Processing math: 29%
Research article

Hydro-meteorological drought in Addis Ababa: A characterization study

  • Received: 28 December 2020 Accepted: 05 April 2021 Published: 20 April 2021
  • Drought is one of the most natural hazards that cause damage to ecosystems, agricultural production, and water resources. This study has analyzed seasonal and annual rainfall trends using monthly data series of 33 years (1983–2015) in Addis Ababa city over three stations namely; Sendafa, Bole, and Observation. Here, we examined the occurrence of historical drought trends in the study jurisdiction. The Reconnaissance Drought Index (RDI) and the Standardized Precipitation Index (SPI) were employed to find long-term drought trends as well as to examine the occurrence of drought history at a longer duration. The analysis indicated that severe drought conditions were observed for SPI and RDI indices in the year 2013 for Bole station, while medium droughts were recorded for the years 1991 and 2002 for all stations. Similarly, the RDI indices for 1996 was recorded as severe drought for the Observatory station. On the other hand, higher variability (coefficient of variation) of rainfall during winter seasons were 95.8%, 95.9%, and 77.9% for Sendafa, Bole, and Observatory stations respectively. However, the lower coefficient of variation during annual rainfall was 15.59% for Sendafa, 14.38% for Bole, and 13.98% for the Observatory station. Furthermore, the drought severity classification for the long-term drought analysis of annual precipitation shows that 3% of severe drought, 12% of moderate drought, and 85% of the normal condition were recorded in Bole station. The severe and moderate drought indices due to the reduction of rainfall, temperature change, and other factors can cause a shortage of urban water supply. Thus, the results of this study will help the water sector professionals in forecasting weather variations and for better management of urban water resources.

    Citation: Zinabu A. Alemu, Emmanuel C. Dioha, Michael O. Dioha. Hydro-meteorological drought in Addis Ababa: A characterization study[J]. AIMS Environmental Science, 2021, 8(2): 148-168. doi: 10.3934/environsci.2021011

    Related Papers:

    [1] Zohreh Heydarpour, Maryam Naderi Parizi, Rahimeh Ghorbnian, Mehran Ghaderi, Shahram Rezapour, Amir Mosavi . A study on a special case of the Sturm-Liouville equation using the Mittag-Leffler function and a new type of contraction. AIMS Mathematics, 2022, 7(10): 18253-18279. doi: 10.3934/math.20221004
    [2] Weerawat Sudsutad, Chatthai Thaiprayoon, Aphirak Aphithana, Jutarat Kongson, Weerapan Sae-dan . Qualitative results and numerical approximations of the (k,ψ)-Caputo proportional fractional differential equations and applications to blood alcohol levels model. AIMS Mathematics, 2024, 9(12): 34013-34041. doi: 10.3934/math.20241622
    [3] Ridha Dida, Hamid Boulares, Bahaaeldin Abdalla, Manar A. Alqudah, Thabet Abdeljawad . On positive solutions of fractional pantograph equations within function-dependent kernel Caputo derivatives. AIMS Mathematics, 2023, 8(10): 23032-23045. doi: 10.3934/math.20231172
    [4] Weerawat Sudsutad, Sotiris K. Ntouyas, Chatthai Thaiprayoon . Nonlocal coupled system for ψ-Hilfer fractional order Langevin equations. AIMS Mathematics, 2021, 6(9): 9731-9756. doi: 10.3934/math.2021566
    [5] Iyad Suwan, Mohammed S. Abdo, Thabet Abdeljawad, Mohammed M. Matar, Abdellatif Boutiara, Mohammed A. Almalahi . Existence theorems for Ψ-fractional hybrid systems with periodic boundary conditions. AIMS Mathematics, 2022, 7(1): 171-186. doi: 10.3934/math.2022010
    [6] Jehad Alzabut, Yassine Adjabi, Weerawat Sudsutad, Mutti-Ur Rehman . New generalizations for Gronwall type inequalities involving a ψ-fractional operator and their applications. AIMS Mathematics, 2021, 6(5): 5053-5077. doi: 10.3934/math.2021299
    [7] Tamer Nabil . Ulam stabilities of nonlinear coupled system of fractional differential equations including generalized Caputo fractional derivative. AIMS Mathematics, 2021, 6(5): 5088-5105. doi: 10.3934/math.2021301
    [8] Abdelatif Boutiara, Mohammed S. Abdo, Manar A. Alqudah, Thabet Abdeljawad . On a class of Langevin equations in the frame of Caputo function-dependent-kernel fractional derivatives with antiperiodic boundary conditions. AIMS Mathematics, 2021, 6(6): 5518-5534. doi: 10.3934/math.2021327
    [9] Dinghong Jiang, Chuanzhi Bai . On coupled Gronwall inequalities involving a ψ-fractional integral operator with its applications. AIMS Mathematics, 2022, 7(5): 7728-7741. doi: 10.3934/math.2022434
    [10] Deepak B. Pachpatte . On some ψ Caputo fractional Čebyšev like inequalities for functions of two and three variables. AIMS Mathematics, 2020, 5(3): 2244-2260. doi: 10.3934/math.2020148
  • Drought is one of the most natural hazards that cause damage to ecosystems, agricultural production, and water resources. This study has analyzed seasonal and annual rainfall trends using monthly data series of 33 years (1983–2015) in Addis Ababa city over three stations namely; Sendafa, Bole, and Observation. Here, we examined the occurrence of historical drought trends in the study jurisdiction. The Reconnaissance Drought Index (RDI) and the Standardized Precipitation Index (SPI) were employed to find long-term drought trends as well as to examine the occurrence of drought history at a longer duration. The analysis indicated that severe drought conditions were observed for SPI and RDI indices in the year 2013 for Bole station, while medium droughts were recorded for the years 1991 and 2002 for all stations. Similarly, the RDI indices for 1996 was recorded as severe drought for the Observatory station. On the other hand, higher variability (coefficient of variation) of rainfall during winter seasons were 95.8%, 95.9%, and 77.9% for Sendafa, Bole, and Observatory stations respectively. However, the lower coefficient of variation during annual rainfall was 15.59% for Sendafa, 14.38% for Bole, and 13.98% for the Observatory station. Furthermore, the drought severity classification for the long-term drought analysis of annual precipitation shows that 3% of severe drought, 12% of moderate drought, and 85% of the normal condition were recorded in Bole station. The severe and moderate drought indices due to the reduction of rainfall, temperature change, and other factors can cause a shortage of urban water supply. Thus, the results of this study will help the water sector professionals in forecasting weather variations and for better management of urban water resources.



