ))|≤ϱ1(υ)+δ1|z(υ)| and |B(υ,s(υ))|≤ϱ2(υ)+δ1|s(υ)|, |
with ϱ∗1=supυ∈Uϱ1(υ), δ∗1=supυ∈Uδ1(υ), ϱ∗2=supυ∈Uϱ2(υ), δ∗2=supυ∈Uδ2(υ)<1.
(A4) For each a1,a2,˜a1,˜a2,p1,p2,˜p1,˜p2∈R, and for all υ∈U, there are constants Lϕ,Lψ>0, and ˜Lϕ,˜Lψ∈(0,1) so that
|ϕ(υ,a1(υ),a2(υ))−ϕ(υ,˜a1(υ),˜a2(υ))|≤Lϕ|a1−˜a1|+˜Lϕ|a2−˜a2|,|ψ(υ,p1(υ),p2(υ))−ψ(υ,˜p1(υ),˜p2(υ))|≤Lψ|p1−˜p1|+˜Lψ|p2−˜p2|. |
(A5) For the continuous functions Iu,˜Iu:R→R, there are positive constants LI,L˜I,˜LI,˜L˜I so for any (z,s),(˜z,˜s)∈ℑ
|Iu(z(υ))−Iu(˜z(υ))|≤LI|z−˜z|, |Iu(s(υ))−Iu(˜s(υ))|≤˜LI|s−˜s|, |˜Iu(z(υ))−˜Iu(˜z(υ))|≤L˜I|z−˜z||˜Iu(s(υ))−˜Iu(˜s(υ))|≤˜L˜I|s−˜s|. |
(A6) For each s,z,˜s,˜z∈R and for all υ∈U, there are LB,LB∗,˜LB,˜LB∗>0, so that
|B(υ,z(υ))−B(υ,˜z(υ))|≤LB|z−˜z|, |B∗(z)−B∗(˜z)|≤LB∗|z−˜z|,|B(υ,s(υ))−B(υ,˜s(υ))|≤˜LB|s−˜s|, |B∗(s)−B∗(˜s)|≤˜LB∗|z−˜z|. |
Here, we demonstrate that the operator E+˜E has at least one FP using Kransnoselskii's FP theorem. For this, we choose a closed ball
ℑx={(z,s)∈ℑ:‖(z,s)‖≤y, ‖z‖≤y2 and ‖s‖≤y2}⊂ℑ, |
where
x≥M∗1+M∗∗1+(˜ℓ0+˜ℓ2˜ρ0)M∗3+(˜ρ0+˜ρ2˜ℓ0)M∗∗3˜ℓ2˜ρ2−11−M∗2−M∗∗2−Y∗1M∗2+Y∗2M∗∗2˜ℓ2˜ρ2−1. |
Theorem 4.3. There exists at least one solution to the CII-FDEs (1.1) provided that the assertions (A1) and (A2) are true.
Proof. For any (z,s)∈ℑy, we get
‖E(z,s)(υ)+˜E(z,s)‖ℑ≤‖E1(z)‖ℑ1+‖E2(s)‖ℑ2+‖˜E1(z,s)‖ℑ1+‖˜E1(z,s)‖ℑ2. | (4.11) |
From (4.9), we have
|E1z(υ)(lnυ)2−ϖ|≤G|D0(ϖ)||B∗(z)|+u∑i=1|D1i(ϖ)||Ii(z(υi))|+u∑i=1|D2i(ϖ)||˜Ii(z(υi))|+|D3(ϖ)|Γ(ϖ)∫G1|ln(Gη)ϖ−1||B(η,z(η))|dηη, |
for u=1,2,...,k. This leads to
‖E1(z)‖ℑ1≤GOB∗|D0(ϖ)|+u|D1(ϖ)|(OI‖z‖+O′′I)+u|D2(ϖ)|(O˜I‖z‖+O′′˜I)−|D3(ϖ)|(ϱ∗1(υ)+δ∗1‖z‖))ϖΓ(ϖ)|ln(G)ϖ|=GOB∗|D0(ϖ)|+uO′′I|D1(ϖ)|+uO′′˜I|D2(ϖ)|+uOI|D1(ϖ)|‖z‖+uO˜I|D2(ϖ)|‖z‖−|D3(ϖ)|(ϱ∗1(υ)+δ∗1‖z‖))Γ(ϖ+1)|ln(G)ϖ|≤M∗1+M∗2‖z‖. | (4.12) |
Analogously, one can write
‖E2(z)‖ℑ2≤M∗∗1+M∗∗2‖s‖, | (4.13) |
where
M∗1=GOB∗|D0(ϖ)|+uO′′I|D1(ϖ)|+uO′′˜I|D2(ϖ)|−|D3(ϖ)|ϱ∗1(υ)Γ(ϖ+1)|ln(G)ϖ|, u=1,2,...,k,M∗2=uOI|D1(ϖ)|+uO˜I|D2(ϖ)|−δ∗1|D3(ϖ)|Γ(ϖ+1)|ln(G)ϖ|, u=1,2,...,k,M∗∗1=G˜OB∗|D0(θ)|+u˜O′′I|D1(θ)|+u˜O′′˜I|D2(θ)|−|D3(θ)|ϱ∗2(υ)Γ(θ+1)|ln(G)θ|, u=1,2,...,m,M∗∗2=u˜OI|D1(θ)|+u˜O˜I|D2(θ)|−δ∗2|D3(θ)|Γ(θ+1)|ln(G)θ|, u=1,2,...,m. |
Further, we obtain for u=1,2,...,k, that
|˜E1(z,s)(υ)(lnυ)2−ϖ|≤|D0(ϖ)|Γ(ϖ−1)∫Gυu|ln(Gη)ϖ−2||p(η)|dηη+|D4(ϖ)|Γ(ϖ)∫Gυu|ln(Gη)ϖ−1||p(η)|dηη+u∑i=1|D5i(ϖ)|Γ(ϖ)∫υiυi−1|ln(υiη)ϖ−1||p(η)|dηη+|(lnυ)2−ϖ|Γ(ϖ)∫υυu|ln(υη)ϖ−1||p(η)|dηη+u∑i=1|lnυ3−ϖ(lnυi)2−ϖ|Γ(ϖ−1)∫υiυi−1ln(υiη)ϖ−2|p(η)|dηη. | (4.14) |
From assertion (A1), we can write
|p(υ)|=|ϕ(υ,a1(υ),a2(υ))|≤ϕ(υ,z(υ),a(υ))≤ℓ0(υ)+ℓ1(υ)|z(υ)|+ℓ2(υ)|a(υ)|=ℓ0(υ)+ℓ1(υ)|z(υ)|+ℓ2(υ)|ψ(υ,p1(υ),p2(υ))|≤ℓ0(υ)+ℓ1(υ)|z(υ)|+ℓ2(υ)|ψ(υ,s(υ),p(υ))|≤ℓ0(υ)+ℓ1(υ)|z(υ)|+ℓ2(υ)[ρ0(υ)+ρ1(υ)|s(υ)|+ρ2(υ)|p(υ)|]≤ℓ0(υ)+ℓ2(υ)ρ0(υ)1−ℓ2(υ)ρ2(υ)+ℓ1(υ)|z(υ)|+ℓ2(υ)ρ1(υ)|s(υ)|1−ℓ2(υ)ρ2(υ), |
which implies that
‖p‖≤˜ℓ0+˜ℓ2˜ρ01−˜ℓ2˜ρ2+˜ℓ1‖z‖+˜ℓ2˜ρ1‖s‖1−˜ℓ2˜ρ2. | (4.15) |
Taking supυ∈U on (4.14) and using (4.15), one has
‖˜E1(z,s)‖ℑ1≤(˜ℓ0+˜ℓ2˜ρ0˜ℓ2˜ρ2−1+˜ℓ1‖z‖+˜ℓ2˜ρ1‖s‖˜ℓ2˜ρ2−1)×(|D0(ϖ)||ln(Gυu)ϖ−1|Γ(ϖ)+|D4(ϖ)||ln(Gυu)ϖ|Γ(ϖ+1)+u|D5(ϖ)||(lnυiυi−1)ϖ|Γ(ϖ+1)+|(lnυ)2−ϖ||(lnυυu)ϖ|Γ(ϖ+1)+u|lnυ3−ϖ(lnυi)2−ϖ||(lnυiυi−1)ϖ−1|Γ(ϖ))≤(˜ℓ0+˜ℓ2˜ρ0)M∗3˜ℓ2˜ρ2−1+(˜ℓ1‖z‖+˜ℓ2˜ρ1‖s‖)M∗3˜ℓ2˜ρ2−1≤(˜ℓ0+˜ℓ2˜ρ0)M∗3˜ℓ2˜ρ2−1+Y∗1M∗3˜ℓ2˜ρ2−1‖(z,s)‖. | (4.16) |
In the same scenario, we get
‖˜E2(z,s)‖ℑ2≤(˜ρ0+˜ρ2˜ℓ0)M∗∗3˜ℓ2˜ρ2−1+Y∗2M∗∗3˜ℓ2˜ρ2−1‖(z,s)‖, | (4.17) |
where
M∗3=(|D0(ϖ)||ln(Gυu)ϖ−1|Γ(ϖ)+|D4(ϖ)||ln(Gυu)ϖ|Γ(ϖ+1)+u|D5(ϖ)||(lnυiυi−1)ϖ|Γ(ϖ+1)+|(lnυ)2−ϖ||(lnυυu)ϖ|Γ(ϖ+1)+u|lnυ3−ϖ(lnυi)2−ϖ||(lnυiυi−1)ϖ−1|Γ(ϖ)), u=1,2,...,k,M∗∗3=(|D0(θ)||ln(Gυu)θ−1|Γ(θ)+|D4(θ)||ln(Gυu)θ|Γ(θ+1)+u|D5(θ)||(lnυiυi−1)θ|Γ(θ+1)+|(lnυ)2−θ||(lnυυu)θ|Γ(θ+1)+u|lnυ3−θ(lnυi)2−θ||(lnυiυi−1)θ−1|Γ(θ)), u=1,2,...,m,Y∗1=max{˜ℓ1,˜ℓ2˜ρ1}, Y∗2=max{˜ρ2˜ℓ1,˜ρ1}. |
Applying (4.12), (4.13), (4.16) and (4.17) in (4.11), we have
‖E(z,s)+˜E(z,s)‖ℑ≤M∗1+M∗∗1+(˜ℓ0+˜ℓ2˜ρ0)M∗3+(˜ρ0+˜ρ2˜ℓ0)M∗∗3˜ℓ2˜ρ2−1+Y∗1M∗3+Y∗2M∗∗3˜ℓ2˜ρ2−1‖(z,s)‖+M∗2‖z‖+M∗∗2‖s‖≤M∗1+M∗∗1+(˜ℓ0+˜ℓ2˜ρ0)M∗3+(˜ρ0+˜ρ2˜ℓ0)M∗∗3˜ℓ2˜ρ2−1+(M∗2+M∗∗2+Y∗1M∗3+Y∗2M∗∗3˜ℓ2˜ρ2−1)‖(z,s)‖≤x, |
which implies that E(z,s)(υ)+˜E(z,s)∈ℑx. After that, for any υ∈U and s,z,˜s,˜z∈ℑ, one writes
‖E(z,s)−E(˜z,˜s)‖ℑ≤‖E1(z)−E1(˜z)‖ℑ1+‖E2(s)−E2(˜s)‖ℑ2≤G|D0(ϖ)||B∗(z)−B∗(˜z)|+u∑i=1|D1i(ϖ)||Ii(zi)−Ii(˜zi)|+u∑i=1|D2i(ϖ)||˜Ii(zi)−˜Ii(˜zi)|+|D3(ϖ)|Γ(ϖ)∫G1|ln(Gη)ϖ−1||B(η,z(η))−B(η,˜z(η))|dηη+G|D0(θ)||B∗(s)−B∗(˜s)|+u∑j=1D1j(θ)|Ij(sj)−Ij(˜sj)|+u∑j=1D2j(θ)|˜Ij(sj)−˜Ij(˜sj)|+|D3(θ)|Γ(θ)∫G1|ln(Gη)θ−1||B(η,s(η))−B(η,˜s(η))|dηη. |
Applying (A5) and (A6), one has
‖E(z,s)−E(˜z,˜s)‖ℑ≤[GLB∗|D0(ϖ)|+uLI|D1(ϖ)|+uL˜I|D2(ϖ)|−LB|D3(ϖ)||(lnG)ϖ|Γ(ϖ+1)]‖z−˜z‖+[G˜LB∗|D0(θ)|+u˜LI|D1(θ)|+u˜L˜I|D2(θ)|−˜LB|D3(θ)||(lnG)θ|Γ(θ+1)]‖s−˜s‖≤L(Δ1+Δ2)‖(z−˜z,s−˜s)‖, |
where
L=max{LB∗,LI,L˜I,˜LB∗,˜LI,˜L˜I,LB,˜LB}, |
and
Δ1=G|D0(ϖ)|+u|D1(ϖ)|+u|D2(ϖ)|−|D3(ϖ)||(lnG)ϖ|Γ(ϖ+1), u=1,2,...,k,Δ2=G|D0(θ)|+u|D1(θ)|+u|D2(θ)|−|D3(θ)||(lnG)θ|Γ(θ+1), u=1,2,...,m. |
Hence, E is a contraction mapping. Now, we claim that ˜E is continuous and compact. For this, we build a sequence Gn=(zn,sn) in ℑ so that limn→∞(zn,sn)=(z,s)∈ℑx. Hence, we obtain
‖˜E(z,s)−˜E(zn,sn)‖ℑ≤‖˜E1(zn,sn)−˜E1(z,s)‖ℑ1+‖˜E2(zn,sn)−˜E2(z,s)‖ℑ2. | (4.18) |
Since
‖˜E1(zn,sn)−˜E1(z,s)‖ℑ1≤(|D0(ϖ)||ln(Gυu)ϖ−1|Γ(ϖ)+|D4(ϖ)||ln(Gυu)ϖ|Γ(ϖ+1)+u|D5(ϖ)||(lnυuυu−1)ϖ|Γ(ϖ+1)+|(lnυ)2−ϖ||(lnυυu)ϖ|Γ(ϖ+1)+u|lnυ3−ϖ(lnυu)2−ϖ||(lnυuυu−1)ϖ−1|Γ(ϖ))(Lϕ‖zn−z‖+˜LϕLψ‖sn−s‖˜Lϕ˜Lψ−1)≤M∗3(Lϕ‖zn−z‖+˜LϕLψ‖sn−s‖˜Lϕ˜Lψ−1), | (4.19) |
and
‖˜E2(zn,sn)−˜E2(z,s)‖ℑ2≤(|D0(θ)||ln(Gυu)θ−1|Γ(θ)+|D4(θ)||ln(Gυu)θ|Γ(θ+1)+u|D5(θ)||(lnυuυu−1)θ|Γ(θ+1)+|(lnυ)2−θ||(lnυυu)θ|Γ(θ+1)+u|lnυ3−θ(lnυu)2−θ||(lnυuυi−1)θ−1|Γ(θ))(Lϕ˜Lψ‖zn−z‖+Lψ‖sn−s‖˜Lϕ˜Lψ−1)≤M∗∗3(Lϕ˜Lψ‖zn−z‖+Lψ‖sn−s‖˜Lϕ˜Lψ−1). | (4.20) |
Applying (4.19) and (4.20) in (4.18), we conclude that
‖˜E(z,s)−˜E(zn,sn)‖ℑ≤M∗3(Lϕ‖zn−z‖+˜LϕLψ‖sn−s‖˜Lϕ˜Lψ−1)+M∗∗3(Lϕ˜Lψ‖zn−z‖+Lψ‖sn−s‖˜Lϕ˜Lψ−1), |
which yields ‖˜E(z,s)−˜E(zn,sn)‖ℑ→0 as n→∞, this proves the continuity of ˜E. Next, using (4.16) and (4.17), we get
‖˜E(z,s)(υ)‖ℑ≤‖~E1(z,s)(υ)‖ℑ1+‖˜E2(z,s)‖ℑ2≤(˜ℓ0+˜ℓ2˜ρ0)M∗3˜ℓ2˜ρ2−1+(˜ρ0+˜ρ2˜ℓ0)M∗∗3˜ℓ2˜ρ2−1+(Y∗1M∗3˜ℓ2˜ρ2−1+Y∗2M∗∗3˜ℓ2˜ρ2−1)‖(z,s)‖≤x. |
Therefore, ˜E is uniformly bounded on ℑx. Finally, we show that ˜E is equicontinuous. To get this result, take υ1,υ2∈U with υ1<υ2 and for any (z,s)∈ℑx⊂ℑ (clearly ℑx is bounded), we obtain
‖˜E1(z,s)(υ1)−˜E1(z,s)(υ2)‖ℑ1=max{|[˜E1(z,s)(υ1)−˜E1(z,s)(υ2)](lnυ)2−ϖ|}≤[(|D0(ϖ)||ln(Gυu)ϖ−1|Γ(ϖ)+|D4(ϖ)||ln(Gυu)ϖ|Γ(ϖ+1)+u|D5(ϖ)||(lnυuυu−1)ϖ|Γ(ϖ+1))×|(lnυ)2−ϖ||(lnυ1)ϖ−2−(lnυ2)ϖ−2|+u|(lnυ)2−ϖ||(lnυυu)ϖ||lnυ3−ϖ1(logυuυ1)ϖ−2−lnυ3−ϖ2(logυuυ2)ϖ−2|Γ(ϖ)]×(˜ℓ0+˜ℓ2˜ρ01−˜ℓ2˜ρ2+˜ℓ1‖z‖+˜ℓ2˜ρ1‖s‖1−˜ℓ2˜ρ2)+|(lnυ)2−ϖ|Γ(ϖ)|∫υ1υuln(υ1η)ϖ−1ϕ(υ,HDϖz(υ),HDθs(υ))dηη−∫υ2υuln(υ2η)ϖ−1ϕ(υ,HDϖz(υ),HDθs(υ))dηη|, |
which yields that
‖˜E1(z,s)(υ1)−˜E1(z,s)(υ2)‖ℑ1→0, as υ1→υ2. |
Similarly, we get
‖˜E2(z,s)(υ1)−˜E2(z,s)(υ2)‖ℑ2→0, as υ1→υ2. |
Hence
‖˜E(z,s)(υ1)−˜E(z,s)(υ2)‖ℑ→0, as υ1→υ2. |
Therefore ˜E is a relatively compact on ℑx. Thanks to the theorem of Arzelà-Ascoli, ˜E is compact. Thus, it is completely continuous. So, the CII-FDEs (1.1) admits at least one solution. This finishes the proof.
Theorem 4.4. Assume that (A4)–(A6) are fulfilled with
℧1+℧3+℧2(Lϕ+˜LϕLψ)+℧4(Lϕ˜Lψ+Lψ)˜Lϕ˜Lψ−1<1, | (4.21) |
then the CII-FDEs (1.1) possesses a unique solution.