    Lately, fractional calculus has played a very significant role in various scientific fields; see for instance [1,2] and the references cited therein. As a result of this, fractional differential equations have caught the attention of many investigators working in different desciplines [3,4,5,6,7,8,9,10,11]. However, most of researchers works have been conducted by using fractional derivatives that mainly rely on Riemann-Liouville, Hadamard, Katugampola, Grunwald Letnikov and Caputo approaches.

    Fractional derivatives of a function with respect to another function have been considered in the classical monographs [1,12] as a generalization of Riemann-Liouville derivative. This fractional derivative is different from the other classical fractional derivative as the kernel appears in terms of another function ψ. Thus, this type of derivative is referred to as ψ-fractional derivative. Recently, this derivative has been reconsidered by Almeida in [14] where the Caputo-type regularization of the existing definition and some interesting properties are provided. Several properties of this operator could be found in [1,12,13,15,16]. For some particular cases of ψ, one can realize that ψ-fractional derivative can be reduced to the Caputo fractional derivative [1], the Caputo-Hadamard fractional derivative [17] and the Caputo-Erdélyi-Kober fractional derivative [18].

    On the other hand, the investigation of qualitative properties of solutions for different fractional differential (and integral) equations is the key theme of applied mathematics research. Numerous interesting results concerning the existence, uniqueness, multiplicity, and stability of solutions or positive solutions by applying some fixed point techniques are obtained. However, most of the proposed problems have been handled concerning the classical fractional derivatives of the Riemann-Liouville and Caputo [19,20,21,22,23,24,25,26,27,28,29].

    In parallel with the intensive investigation of fractional derivative, a normal generalization of the Langevin differential equation appears to be replacing the classical derivative by a fractional derivative to produce fractional Langevin equation (FLE). FLE was first introduced in [30] and then different types of FLE were the object of many scholars [31,32,33,34,35,36,37,38,39,40]. In particular, the authors studied a nonlinear FLE involving two fractional orders on different intervals with three-point boundary conditions in [40], whereas FLE involving a Hadamard derivative type was considered in [33,34,35].

    Alternatively, the stability problem of differential equations was discussed by Ulam in [41]. Thereafter, Hyers in [42] developed the concept of Ulam stability in the case of Banach spaces. Rassias provided a fabulous generalization of the Ulam-Hyers stability of mappings by taking into account variables. His approach was refered to as Ulam-Hyers-Rassias stability [43]. Recently, the Ulam stability problem of implicit differential equations was extended into fractional implicit differential equations by some authors [44,45,46,47]. A series of papers was devoted to the investigation of existence, uniqueness and U-H stability of solutions of the FLE within different kinds of fractional derivatives.