Proof. Let ℵ=(ℵ1,ℵ1):ℑ→ℑ be an operator defined by ℵ(z,s)(υ)=(ℵ1(z,s),ℵ2(z,s))(υ), where
ℵ1(z,s)=GD0(ϖ)B∗(z)(lnυ)ϖ−2+u∑i=1D1i(ϖ)(lnυ)ϖ−2Ii(z(υi))+u∑i=1D2i(ϖ)(lnυ)ϖ−2˜Ii(z(υi))+D3(ϖ)(lnυ)ϖ−2Γ(ϖ)∫G1ln(Gη)ϖ−1B(η,z(η))dηη+D0(ϖ)(lnυ)ϖ−2Γ(ϖ−1)∫Gυuln(Gη)ϖ−2ϕ(η,HDϖz(η),HDθs(η))dηη+D4(ϖ)(lnυ)ϖ−2Γ(ϖ)∫Gυuln(Gη)ϖ−1ϕ(η,HDϖz(η),HDθs(η))dηη+u∑i=1D5i(ϖ)(lnυ)ϖ−2Γ(ϖ)∫υiυi−1ln(υiη)ϖ−1ϕ(η,HDϖz(η),HDθs(η))dηη+u∑i=1lnυ3−ϖ(logυiυ)ϖ−2Γ(ϖ−1)∫υiυi−1ln(υiη)ϖ−2ϕ(η,HDϖz(η),HDθs(η))dηη+1Γ(ϖ)∫υυuln(υη)ϖ−1ϕ(η,HDϖz(η),HDθs(η))dηη, |
for u=1,2,...,k and
ℵ2(z,s)=GD0(θ)B∗(s)(lnυ)θ−2+u∑j=1D1j(θ)(lnυ)θ−2Ij(sj)+u∑j=1D2j(θ)(lnυ)θ−2˜Ij(sj)+D3(θ)(lnυ)θ−2Γ(θ)∫G1ln(Gη)θ−1B(η,s(η))dηη+D0(θ)(lnυ)θ−2Γ(θ−1)∫Gυuln(Gη)θ−2ψ(η,p1(η),p2(η))dηη+D4(θ)(lnυ)θ−2Γ(θ)∫Gυuln(Gη)θ−1ψ(η,p1(η),p2(η))dηη+u∑j=1D5i(θ)(lnυ)θ−2Γ(θ)∫υjυj−1ln(υjη)θ−1ψ(η,p1(η),p2(η))dηη+u∑j=1lnυ3−θ(logυjυ)θ−2Γ(θ−1)∫υjυj−1ln(υiη)θ−2ψ(η,p1(η),p2(η))dηη+1Γ(θ)∫υυuln(υη)θ−1ψ(η,p1(η),p2(η))dηη, |
for u=1,2,...,m. In light of Theorem 4.3, one can obtain
|(ℵ1(z,s)−ℵ1(˜z,˜s))((lnυ)ϖ−2)|≤[GLB∗|D0(ϖ)|+uLI|D1(ϖ)|+uL˜I|D2(ϖ)|−LB|D3(ϖ)||(lnG)ϖ|Γ(ϖ+1)+(|D0(ϖ)||ln(Gυu)ϖ−1|Γ(ϖ)+|D4(ϖ)||ln(Gυu)ϖ|Γ(ϖ+1)+u|D5(ϖ)||(lnυuυu−1)ϖ|Γ(ϖ+1)+|(lnυ)2−ϖ||(lnυυu)ϖ|Γ(ϖ+1)+u|lnυ3−ϖ(lnυu)2−ϖ||(lnυuυu−1)ϖ−1|Γ(ϖ))(Lϕ˜Lϕ˜Lψ−1)]|z−˜z|+(|D0(ϖ)||ln(Gυu)ϖ−1|Γ(ϖ)+|D4(ϖ)||ln(Gυu)ϖ|Γ(ϖ+1)+u|D5(ϖ)||(lnυuυu−1)ϖ|Γ(ϖ+1)+|(lnυ)2−ϖ||(lnυυu)ϖ|Γ(ϖ+1)+u|lnυ3−ϖ(lnυu)2−ϖ||(lnυuυu−1)ϖ−1|Γ(ϖ))(˜LϕLψ|s−˜s|˜Lϕ˜Lψ−1), |
for u=1,2,...,k. Passing supυ∈U, we have
‖ℵ1(z,s)−ℵ1(˜z,˜s)‖ℑ1≤(℧1+℧2(Lϕ+˜LϕLψ)˜Lϕ˜Lψ−1)‖(z,s)−(˜z,˜s)‖, u=1,2,...,k, |
where
℧1=GLB∗|D0(ϖ)|+uLI|D1(ϖ)|+uL˜I|D2(ϖ)|−LB|D3(ϖ)||(lnG)ϖ|Γ(ϖ+1),℧2=|D0(ϖ)||ln(Gυu)ϖ−1|Γ(ϖ)+|D4(ϖ)||ln(Gυu)ϖ|Γ(ϖ+1)+u|D5(ϖ)||(lnυuυu−1)ϖ|Γ(ϖ+1)+|(lnυ)2−ϖ||(lnυυu)ϖ|Γ(ϖ+1)+u|lnυ3−ϖ(lnυu)2−ϖ||(lnυuυu−1)ϖ−1|Γ(ϖ). |
Analogously,
‖ℵ2(z,s)−ℵ2(˜z,˜s)‖ℑ2≤(℧3+℧4(Lψ+Lϕ˜Lψ)˜Lϕ˜Lψ−1)‖(z,s)−(˜z,˜s)‖, u=1,2,...,m, |
where
℧3=G˜LB∗|D0(θ)|+u˜LI|D1(θ)|+u˜L˜I|D2(θ)|−˜LB|D3(θ)||(lnG)θ|Γ(θ+1),℧4=|D0(θ)||ln(Gυu)θ−1|Γ(θ)+|D4(θ)||ln(Gυu)θ|Γ(θ+1)+u|D5(θ)||(lnυuυu−1)θ|Γ(θ+1)+|(lnυ)2−θ||(lnυυu)θ|Γ(θ+1)+u|lnυ3−θ(lnυu)2−θ||(lnυuυu−1)θ−1|Γ(θ). |
Hence
‖ℵ(z,s)−ℵ(˜z,˜s)‖ℑ≤(℧1+℧3+℧2(Lϕ+˜LϕLψ)+℧4(Lψ+Lϕ˜Lψ)˜Lϕ˜Lψ−1)‖(z,s)−(˜z,˜s)‖. |
This suggests that ℵ is a contraction. Consequently, the CII-FDEs (1.1) has a unique solution.
In this section, we examine various stability types for the suggested system, including the HU, GHU, HUR, and GHUR stability.
Theorem 5.1. If the assertions (A1)–(A3) and the condition (4.21) are true and
ℶ=1−Lϕ˜LϕLψ˜Lψ℧2℧4[(˜Lϕ˜Lψ−1)((lnυ)ϖ−2−℧1)−℧2Lϕ][(˜Lϕ˜Lψ−1)((lnυ)θ−2−℧3)−℧4Lψ]>0, |
then the unique solution of CII-FDEs (1.1) is HU stable and as a result, GHU stable.
Proof. Take into account that (z,s)∈ℑ is an approximate solution of (3.1) and consider (ˆz,ˆs)∈ℑ is a solution of the coupled problem shown below
{HDϖˆz(υ)=ϕ(υ,HDϖˆz(υ),HDθˆs(υ)), υ∈U, υ≠υi, i=1,2,...k,HDθˆs(υ)=ψ(υ,HDθˆs(υ),HDϖˆz(υ)), υ∈U, υ≠υj, j=1,2,...m,Δz(ˆυi)=Iiˆz(υi), Δˆz′(υi)=˜Iiˆz(υi), i=1,2,...k, Δˆs(υj)=Ijˆs(υj), Δˆs′(υj)=˜Ijˆs(υj), j=1,2,...m, ˆz(G)=1Γ(ϖ)∫G1ln(Gη)ϖ−1B(η,ˆz(η))dηη, ˆz′(G)=B∗(ˆz), ˆs(G)=1Γ(θ)∫G1ln(Gη)θ−1B(η,ˆs(η))dηη, ˆs′(G)=B∗(ˆs). | (5.1) |
From Remark 3.5, we get
{HDϖz(υ)=ϕ(υ,HDϖz(υ),HDθs(υ))+ℜϕ(υ), υ∈U, υ≠υi, i=1,2,...k,Δz(υi)=Ii(z(υi))+ℜϕi, Δz′(υi)=˜Ii(z(υi))+ℜϕi, i=1,2,...k,HDθs(υ)=ϕ(υ,HDθs(υ),HDϖz(υ))+ℜψ(υ), υ∈U, υ≠υj, j=1,2,...m,Δs(υj)=Ij(s(υj))+ℜψj, Δs′(υj)=˜Ij(s(υj))+ℜψj, j=1,2,...,m. | (5.2) |
It follows from Corollary 4.2 that the solution of system (5.2) is
z(υ)=GD0(ϖ)B∗(z)(lnυ)ϖ−2+u∑i=1D1i(ϖ)(lnυ)ϖ−2(Ii(zi)+ℜϕi)+u∑i=1D2i(ϖ)(lnυ)ϖ−2(˜Ii(zi)+ℜϕi)+D0(ϖ)(lnυ)ϖ−2Γ(ϖ−1)∫Gυuln(Gη)ϖ−2[ϕ(η,HDϖz(η),HDθs(η))+ℜϕ(υ)]dηη+D4(ϖ)(lnυ)ϖ−2Γ(ϖ)∫Gυuln(Gη)ϖ−1[ϕ(η,HDϖz(η),HDθs(η))+ℜϕ(υ)]dηη+u∑i=1D5i(ϖ)(lnυ)ϖ−2Γ(ϖ)∫υiυi−1ln(υiη)ϖ−1[ϕ(η,HDϖz(η),HDθs(η))+ℜϕ(υ)]dηη+u∑i=1lnυ3−ϖ(logυiυ)ϖ−2Γ(ϖ−1)∫υiυi−1ln(υiη)ϖ−2[ϕ(η,HDϖz(η),HDθs(η))+ℜϕ(υ)]dηη+D3(ϖ)(lnυ)ϖ−2Γ(ϖ)∫G1ln(Gη)ϖ−1B(η,z(η))dηη+1Γ(ϖ)∫υυuln(υη)ϖ−1[ϕ(η,HDϖz(η),HDθs(η))+ℜϕ(υ)]dηη, | (5.3) |
for u=1,2,...,k and
s(υ)=GD0(θ)B∗(s)(lnυ)θ−2+u∑j=1D1j(θ)(lnυ)θ−2(Ij(sj)+ℜψj)+u∑j=1D2j(θ)(lnυ)θ−2(Ij(zj)+ℜψj)+D0(θ)(lnυ)θ−2Γ(θ−1)∫Gυuln(Gη)θ−2[ϕ(υ,HDθs(υ),HDϖz(υ))+ℜψ(υ)]dηη+D4(θ)(lnυ)θ−2Γ(θ)∫Gυuln(Gη)θ−1[ϕ(υ,HDθs(υ),HDϖz(υ))+ℜψ(υ)]dηη+u∑j=1D5i(θ)(lnυ)θ−2Γ(θ)∫υjυj−1ln(υjη)θ−1[ϕ(υ,HDθs(υ),HDϖz(υ))+ℜψ(υ)]dηη+u∑j=1lnυ3−θ(logυjυ)θ−2Γ(θ−1)∫υjυj−1ln(υiη)θ−2[ϕ(υ,HDθs(υ),HDϖz(υ))+ℜψ(υ)]dηη+D3(θ)(lnυ)θ−2Γ(θ)∫G1ln(Gη)θ−1B(η,s(η))dηη+1Γ(θ)∫υυuln(υη)θ−1[ϕ(υ,HDθs(υ),HDϖz(υ))+ℜψ(υ)]dηη, | (5.4) |
for u=1,2,...,m. Consider
|(z(υ)−ˆz(υ))(lnυ)2−θ|≤G|D0(ϖ)||B∗(z)−B∗(ˆz)|+u∑i=1|D1i(ϖ)||Ii(zi)−Ii(ˆzi)|+u∑i=1|D2i(ϖ)||˜Ii(zi)−˜Ii(ˆzi)|+|D0(ϖ)|Γ(ϖ−1)∫Gυu|ln(Gη)ϖ−2||ϕ(η,HDϖz(η),HDθs(η))−ϕ(η,HDϖˆz(η),HDθˆs(η))|dηη+|D4(ϖ)|Γ(ϖ)∫Gυu|ln(Gη)ϖ−1||ϕ(η,HDϖz(η),HDθs(η))−ϕ(η,HDϖˆz(η),HDθˆs(η))|dηη+u∑i=1|D5i(ϖ|)Γ(ϖ)∫υiυi−1|ln(υiη)ϖ−1||ϕ(η,HDϖz(η),HDθs(η))−ϕ(η,HDϖˆz(η),HDθˆs(η))|dηη+u∑i=1|lnυ3−ϖ||(lnυi)ϖ−2|Γ(ϖ−1)∫υiυi−1|ln(υiη)ϖ−2|×|ϕ(η,HDϖz(η),HDθs(η))−ϕ(η,HDϖˆz(η),HDθˆs(η))|dηη+|(lnυ)2−θ|Γ(ϖ)∫υυu|ln(υη)ϖ−1||ϕ(η,HDϖz(η),HDθs(η))−ϕ(η,HDϖˆz(η),HDθˆs(η))|dηη+|D3(ϖ)|Γ(ϖ)∫G1|ln(Gη)ϖ−1||B(η,z(η))−B(η,ˆz(η))|dηη+u∑i=1|D2i(ϖ)||ℜϕi|+u∑i=1|D1i(ϖ)||ℜϕi|+|D0(ϖ)|Γ(ϖ−1)∫Gυu|ln(Gη)ϖ−2||ℜϕ(υ)|dηη+|D4(ϖ)|Γ(ϖ)∫Gυu|ln(Gη)ϖ−1||ℜϕ(υ)|dηη+u∑i=1|D5i(ϖ)|Γ(ϖ)∫υiυi−1|ln(υiη)ϖ−1||ℜϕ(υ)|dηη+u∑i=1|lnυ3−ϖ||(lnυi)ϖ−2|Γ(ϖ−1)∫υiυi−1|ln(υiη)ϖ−2||ℜϕ(υ)|dηη+|(lnυ)2−θ|Γ(ϖ)∫υυu|ln(υη)ϖ−1||ℜϕ(υ)|dηη. |
As in Theorem 4.4, one has
\begin{eqnarray} \left\Vert z-\widehat{z}\right\Vert _{\Im _{1}} &\leq &\left( \mho _{1}+ \frac{\mho _{2}L_{\phi }}{\widetilde{L}_{\phi }\widetilde{L}_{\psi }-1} \right) \left( \ln \upsilon \right) ^{2-\varpi }\left\Vert z-\widehat{z} \right\Vert _{\Im _{1}}+\frac{\mho _{2}\widetilde{L}_{\phi }L_{\psi }}{ \widetilde{L}_{\phi }\widetilde{L}_{\psi }-1}\left( \ln \upsilon \right) ^{2-\varpi }\left\Vert s-\widehat{s}\right\Vert _{\Im _{1}} \\ &&+\left( \mho _{2}+u\left\vert D_{1}(\varpi )\right\vert +u\left\vert D_{2}(\varpi )\right\vert \right) \varphi _{\varpi }, \end{eqnarray} | (5.5) |
for u = 1, 2, ..., k and
\begin{eqnarray} \left\Vert s-\widehat{s}\right\Vert _{\Im _{2}} &\leq &\left( \frac{\mho _{4}L_{\phi }\widetilde{L}_{\psi }}{\widetilde{L}_{\phi }\widetilde{L}_{\psi }-1}\right) \left( \ln \upsilon \right) ^{2-\theta }\left\Vert z-\widehat{z} \right\Vert _{\Im _{2}}+\left( \mho _{3}+\frac{\mho _{4}L_{\psi }}{ \widetilde{L}_{\phi }\widetilde{L}_{\psi }-1}\right) \left( \ln \upsilon \right) ^{2-\theta }\left\Vert s-\widehat{s}\right\Vert _{\Im _{2}} \\ &&+\left( \mho _{4}+u\left\vert D_{1}(\theta )\right\vert +u\left\vert D_{2}(\theta )\right\vert \right) \varphi _{\theta }. \end{eqnarray} | (5.6) |
Arranging (5.5) and (5.6), we get
\begin{equation} \left\Vert z-\widehat{z}\right\Vert _{\Im _{1}}-\frac{\mho _{2}\widetilde{L} _{\phi }L_{\psi }}{\left( \widetilde{L}_{\phi }\widetilde{L}_{\psi }-1\right) \left( \left( \ln \upsilon \right) ^{\varpi -2}-\mho _{1}\right) -\mho _{2}L_{\phi }}\left\Vert s-\widehat{s}\right\Vert _{\Im _{1}}\leq \frac{\left( \mho _{2}+u\left\vert D_{1}(\varpi )\right\vert +u\left\vert D_{2}(\varpi )\right\vert \right) }{1-\left( \mho _{1}+\frac{\mho _{2}L_{\phi }}{\widetilde{L}_{\phi }\widetilde{L}_{\psi }-1}\right) \left( \ln \upsilon \right) ^{2-\varpi }}\varphi _{\varpi }, \end{equation} | (5.7) |
and
\begin{equation} \left\Vert s-\widehat{s}\right\Vert _{\Im _{2}}-\frac{\mho _{4}L_{\phi } \widetilde{L}_{\psi }}{\left( \widetilde{L}_{\phi }\widetilde{L}_{\psi }-1\right) \left( \left( \ln \upsilon \right) ^{\theta -2}-\mho _{3}\right) -\mho _{4}L_{\psi }}\left\Vert z-\widehat{z}\right\Vert _{\Im _{2}}\leq \frac{\left( \mho _{4}+u\left\vert D_{1}(\theta )\right\vert +u\left\vert D_{2}(\theta )\right\vert \right) }{1-\left( \mho _{3}+\frac{\mho _{4}L_{\psi }}{\widetilde{L}_{\phi }\widetilde{L}_{\psi }-1}\right) \left( \ln \upsilon \right) ^{2-\theta }}\varphi _{\theta }, \end{equation} | (5.8) |
respectively. Assume that \Game _{\varpi } = 1-\left(\mho _{1}+\frac{\mho _{2}L_{\phi }}{\widetilde{L}_{\phi }\widetilde{L}_{\psi }-1}\right) \left(\ln \upsilon \right) ^{2-\varpi } and \Game _{\theta } = 1-\left(\mho _{3}+ \frac{\mho _{4}L_{\psi }}{\widetilde{L}_{\phi }\widetilde{L}_{\psi }-1} \right) \left(\ln \upsilon \right) ^{2-\theta }. Then (5.7) and (5.8) can be written as
\begin{equation*} \left[ \begin{array}{cc} 1 & -\frac{\mho _{2}\widetilde{L}_{\phi }L_{\psi }}{\left( \widetilde{L} _{\phi }\widetilde{L}_{\psi }-1\right) \left( \left( \ln \upsilon \right) ^{\varpi -2}-\mho _{1}\right) -\mho _{2}L_{\phi }} \\ -\frac{\mho _{4}L_{\phi }\widetilde{L}_{\psi }}{\left( \widetilde{L}_{\phi } \widetilde{L}_{\psi }-1\right) \left( \left( \ln \upsilon \right) ^{\theta -2}-\mho _{3}\right) -\mho _{4}L_{\psi }} & 1 \end{array} \right] \\\left[ \begin{array}{c} \left\Vert z-\widehat{z}\right\Vert _{\Im _{1}} \\ \\ \left\Vert s-\widehat{s}\right\Vert _{\Im _{1}} \end{array} \right] \leq \left[ \begin{array}{c} \Game _{\varpi }\varphi _{\varpi } \\ \\ \Game _{\theta }\varphi _{\theta } \end{array} \right] . \end{equation*} |
Hence
\begin{equation} \left[ \begin{array}{c} \left\Vert z-\widehat{z}\right\Vert _{\Im _{1}} \\ \\ \left\Vert s-\widehat{s}\right\Vert _{\Im _{2}} \end{array} \right] \leq \\ \left[ \begin{array}{cc} \frac{1}{\beth } & \frac{\mho _{2}\widetilde{L}_{\phi }L_{\psi }}{\left( \widetilde{L}_{\phi }\widetilde{L}_{\psi }-1\right) \left( \left( \ln \upsilon \right) ^{\varpi -2}-\mho _{1}\right) -\mho _{2}L_{\phi }}\frac{1}{ \beth } \\ \frac{\mho _{4}L_{\phi }\widetilde{L}_{\psi }}{\left( \widetilde{L}_{\phi } \widetilde{L}_{\psi }-1\right) \left( \left( \ln \upsilon \right) ^{\theta -2}-\mho _{3}\right) -\mho _{4}L_{\psi }}\frac{1}{\beth } & \frac{1}{\beth } \end{array} \right] \\ \left[ \begin{array}{c} \Game _{\varpi }\varphi _{\varpi } \\ \\ \Game _{\theta }\varphi _{\theta } \end{array} \right] , \end{equation} | (5.9) |
where
\begin{equation*} \beth = 1-\frac{L_{\phi }\widetilde{L}_{\phi }L_{\psi }\widetilde{L}_{\psi }\mho _{2}\mho _{4}}{\left[ \left( \widetilde{L}_{\phi }\widetilde{L}_{\psi }-1\right) \left( \left( \ln \upsilon \right) ^{\varpi -2}-\mho _{1}\right) -\mho _{2}L_{\phi }\right] \left[ \left( \widetilde{L}_{\phi }\widetilde{L} _{\psi }-1\right) \left( \left( \ln \upsilon \right) ^{\theta -2}-\mho _{3}\right) -\mho _{4}L_{\psi }\right] } > 0. \end{equation*} |
From system (5.9), we observe that
\begin{eqnarray*} \left\Vert z-\widehat{z}\right\Vert _{\Im _{1}} & = &\frac{\Game _{\varpi }\varphi _{\varpi }}{\beth }+\frac{\mho _{2}\widetilde{L}_{\phi }L_{\psi }\Game _{\theta }\varphi _{\theta }}{\left( \widetilde{L}_{\phi }\widetilde{L }_{\psi }-1\right) \left( \left( \ln \upsilon \right) ^{\varpi -2}-\mho _{1}\right) -\mho _{2}L_{\phi }}\frac{1}{\beth }, \\ \left\Vert s-\widehat{s}\right\Vert _{\Im _{2}} & = &\frac{\mho _{4}L_{\phi } \widetilde{L}_{\psi }\Game _{\varpi }\varphi _{\varpi }}{\left( \widetilde{L} _{\phi }\widetilde{L}_{\psi }-1\right) \left( \left( \ln \upsilon \right) ^{\theta -2}-\mho _{3}\right) -\mho _{4}L_{\psi }}\frac{1}{\beth }+\frac{ \Game _{\theta }\varphi _{\theta }}{\beth }, \end{eqnarray*} |
which yields that
\begin{array}{l} \left\Vert z-\widehat{z}\right\Vert _{\Im _{1}}+\left\Vert s-\widehat{s} \right\Vert _{\Im _{2}} &\leq &\frac{\Game _{\varpi }\varphi _{\varpi }}{ \beth } +\frac{\Game _{\theta }\varphi _{\theta }}{\beth }\\&&+\frac{\mho _{2} \widetilde{L}_{\phi }L_{\psi }\Game _{\theta }\varphi _{\theta }}{\left( \widetilde{L}_{\phi }\widetilde{L}_{\psi }-1\right) \left( \left( \ln \upsilon \right) ^{\varpi -2}-\mho _{1}\right) -\mho _{2}L_{\phi }}\frac{1}{ \beth } \\ &&+\frac{\mho _{4}L_{\phi }\widetilde{L}_{\psi }\Game _{\varpi }\varphi _{\varpi }}{\left( \widetilde{L}_{\phi }\widetilde{L}_{\psi }-1\right) \left( \left( \ln \upsilon \right) ^{\theta -2}-\mho _{3}\right) -\mho _{4}L_{\psi }}\frac{1}{\beth }. \end{array} |