    Motivated by the recent developments on ψ-fractional calculus, in the present work, we investigate the existence, uniqueness and stability in the sense Ulam–Hyers–Rassias of solutions for the following FLE within ψ-Caputo fractional derivatives of different orders involving nonlocal boundary conditions

    {(cDα,ψa+,t)(cDβ,ψa+,t+λ)[u]=F(t,u(t),cDγ,ψa+,t[u]),t(a,T),u(a)=0,u(η)=0,u(T)=μ(Jγ,ψa+,ξ)[u],μ>0, (1.1)

    where (Jγ,ψa+,ξ) and (cDθ,ψa+,t) are ψ-fractional integral of order γ,  ψ-Caputo fractional derivative of order θ{α,β,γ} respectively, 0a<η<ξ<T<, 1<α2, 0<γ<β1,λ is a real number and F:[a,T]×R×R R+ is a continuous function. We observe that problem (1.1) is designated within a general platform in the sense that general fractional derivative is considered with respect to different fractional orders, the forcing function depends on the general fractional derivative and boundary conditions involve integral fractional operators. Furthermore, the stability analysis in the sense of Ulam is investigated by the help of new versions of ψ-fractional Gronwall inequality and ψ-fractional integration by parts. It is worth mentioning here that the proposed results in this paper which rely on ψ-fractional integrals and derivatives can generalize the existing results in the literature [31,40] and obtain them as particular cases.

    The major contributions of the work are as follows: Some lemmas and definitions on ψ-fractional calculus theory are recalled in Section 2. In Section 3, we prove the existence and uniqueness of solutions for problem (1.1) via applying fixed point theorems. Section 4 devotes to discuss different types of stability results for the problem (1.1) by the help of generalized ψ-Gronwall's inequality [49] and ψ-fractional integration by parts. The proposed results are examined via Maple using several numerical examples for different values of function ψ, presented in several tables in Section 5, to check the applicability of the theoretical findings. We end the paper by a conclusion in Section 6.

    The standard Riemann-Liouville fractional integral of order α, (α)>0, has the form

    (Jαa+,t)[u]=1Γ(α)ta(tτ)α1u(τ)dτ, t>a.

    The left-sided factional integrals and fractional derivatives of a function u with respect to another function ψ in the sense of Riemann-Liouville are defined as follows [13,14]

    (Jα,ψa+,t)[u]=1Γ(α)taψ(τ)(ψ(t)ψ(τ))α1u(τ)dτ,

    and

    (Dα,ψa+,t)[u]=(1ψ(t)ddt)n(Jnα,ψa+,t)[u],

    respectively, where n=[α]+1.

    Analogous formulas can be offered for the right fractional (integral and derivative) as follows:

    (Jα,ψt,b)[u]=1Γ(α)btψ(τ)(ψ(τ)ψ(t))α1u(τ)dτ,

    and

    (Dα,ψt,b)[u]=(1ψ(t)ddt)n(Jnα,ψt,b)[u].

    The left (right) ψ-Caputo fractional derivatives of u of order α are given by

    (cDα,ψa+,t)[u]=(Jnα,ψa+,t)(1ψ(t)ddt)n[u]

    and

    (cDα,ψt,b)[u]=(Jnα,ψt,b)(1ψ(t)ddt)n[u],

    respectively. In particular, when α(0,1), we have

    (cDα,ψa+,t)[u]=(J1α,ψa+,t)(1ψ(t)ddt)[u]

    and

    (cDα,ψt,b)[u]=(J1α,ψt,b)(1ψ(t)ddt)[u],

    where u,ψCn[a,b] two functions such that ψ is increasing and ψ(t)0, for all t[a,b].

    Remark 2.1. We propose the remarkable paper [16] in which some generalizations using ψ-fractional integrals and derivatives are described. In particular, we have

    {if  ψ(t)t,  then Jα,ψa+,tJαa+,t,  if  ψ(t)lnt,  then Jα,ψa+,tHJαa+,t,  if  ψ(t)tρ,  then, Jα,ψa+,tρJαa+,t, ρ>0, 

    where Jαa+,t,HJαa+,t,ρJαa+,t are classical Riemann-Liouville, Hadamard, and Katugampola fractional operators.

    Lemma 2.2. [14] Given uC([a,b]) and vCn([a,b]), we have that for all α>0

    bav(τ)(cDα,ψa+,τ)[u]dτ=bau(τ)(cDα,ψτ,b)[vψ]ddτψ(τ) dτ+n1k=0(1ψ(t)ddt)k(Jnα,ψτ,b)[vψ]u[nk1]ψ(τ)|τ=bτ=a,

    where

    u[k]ψ(t)=(1ψ(t)ddt)ku(t).