Let us consider \varphi = \max \{\varphi _{\theta }, \varphi _{\varpi }\} and
\begin{eqnarray*} \Game _{\varpi ,\theta } & = &\frac{\Game _{\varpi }}{\beth }+\frac{\Game _{\theta }}{\beth }+\frac{\mho _{2}\widetilde{L}_{\phi }L_{\psi }\Game _{\theta }}{\left( \widetilde{L}_{\phi }\widetilde{L}_{\psi }-1\right) \left( \left( \ln \upsilon \right) ^{\varpi -2}-\mho _{1}\right) -\mho _{2}L_{\phi }}\frac{1}{\beth } \\ &&+\frac{\mho _{4}L_{\phi }\widetilde{L}_{\psi }\Game _{\varpi }}{\left( \widetilde{L}_{\phi }\widetilde{L}_{\psi }-1\right) \left( \left( \ln \upsilon \right) ^{\theta -2}-\mho _{3}\right) -\mho _{4}L_{\psi }}\frac{1}{ \beth }. \end{eqnarray*} |
Then, we can write
\begin{equation*} \left\Vert (z,s)-(\widehat{z},\widehat{s})\right\Vert _{\Im }\leq \Game _{\varpi ,\theta }\varphi , \end{equation*} |
which leads to the supposed coupled problem (1.1) is HU stable. Further, if
\begin{equation*} \left\Vert (z,s)-(\widehat{z},\widehat{s})\right\Vert _{\Im }\leq \Game _{\varpi ,\theta }\Phi (\varphi ),\text{ }\Phi (0) = 0. \end{equation*} |
Then the suggested coupled problem (1.1) is GHU stable.
For the final result, we suppose the following assertion:
(A_{7}) There are nondecreasing functions \gimel _{\varpi }, \gimel _{\theta }\in C(U, \mathbb{R} _{+}) so that
\begin{equation*} ^{H}D^{\varpi }\gimel _{\varpi }\left( \upsilon \right) \leq L_{\varpi }\gimel _{\varpi }\left( \upsilon \right) \text{ and }^{H}D^{\theta }\gimel _{\theta }\left( \upsilon \right) \leq L_{\theta }\gimel _{\theta }\left( \upsilon \right) ,\text{ for }L_{\varpi },L_{\theta } > 0. \end{equation*} |
Theorem 5.2. If the assertions (A_{1}) – (A_{3}) and (A_{7}) and the condition (4.21) are fulfilled and
\begin{equation*} \beth = 1-\frac{L_{\phi }\widetilde{L}_{\phi }L_{\psi }\widetilde{L}_{\psi }\mho _{2}\mho _{4}}{\left[ \left( \widetilde{L}_{\phi }\widetilde{L}_{\psi }-1\right) \left( \left( \ln \upsilon \right) ^{\varpi -2}-\mho _{1}\right) -\mho _{2}L_{\phi }\right] \left[ \left( \widetilde{L}_{\phi }\widetilde{L} _{\psi }-1\right) \left( \left( \ln \upsilon \right) ^{\theta -2}-\mho _{3}\right) -\mho _{4}L_{\psi }\right] } > 0, \end{equation*} |
then the unique solution of CII-FDEs (1.1) is HUR stable and consequently GHUR stable.
Proof. According to Definitions 3.3 and 3.4, we can get our conclusion by following the same procedures as in Theorem 5.1.
Example 6.1. Consider
\begin{equation} \left\{ \begin{array}{c} ^{H}D^{\frac{6}{5}}z(\upsilon ) = \frac{2+^{H}D^{\frac{6}{5}}z(\upsilon )+^{H}D^{\frac{5}{4}}s(\upsilon )}{70e^{20+\upsilon }\left( 1+^{H}D^{\frac{6 }{5}}z(\upsilon )+^{H}D^{\frac{5}{4}}s(\upsilon )\right) },\text{ }\upsilon \neq 1.5,{ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ } \\ ^{H}D^{\frac{5}{4}}s(\upsilon ) = \frac{1}{50}\left( \upsilon \cos z(\upsilon )-s(\upsilon )\sin (\upsilon )\right) +\frac{^{H}D^{\frac{6}{5}}z(\upsilon )+^{H}D^{\frac{5}{4}}s(\upsilon )}{25+^{H}D^{\frac{6}{5}}z(\upsilon )+^{H}D^{ \frac{5}{4}}s(\upsilon )},\text{ }\upsilon \neq 1.5,{ \ \ \ \ \ \ \ } \\ \Delta z(1.5) = I_{1}z(1.5) = \frac{\left\vert z(1.5)\right\vert }{2+\left\vert z(1.5)\right\vert }, \ \ \Delta z^{\prime }(1.5) = \widetilde{I} _{1}z(1.5) = \frac{\left\vert z(1.5)\right\vert }{25+\left\vert z(1.5)\right\vert },{ \ \ \ \ \ \ \ \ \ \ \ \ \ } \\ \Delta s(1.5) = I_{1}s(1.5) = \frac{\left\vert s(1.5)\right\vert }{2+\left\vert s(1.5)\right\vert }, \ \ \Delta s^{\prime }(1.5) = \widetilde{I} _{1}s(1.5) = \frac{\left\vert s(1.5)\right\vert }{25+\left\vert s(1.5)\right\vert },\text{ }\upsilon _{1} = 1.5, \\ z(e) = \frac{1}{\Gamma (\frac{6}{5})}\int_{1}^{e}\ln \left( \frac{e}{\eta } \right) ^{\frac{1}{5}}\frac{\eta ^{2}+z(\eta )}{60}\frac{d\eta }{\eta }, { \ \ }z^{\prime }(e) = \sum_{u = 1}^{10}\frac{1}{B_{u}^{\ast }}\left\vert z(\zeta _{u})\right\vert ,{ \ \ \ }1 < \zeta _{u} < 2B_{u}^{\ast }, \\ s(e) = \frac{1}{\Gamma (\frac{6}{5})}\int_{1}^{e}\ln \left( \frac{e}{\eta } \right) ^{\frac{1}{5}}\frac{\eta ^{2}+s(\eta )}{60}\frac{d\eta }{\eta }, { \ \ }s^{\prime }(e) = \sum_{u = 1}^{10}\frac{1}{B_{u}^{\ast }}\left\vert s(\zeta _{u})\right\vert ,{ \ \ \ }1 < \zeta _{u} < 2B_{u}^{\ast }, \end{array} \right. \end{equation} | (6.1) |
where \sum_{u = 1}^{10}\frac{1}{B_{u}^{\ast }} < 0.5 for \upsilon \in \lbrack 1, e]. In view of problem (6.1), we observe that \varpi = \frac{6}{5 }, \theta = \frac{5}{4}, G = e, k = 1 and \upsilon _{1} = 1.5. Further, it's simple to locate L_{B^{\ast }} = \widetilde{L}_{B^{\ast }} = 0.5, L_{B} = \widetilde{L}_{B} = \frac{1}{60}, L_{I} = L_{\widetilde{I}} = 0.5, \widetilde{L }_{I} = \widetilde{L}_{\widetilde{I}} = 0.04, L_{\phi } = \widetilde{L}_{\phi } = \frac{1}{70e^{20}} and L_{\psi } = \widetilde{L}_{\psi } = 0.04. Based on Theorem 4.4, we find that
\begin{equation*} \mho _{1}+\mho _{3}+\frac{\mho _{2}\left( L_{\phi }+\widetilde{L}_{\phi }L_{\psi }\right) +\mho _{4}\left( L_{\phi }\widetilde{L}_{\psi }+L_{\psi }\right) }{\widetilde{L}_{\phi }\widetilde{L}_{\psi }-1}\simeq 0.537. \end{equation*} |
Therefore problem (6.1) has a unique solution. Further
\begin{array}{l} \beth = 1- \\ \frac{L_{\phi }\widetilde{L}_{\phi }L_{\psi }\widetilde{L}_{\psi }\mho _{2}\mho _{4}}{\left[ \left( \widetilde{L}_{\phi }\widetilde{L}_{\psi }-1\right) \left( \left( \ln \upsilon \right) ^{\varpi -2}-\mho _{1}\right) -\mho _{2}L_{\phi }\right] \left[ \left( \widetilde{L}_{\phi }\widetilde{L} _{\psi }-1\right) \left( \left( \ln \upsilon \right) ^{\theta -2}-\mho _{3}\right) -\mho _{4}L_{\psi }\right] } \\ = 0.023 > 0. \end{array} |
Therefore, according to Theorem 5.1, the coupled system (6.1) is HU stable and consequently GHU stable. Similarly, we can confirm that Theorems 4.3 and 5.2 are true.