    Lemma 2.3. [1] Let α>0 and u, ψC([a,b]). Then

    Jα,ψa+,t[u]CKψuC, Kψ=1Γ(1+α)(ψ(b)ψ(a))α.

    For all n1<α<n,

    cDα,ψa+,t[u]CKψuC[n]ψ, Kψ=1Γ(n+1α)(ψ(b)ψ(a))nα

    where ||||C is the Chebyshev norm defined on C([a,b]).

    The following results are well known and one can see [1,14] for further details.

    Lemma 2.4. [1] Let α,β>0, consider the functions

    (Jα,ψa+,t)[(ψ(τ)ψ(a))β1]=Γ(β)Γ(α+β)(ψ(t)ψ(a))α+β1,
    (Jα,ψa+,t)[1]=1Γ(1+α)(ψ(t)ψ(a))α

    and

    (cDα,ψa+,t)[(ψ(τ)ψ(a))β1]=Γ(β)Γ(βα)(ψ(t)ψ(a))βα1,
    (cDα,ψa+,t)[1]=1Γ(1α)(ψ(t)ψ(a))α,α>0.

    Note that

    (cDα,ψa+,t)[(ψ(τ)ψ(a))k]=0, k=0,..,n1.

    The subsequent properties are valid: If α,β>0, then

    (Jα,ψa+,t)(Jβ,ψa+,t)[u]=(Jα+β,ψa+,t)[u]and (cDα,ψa+,t)(cDβ,ψa+,t)[u]=(cDα+β,ψa+,t)[u],
    (cDα,ψa+,t)(Jβ,ψa+,t)[u]=(Jβα,ψa+,t)[u]. (2.1)

    Lemma 2.5. [1] Given a function uCn[a,b] and α>0, we have

    Jα,ψa+,t(cDα,ψa+,t)[u]=u(t)n1j=0[1j!(1ψ(t)ddt)ju(a)](ψ(t)ψ(a))j.

    In particular, given α(0,1), we have

    Jα,ψa+,t(cDα,ψa+,t)[u]=u(t)u(a).

    Lemma 2.6. Given a function uCn[a,b] and 1>α>0, we have

    (Jα,ψa+,t2)[u](Jα,ψa+,t1)[u]2uΓ(α+1)(ψ(t2)ψ(t1))α.

    Proof. Using Lemmas 2.3 and 2.4, we have

    |(Jα,ψa+,t2)[u](Jα,ψa+,t1)[u]|=1Γ(α)|t2aψ(τ)[(ψ(t2)ψ(τ))α1(ψ(t1)ψ(τ))α1]u(τ)dτ|+1Γ(α)|t2t1ψ(τ)(ψ(t2)ψ(τ))α1u(τ)dτ|uΓ(α+1)[(ψ(t2)ψ(t1))α+(ψ(t1)ψ(a))α(ψ(t2)ψ(a))α]+uΓ(α+1)(ψ(t2)ψ(t1))α2uΓ(α+1)(ψ(t2)ψ(t1))α.

    Now we state here two important fixed point theorems, namely Banach and Krasnoselskii's fixed point theorems. These will help us to develop sufficient conditions for the existence and uniqueness of solutions.

    Theorem 2.7. [48] Let Br be the closed ball of radius r>0, centred at zero, in a Banach space X with Υ:BrX a contraction and Υ( Br)Br. Then, Υ has a unique fixed point in Br.

    Theorem 2.8. [48] Let M be a closed, convex, non-empty subset of a Banach space X×X. Suppose that E and  F map M into X and that

    (i) Eu+FvM for all u,vM;

    (ii) E is compact and continuous;

    (iii) F is a contraction mapping.

    Then the operator equation Ew+Fw=w has at least one solution on M.

    Definition 2.9. The problem (1.1) is U-H stable if there exists a real number cf>0 such that for each ϵ>0 and for each solution ˜uC([a,T]) of the inequality

    |(cDα,ψa+,t)(cDβ,ψa+,t+λ)[˜u]F(t,u(t),cDγ,ψa+,t[˜u])|ϵ, t[a,T], (2.2)

    there exists a solution uC[a,T] of the problem (1.1) with

    |˜u(t)u(t)|ϵcf.

    Definition 2.10. The problem (1.1) is generalized U-H stable if there exists Φ(t)C(R+,R+), Φ(0)=0 such that for each ϵ>0 and for each solution ˜uC[a,T] of inequality (2.2), there exists a solution uC[a,T] of problem (1.1) with

    |˜u(t)u(t)|Φ(ϵ), t[a,T],

    where Φ(ϵ) is only dependent on ϵ.