In this manuscript, we used fixed point results of Banach and Kransnoselskii to give necessary and sufficient conditions for the existence of a unique positive solution for a system of impulsive fractional differential equations intervening a fractional derivative of the Hadamard type. We also studied some Hyers-Ulam (HU) stabilities such as generalized Hyers-Ulam (GHU), Hyers-Ulam-Rassias (HUR), and generalized Hyers-Ulam-Rassias (GHUR) stabilities. At the end, we provided a concrete example making effective the obtained results.
The authors thank the Basque Government for Grant IT1555-22. This work was supported in part by the Basque Government under Grant IT1555-22.
The authors declare that they have no competing interests.
[1] |
Betancourt O, Narváez A, Roulet M (2005) Small-scale gold mining in the Puyango River basin, southern Ecuador: A study of environmental impacts and human exposures. Ecohealth 2: 323–332. https://doi.org/10.1007/s10393-005-8462-4 doi: 10.1007/s10393-005-8462-4
![]() |
[2] |
Counter SA, Buchanan LH, Ortega F, et al. (2002) Elevated blood mercury and neuro-otological observations in children of the Ecuadorian gold mines. J Toxicol Env Heal A 65: 149–163. https://doi.org/10.1080/152873902753396785 doi: 10.1080/152873902753396785
![]() |
[3] |
Conde M (2017) Resistance to mining. A Review. Ecol Econ 132: 80–90. https://doi.org/10.1016/j.ecolecon.2016.08.025 doi: 10.1016/j.ecolecon.2016.08.025
![]() |
[4] |
Hedrick DB, Peacock A, Stephen JR, et al. (2000) Measuring soil microbial community diversity using polar lipid fatty acid and denaturing gradient gel electrophoresis data. J Microbiol Meth 41: 235–248. https://doi.org/10.1016/S0167-7012(00)00157-3 doi: 10.1016/S0167-7012(00)00157-3
![]() |
[5] |
Chamba I, Rosado D, Kalinhoff C, et al. (2017) Erato polymnioides–A novel Hg hyperaccumulator plant in ecuadorian rainforest acid soils with potential of microbe-associated phytoremediation. Chemosphere 188: 633–641. https://doi.org/10.1016/j.chemosphere.2017.08.160 doi: 10.1016/j.chemosphere.2017.08.160
![]() |
[6] |
Jing X, Lu T, Sun F, et al. (2023) Microbial transformation to remediate mercury pollution: Strains isolation and laboratory study. Int J Environ Sci Te 20: 3039–3048. https://doi.org/10.1007/s13762-022-04158-z doi: 10.1007/s13762-022-04158-z
![]() |
[7] |
Kannan SK, Mahadevan S, Krishnamoorthy R (2006) Characterization of a mercury-reducing Bacillus cereus strain isolated from the Pulicat Lake sediments, south east coast of India. Arch Microbiol 185: 202–211. https://doi.org/10.1007/s00203-006-0088-6 doi: 10.1007/s00203-006-0088-6
![]() |
[8] |
Deng S, Zhang X, Zhu Y, et al. (2024) Recent advances in phyto-combined remediation of heavy metal pollution in soil. Biotechnol Adv 72. https://doi.org/10.1016/j.biotechadv.2024.108337 doi: 10.1016/j.biotechadv.2024.108337
![]() |
[9] |
Chen L, Zhang X, Zhang M, et al. (2022) Removal of heavy-metal pollutants by white rot fungi: Mechanisms, achievements, and perspectives. J Clean Prod 354. https://doi.org/10.1016/j.jclepro.2022.131681 doi: 10.1016/j.jclepro.2022.131681
![]() |
[10] |
Purchase MDW, Castillo J, Arias AG, et al. (2024) First insight into the natural biodegradation of cyanide in a gold tailings environment enriched in cyanide compounds. Sci Total Environ 906: 167174. https://doi.org/10.1016/j.scitotenv.2023.167174 doi: 10.1016/j.scitotenv.2023.167174
![]() |
[11] |
Jabbar KA, Akhter G, Gabriel HF, et al. (2020) Anthropogenic effects of coal mining on ecological resources of the Central Indus basin, Pakistan. Int J Env Res Pub He 17: 1255. https://doi.org/10.3390/ijerph17041255 doi: 10.3390/ijerph17041255
![]() |
[12] |
Boerleider RZ, Roeleveld N, Scheepers PTJ (2017) Human biological monitoring of mercury for exposure assessment. AIMS Environ Sci 4: 251–276. https://doi.org/10.3934/environsci.2017.2.251 doi: 10.3934/environsci.2017.2.251
![]() |
[13] |
Torsvik V, Øvreås L (2002) Microbial diversity and function in soil: from genes to ecosystems. Curr Opin Microbiol 5: 240–245. https://doi.org/10.1016/S1369-5274(02)00324-7 doi: 10.1016/S1369-5274(02)00324-7
![]() |
[14] |
Gao X, Wei M, Zhang X, et al. (2024) Copper removal from aqueous solutions by white rot fungus Pleurotus ostreatus GEMB-PO1 and its potential in co-remediation of copper and organic pollutants. Bioresource Technol 395. https://doi.org/10.1016/j.biortech.2024.130337 doi: 10.1016/j.biortech.2024.130337
![]() |
[15] |
Cao S, Duan M, Zhang X, et al. (2024) Bacterial community structure analysis of sludge from Taozi Lake and isolation of an efficient 17β-Estradiol (E2) degrading strain Sphingobacterium sp. GEMB-CSS-01. Chemosphere 355: 141806. https://doi.org/10.1016/j.chemosphere.2024.141806 doi: 10.1016/j.chemosphere.2024.141806
![]() |
[16] |
Narayanan M, Devarajan N, He Z, et al. (2020) Assessment of microbial diversity and enumeration of metal tolerant autochthonous bacteria from tailings of magnesite and bauxite mines. Mater Today Proc 33: 4391–4401. https://doi.org/10.1016/j.matpr.2020.07.652 doi: 10.1016/j.matpr.2020.07.652
![]() |
[17] |
Mungla G, Facknath S, Lalljee B (2022) Assessing the potential of mechanical aeration combined with bioremediation process in soils and coastal sediments impacted by heavy metals. AIMS Environ Sci 9: 692–707. https://doi.org/10.3934/environsci.2022039 doi: 10.3934/environsci.2022039
![]() |
[18] |
Chen SC, Lin WH, Chien CC, et al. (2018) Development of a two-stage biotransformation system for mercury-contaminated soil remediation. Chemosphere 200: 266–273. https://doi.org/10.1016/j.chemosphere.2018.02.085 doi: 10.1016/j.chemosphere.2018.02.085
![]() |
[19] |
Rodríguez MB, Piedra CAJ, Chiocchetti GDME, et al. (2016) The use of Saccharomyces cerevisiae for reducing mercury bioaccessibility. Toxicol Lett 258: S159. https://doi.org/10.1016/j.toxlet.2016.06.1604 doi: 10.1016/j.toxlet.2016.06.1604
![]() |
[20] |
Ignatavičius G, Unsal MH, Busher PE, et al. (2022) Geochemistry of mercury in soils and water sediments. AIMS Environ Sci 9: 261–281. https://doi.org/10.3934/environsci.2022019 doi: 10.3934/environsci.2022019
![]() |
[21] |
Rivera AA, Hoyos SG, Buitrón G, et al. (2021) Biological treatment for the degradation of cyanide: A review. J Mater Res Technol 12: 1418–1433. https://doi.org/10.1016/j.jmrt.2021.03.030 doi: 10.1016/j.jmrt.2021.03.030
![]() |
[22] |
Almagro VML, Huertas MJ, Luque MM, et al. (2005) Bacterial degradation of cyanide and its metal complexes under alkaline conditions. Appl Environ Microb 71: 940–947. https://doi.org/10.1128/AEM.71.2.940-947.2005 doi: 10.1128/AEM.71.2.940-947.2005
![]() |
[23] | Standard Practices for Preserving and Transporting Soil Samples, ASTM International (2009) Ingenieía Civil en el Slavador. ASTM Designation D 4220-00, 2009. Available from: https://worldwidestandard.net/wp-content/uploads/2019/07/D-4220.pdf. |
[24] | Ministerio del Ambiente Ecuador (2015) Edición Especial N° 387-Registro Oficial. 387: 17–18. |
[25] | EPA (2004) Method 9045D-soil and waste pH, EPA D.pdf, 2004. Available from: https://www.epa.gov/sites/default/files/2015-12/documents/9045d.pdf. |
[26] | EPA (1996) Method 9050A specific conductance, EPA, 1996. Available from: https://www.epa.gov/sites/default/files/2015-12/documents/9050a.pdf. |
[27] | American public health association (1997) By Authority Of. Available from: https://law.resource.org/pub/us/cfr/ibr/002/apha.method.4500-cn.1992.pdf. |
[28] | Yalkowsky S, He Y, Jain P (2010) Chemical abstracts service registry number (RN), Handbook of Aqueous Solubility Data, 2Eds., CRC Press, 1575–1608. https://doi.org/10.1201/EBK1439802458 |
[29] | Tantray JA, Mansoor S, Wani RFC, et al. (2023) Gram staining of bacteria, Basic Life Sci Methods. https://doi.org/10.1016/B978-0-443-19174-9.00043-X |
[30] | Shields P, Cathcart L (2016) Motility test medium protocol. Am Soc Microbiol 214: 215. |
[31] |
Ki JS, Zhang W, Qian PY (2009) Discovery of marine bacillus species by 16S rRNA and rpoB comparisons and their usefulness for species identification. J Microbiol Meth 77: 48–57. https://doi.org/10.1016/j.mimet.2009.01.003 doi: 10.1016/j.mimet.2009.01.003
![]() |
[32] |
Polo CPL, Lebonguy AA, Boumba AEL, et al. (2022) Bacterial community diversity of a Congolese traditional fermented food, "Pandé", revealed by Illumina MiseqTM Sequencing of 16S rRNA Gene. Open J Appl Sci 12: 387–405. https://doi.org/10.4236/ojapps.2022.123027 doi: 10.4236/ojapps.2022.123027
![]() |
[33] |
Gürtekin G, Aydar E (2023) Quantitative Mineralogy in characterization of historical tailings: A case from the abandoned Balya Pb-Zn mine, Western Turkey. Nat Resour Res 32: 195–212. https://doi.org/10.1007/s11053-022-10128-6 doi: 10.1007/s11053-022-10128-6
![]() |
[34] |
Dinis ML, Fiúza A, Futuro A, et al. (2020) Characterization of a mine legacy site: an approach for environmental management and metals recovery. Environ Sci Pollut R 27: 10103–10114. https://doi.org/10.1007/s11356-019-06987-x doi: 10.1007/s11356-019-06987-x
![]() |
[35] |
Kagambega N, Sam U, Ouedraogo M (2023) Artisanal mining and soil quality in the Sudano-Sahelian climate: Case of the artisanal mining site of Yimiougou in Burkina Faso, West Africa. J Environ Prot 14: 1–15. https://doi.org/10.4236/jep.2023.141001 doi: 10.4236/jep.2023.141001
![]() |
[36] |
Esshaimi M, EI Gharmali A, Berkhis F, et al. (2017) Speciation of heavy metals in the soil and the mining residues, in the zinclead Sidi Bou Othmane abandoned mine in Marrakech area. Linnaeus Eco-Tech 975–985. https://doi.org/10.15626/Eco-Tech.2010.102 doi: 10.15626/Eco-Tech.2010.102
![]() |
[37] |
Nkongolo KK, Spiers G, Beckett P, et al. (2022) Inside old reclaimed mine tailings in Northern Ontario, Canada: A microbial perspective. Ecol Genet Genomics 23: 100118. https://doi.org/10.1016/j.egg.2022.100118 doi: 10.1016/j.egg.2022.100118
![]() |
[38] |
Seney CS, Bridges CC, Aljic S, et al. (2020) Reaction of cyanide with Hg 0-contaminated gold mining tailings produces soluble mercuric cyanide complexes. Chem Res Toxicol 33: 2834–2844. https://doi.org/10.1021/acs.chemrestox.0c00211 doi: 10.1021/acs.chemrestox.0c00211
![]() |
[39] |
Johnson CA (2015) The fate of cyanide in leach wastes at gold mines: An environmental perspective. Appl Geochem 57: 194–205. https://doi.org/10.1016/j.apgeochem.2014.05.023 doi: 10.1016/j.apgeochem.2014.05.023
![]() |
[40] |
Zhang C, Wang X, Jiang S, et al. (2021) Heavy metal pollution caused by cyanide gold leaching: A case study of gold tailings in central China. Environ Sci Pollut R 28: 29231–29240. https://doi.org/10.1007/s11356-021-12728-w doi: 10.1007/s11356-021-12728-w
![]() |
[41] |
Marshall BG, Veiga MM, da Silva HAM, et al. (2020) Cyanide contamination of the Puyango-Tumbes River caused by artisanal gold mining in Portovelo-Zaruma, Ecuador. Curr Env Hlth Rep 7: 303–310. https://doi.org/10.1007/s40572-020-00276-3 doi: 10.1007/s40572-020-00276-3
![]() |
[42] |
Miserendino RA, Bergquist BA, Adler SE, et al. (2013) Challenges to measuring, monitoring, and addressing the cumulative impacts of artisanal and small-scale gold mining in Ecuador. Resour Policy 38: 713–722. https://doi.org/10.1016/j.resourpol.2013.03.007 doi: 10.1016/j.resourpol.2013.03.007
![]() |
[43] |
Yoon S, Kim DM, Yu S, et al. (2023) Metal(loid)-specific sources and distribution mechanisms of riverside soil contamination near an abandoned gold mine in Mongolia. J Hazard Mater 443: 130294. https://doi.org/10.1016/j.jhazmat.2022.130294 doi: 10.1016/j.jhazmat.2022.130294
![]() |
[44] |
Laker MC, Nortjé GP (2020) Review of existing knowledge on subsurface soil compaction in South Africa. Adv Agron 143–197. https://doi.org/10.1016/bs.agron.2020.02.003 doi: 10.1016/bs.agron.2020.02.003
![]() |
[45] |
Rachman RM, Mangidi U, Trihadiningrum Y (2023) Solidification and stabilization of mercury-contaminated tailings in artisanal and small-scale gold mining using tras soil. J Degr Min Lands Manag 10: 4575. https://doi.org/10.15243/jdmlm.2023.104.4575 doi: 10.15243/jdmlm.2023.104.4575
![]() |
[46] |
Requelme MER, Ramos JFF, Angélica RS, et al. (2003) Assessment of Hg-contamination in soils and stream sediments in the mineral district of Nambija, Ecuadorian Amazon (example of an impacted area affected by artisanal gold mining). Appl Geochem 18: 371–381. https://doi.org/10.1016/S0883-2927(02)00088-4 doi: 10.1016/S0883-2927(02)00088-4
![]() |
[47] |
Estévez DR, Jácome GSY, Navarrete H (2023) Non-essential metal contamination in Ecuadorian agricultural production: A critical review. J Food Compos Anal 115: 104932. https://doi.org/10.1016/j.jfca.2022.104932 doi: 10.1016/j.jfca.2022.104932
![]() |
[48] |
Tapia CC, Vasco DC, Galarza AG, et al. (2023) Bioelectricity production from anaerobically treated leachate in microbial fuel cell using Delftia acidovorans spp. AIMS Environ Sci 10: 847–867. https://doi.org/10.3934/environsci.2023046 doi: 10.3934/environsci.2023046
![]() |
[49] |
Mishra S, Lin Z, Pang S, et al. (2021) Biosurfactant is a powerful tool for the bioremediation of heavy metals from contaminated soils. J Hazard Mater 418. https://doi.org/10.1016/j.jhazmat.2021.126253 doi: 10.1016/j.jhazmat.2021.126253
![]() |
[50] |
Mishra S, Chen S, Saratale GD, et al. (2021) Reduction of hexavalent chromium by Microbacterium paraoxydans isolated from tannery wastewater and characterization of its reduced products. J Water Process Eng 39. https://doi.org/10.1016/j.jwpe.2020.101748 doi: 10.1016/j.jwpe.2020.101748
![]() |
[51] |
Blumer C, Haas D (2000) Mechanism, regulation, and ecological role of bacterial cyanide biosynthesis. Arch Microbiol 173: 170–177. https://doi.org/10.1007/s002039900127 doi: 10.1007/s002039900127
![]() |
[52] |
Park JM, Sewell BT, Benedik MJ (2017) Cyanide bioremediation: The potential of engineered nitrilases. Appl Microbiol Biot 101: 3029–3042. https://doi.org/10.1007/s00253-017-8204-x doi: 10.1007/s00253-017-8204-x
![]() |
[53] |
Almagro VML, Cabello P, Sáez LP, et al. (2018) Exploring anaerobic environments for cyanide and cyano-derivatives microbial degradation. Appl Microbiol Biot 102: 1067–1074. https://doi.org/10.1007/s00253-017-8678-6 doi: 10.1007/s00253-017-8678-6
![]() |
[54] |
Mahendran R, Bs S, Thandeeswaran M, et al. (2020) Microbial (Enzymatic) degradation of cyanide to produce pterins as cofactors. Curr Microbiol 77: 578–587. https://doi.org/10.1007/s00284-019-01694-9 doi: 10.1007/s00284-019-01694-9
![]() |
[55] |
Saim AK, Adu PCO, Amankwah RK, et al. (2021) Review of catalytic activities of biosynthesized metallic nanoparticles in wastewater treatment. Environ Technol Rev 10: 111–130. https://doi.org/10.1080/21622515.2021.1893831 doi: 10.1080/21622515.2021.1893831
![]() |
[56] |
Chandrasekaran M, Paramasivan M (2024) Plant growth-promoting bacterial (PGPB) mediated degradation of hazardous pesticides: A review. Int Biodeter Biodegr 190: 105769. https://doi.org/10.1016/j.ibiod.2024.105769 doi: 10.1016/j.ibiod.2024.105769
![]() |
[57] |
Qian J, Li D, Zhan G, et al. (2012) Simultaneous biodegradation of Ni-citrate complexes and removal of nickel from solutions by Pseudomonas alcaliphila. Bioresource Technol 116: 66–73. https://doi.org/10.1016/j.biortech.2012.04.017 doi: 10.1016/j.biortech.2012.04.017
![]() |
[58] |
Majhi K, Let M, Halder U, et al. (2023) Copper adsorption ootentiality of bacillus stercoris GKSM6 and pseudomonas alcaliphila GKSM11 isolated from Singhbhum copper mines. Geomicrobiol J 40: 193–202. https://doi.org/10.1080/01490451.2022.2137603 doi: 10.1080/01490451.2022.2137603
![]() |
[59] |
Mekuto L, Ntwampe SKO, Jackson VA (2015) Biodegradation of free cyanide and subsequent utilisation of biodegradation by-products by Bacillus consortia: Optimisation using response surface methodology. Environ Sci Pollut R 22: 10434–10443. https://doi.org/10.1007/s11356-015-4221-4 doi: 10.1007/s11356-015-4221-4
![]() |
[60] |
Naguib MM, Khairalla AS, El-Gendy AO, et al. (2019) Isolation and characterization of mercury-resistant bacteria from wastewater sources in Egypt. Can J Microbiol 65: 308–321. https://doi.org/10.1139/cjm-2018-0379 doi: 10.1139/cjm-2018-0379
![]() |
[61] |
Matsui K, Yoshinami S, Narita M, et al. (2016) Mercury resistance transposons in Bacilli strains from different geographical regions. FEMS Microbiol Lett 363: fnw013. https://doi.org/10.1093/femsle/fnw013 doi: 10.1093/femsle/fnw013
![]() |
[62] |
Chang CC, Lin LY, Zou XW, et al. (2015) Structural basis of the mercury(II)-mediated conformational switching of the dual-function transcriptional regulator MerR. Nucleic Acids Res 43: 7612–7623. https://doi.org/10.1093/nar/gkv681 doi: 10.1093/nar/gkv681
![]() |
[63] |
Sone Y, Uraguchi S, Takanezawa Y, et al. (2017) Cysteine and histidine residues are involved in Escherichia coli Tn21 MerE methylmercury transport. FEBS Open Bio 7: 1994–1999. https://doi.org/10.1002/2211-5463.12341 doi: 10.1002/2211-5463.12341
![]() |
[64] |
Wahba HM, Lecoq L, Stevenson M, et al. (2016) Structural and biochemical characterization of a copper-binding mutant of the organomercurial lyase MerB: Insight into the key role of the active site aspartic acid in Hg-Carbon bond cleavage and metal binding specificity. Biochemistry 55: 1070–1081. https://doi.org/10.1021/acs.biochem.5b01298 doi: 10.1021/acs.biochem.5b01298
![]() |
[65] |
Gä tjens DR, Schweizer PF, Jiménez KR, et al. (2022) Methylotrophs and hydrocarbon-degrading bacteria are key players in the microbial community of an abandoned century-old oil exploration well. Microb Ecol 83: 83–99. https://doi.org/10.1007/s00248-021-01748-1 doi: 10.1007/s00248-021-01748-1
![]() |
[66] |
Pandit B, Moin A, Mondal A, et al. (2023) Characterization of a biofilm-forming, amylase-producing, and heavy-metal-bioremediating strain Micrococcus sp. BirBP01 isolated from oligotrophic subsurface lateritic soil. Arch Microbiol 205: 351. https://doi.org/10.1007/s00203-023-03690-x doi: 10.1007/s00203-023-03690-x
![]() |
[67] |
Mishra S, Lin Z, Pang S, et al. (2021) Recent advanced technologies for the characterization of xenobiotic-degrading microorganisms and microbial communities. Front Bioeng Biotech 9. https://doi.org/10.3389/fbioe.2021.632059 doi: 10.3389/fbioe.2021.632059
![]() |
1. | Hasanen A. Hammad, Hassen Aydi, Manuel De la Sen, The existence and stability results of multi-order boundary value problems involving Riemann-Liouville fractional operators, 2023, 8, 2473-6988, 11325, 10.3934/math.2023574 | |
2. | Hasanen A Hammad, Hassen Aydi, Doha A Kattan, Integro-differential equations implicated with Caputo-Hadamard derivatives under nonlocal boundary constraints, 2024, 99, 0031-8949, 025207, 10.1088/1402-4896/ad185b | |
3. | Hasanen A. Hammad, Manuel De la Sen, Existence of a mild solution and approximate controllability for fractional random integro-differential inclusions with non-instantaneous impulses, 2025, 111, 11100168, 306, 10.1016/j.aej.2024.10.017 | |
4. | Feryal Aladsani, Ahmed Gamal Ibrahim, Existence and Stability of Solutions for p-Proportional ω-Weighted κ-Hilfer Fractional Differential Inclusions in the Presence of Non-Instantaneous Impulses in Banach Spaces, 2024, 8, 2504-3110, 475, 10.3390/fractalfract8080475 | |
5. | Kaihong Zhao, Juqing Liu, Xiaojun Lv, A Unified Approach to Solvability and Stability of Multipoint BVPs for Langevin and Sturm–Liouville Equations with CH–Fractional Derivatives and Impulses via Coincidence Theory, 2024, 8, 2504-3110, 111, 10.3390/fractalfract8020111 | |
6. | Hasanen A. Hammad, Najla M. Aloraini, Mahmoud Abdel-Aty, Existence and stability results for delay fractional deferential equations with applications, 2024, 92, 11100168, 185, 10.1016/j.aej.2024.02.060 | |
7. | Hasanen A. Hammad, Maryam G. Alshehri, Application of the Mittag-Leffler kernel in stochastic differential systems for approximating the controllability of nonlocal fractional derivatives, 2024, 182, 09600779, 114775, 10.1016/j.chaos.2024.114775 | |
8. | Doha A. Kattan, Hasanen A. Hammad, Solving fractional integro-differential equations with delay and relaxation impulsive terms by fixed point techniques, 2024, 2024, 1687-2770, 10.1186/s13661-024-01957-w | |
9. | Hasanen A. Hammad, Saleh Fahad Aljurbua, Solving Fractional Random Differential Equations by Using Fixed Point Methodologies under Mild Boundary Conditions, 2024, 8, 2504-3110, 384, 10.3390/fractalfract8070384 | |
10. | Murugesan Manigandan, Kannan Manikandan, Hasanen A. Hammad, Manuel De la Sen, Applying fixed point techniques to solve fractional differential inclusions under new boundary conditions, 2024, 9, 2473-6988, 15505, 10.3934/math.2024750 | |
11. | Hasanen A. Hammad, Hassen Aydi, Mohra Zayed, On the qualitative evaluation of the variable-order coupled boundary value problems with a fractional delay, 2023, 2023, 1029-242X, 10.1186/s13660-023-03018-9 | |
12. | Maryam G. Alshehri, Hassen Aydi, Hasanen A. Hammad, Solving delay integro-differential inclusions with applications, 2024, 9, 2473-6988, 16313, 10.3934/math.2024790 | |
13. | Hasanen A. Hammad, Hüseyin Işık, Hassen Aydi, Manuel De la Sen, Involvement of three successive fractional derivatives in a system of pantograph equations and studying the existence solution and MLU stability, 2024, 57, 2391-4661, 10.1515/dema-2024-0035 | |
14. | Hasanen A. Hammad, Hassen Aydi, Manuel De la Sen, Refined stability of the additive, quartic and sextic functional equations with counter-examples, 2023, 8, 2473-6988, 14399, 10.3934/math.2023736 | |
15. | Hasanen A. Hammad, Montasir Qasymeh, Mahmoud Abdel-Aty, Existence and stability results for a Langevin system with Caputo–Hadamard fractional operators, 2024, 21, 0219-8878, 10.1142/S0219887824502189 | |
16. | Muath Awadalla, Manigandan Murugesan, Manikandan Kannan, Jihan Alahmadi, Feryal AlAdsani, Utilizing Schaefer's fixed point theorem in nonlinear Caputo sequential fractional differential equation systems, 2024, 9, 2473-6988, 14130, 10.3934/math.2024687 | |
17. | Hamza Khalil, Akbar Zada, Mohamed Rhaima, Ioan-Lucian Popa, Analysis of Neutral Implicit Stochastic Hilfer Fractional Differential Equation Involving Lévy Noise with Retarded and Advanced Arguments, 2024, 12, 2227-7390, 3406, 10.3390/math12213406 | |
18. | Hasanen A. Hammad, Mohammed E. Dafaalla, Kottakkaran Sooppy Nisar, A Grammian matrix and controllability study of fractional delay integro-differential Langevin systems, 2024, 9, 2473-6988, 15469, 10.3934/math.2024748 | |
19. | Hasanen A. Hammad, Hassen Aydi, Doha A. Kattan, Hybrid interpolative mappings for solving fractional Navier–Stokes and functional differential equations, 2023, 2023, 1687-2770, 10.1186/s13661-023-01807-1 | |
20. | Hasanen A. Hammad, Hassen Aydi, Maryam G. Alshehri, Solving hybrid functional-fractional equations originating in biological population dynamics with an effect on infectious diseases, 2024, 9, 2473-6988, 14574, 10.3934/math.2024709 | |
21. | Doha A. Kattan, Hasanen A. Hammad, Existence and Stability Results for Piecewise Caputo–Fabrizio Fractional Differential Equations with Mixed Delays, 2023, 7, 2504-3110, 644, 10.3390/fractalfract7090644 | |
22. | Doha A. Kattan, Hasanen A. Hammad, Advanced fixed point techniques for solving fractional p−Laplacian boundary value problems with impulsive effects, 2025, 16, 20904479, 103254, 10.1016/j.asej.2024.103254 | |
23. | Wedad Albalawi, Muhammad Imran Liaqat, Kottakkaran Sooppy Nisar, Abdel-Haleem Abdel-Aty, Qualitative study of Caputo Erdélyi-Kober stochastic fractional delay differential equations, 2025, 10, 2473-6988, 8277, 10.3934/math.2025381 | |
24. | Gunaseelan Mani, Vasu Lakshmanan, Abdul Razak Kachu Mohideen, Homan Emadifar, Patricia J. Y. Wong, Existence and Uniqueness Results for the Coupled Pantograph System With Caputo Fractional Operator and Hadamard Integral, 2025, 2025, 1687-9643, 10.1155/ijde/1202608 |