    Definition 2.11. The problem (1.1) is U-H-R stable if there exists a real number cf>0 such that for each ϵ>0 and for each solution ˜uC[a,T] of the inequality

    |(cDα,ψa+,t)(cDβ,ψa+,t+λ)[˜u]F(t,u(t),cDγ,ψa+,t[˜u])|ϵΦ(t), t[a,T],

    there exists a solution uC[a,T] of the problem (1.1) with

    |˜u(t)u(t)|ϵcfΦ(t).

    Definition 2.12. The problem (1.1) is generalized U-H-R stable with respect to Φ if there exists cf>0 such that for each solution ˜uC[a,T] of the inequality

    |cDα,ψa+,t(cDβ,ψa+,t+λ)[u]F(t,u(t),cDγ,ψa+,t[u])|Φ(t), t[a,T],

    there exists a solution uC[a,T] of the problem (1.1) with

    |˜u(t)u(t)|cfΦ(t).

    We adopt the following conventions:

    Fu(t)=F(t,u(t),cDγ,ψa+,t[u]) andK(t;a)=ψ(t)ψ(a).

    We remark that, the following generalized ψ-Gronwall Lemma is an important tool in proving the main results of this paper.

    Lemma 2.13. [49] Let u,v be two integrable functions on [a,b]. Let ψC1[a,b] be an increasing function such that ψ(t)0, t[a,b]. Assume that

    (i) u and v are nonnegative;

    (ii) The functions (gi)i=1n are bounded and monotonic increasing functions on [a,b];

    (iii) The constants αi>0 (i=1,2,,n). If

    u(t)v(t)+ni=1gi(t)taψ(τ)(K(t;τ))αi1u(τ)dτ,

    then

    u(t)v(t)+k=1(n1,2,3,,k=1ki=1(gi(t)Γ(αi))Γ(ki=1αi)ta[ψ(τ)(K(t;τ))ki=1αi1]v(τ) dτ).

    Remark 2.14. [49] For n=2 in the hypotheses of Lemma 2.13. Let v(t) be a nondecreasing function for at<T. Then we have

    u(t)v(t)[Eα1(g1(t)Γ(α1)(K(t;a))α1)+Eα2(g2(t)Γ(α2)(K(t;a))α2)],

    where Eαi(i=1,2) is the Mittag-Leffler function defined below.

    Definition 2.15. [50] The Mittag-Leffler function is given by the series

    Eα(z)=k=0zkΓ(αk+1), (2.3)

    where (α)>0 and Γ(z) is a Gamma function. In particular, if α=1/2 in (2.3) we have

    E1/2(z)=exp(z2)[1+erf(z)],

    where erf(z) is the error function.

    In the remaining portion of the paper, we make use of the next suppositions:

    (A1) For each t[a,T], there exist a constant Li>0 (i=1,2) such that

    |F(t,u1,v1)F(t,u2,v2)|L1|u1v2|+L2|u1v2|,forallui,viR.

    (A2) There exists an increasing function χ(t)(C[a,T],R+), for any t[a,T],

    |F(t,u,v)|χ(t),u,vR.

    (A3) There exist a constant L>0 such that

    |F(t,u,v)|L,foranyt[a,T],u,vR.

    (A4) There exists an function Φ(t)(C[a,T],R+) and there exists lα,ψ>0 such that for any t[a,T],

    (Jα,ψa+,t)[Φ]lα,ψΦ(t), α>0.

    Denoting

    σ11=(Jβ,ψa+,η)[1]and σ12=(Jβ,ψa+,η)[K(τ;a)],

    and

    σ21=(Jβ,ψa+,T)[1]μ(Jβ+γ,ψa+,ξ)[1]and σ22=((Jβ,ψa+,T)[K(τ;a)]μ(Jβ+γ,ψa+,ξ)[K(τ;a)]).

    Further, we assume

    |σ11σ22σ21σ12|0,

    where σij are constants.

    In order to study the nonlinear FLE (1.1), we first consider the linear associated FLE and conclude the form of the solution.

    The following lemma regards a linear variant of problem

    {(cDα,ψa+,t)(cDβ,ψa+,t+λ)[u]=F(t),t(a,T),u(a)=0,u(η)=0,u(T)=μ(Jγ,ψa+,ξ)[u],a<η<ξ<T, (3.1)

    where FC([a,T],R).

    Lemma 3.1. The unique solution of the ψ-Caputo linear problem (3.1) is given by the integral equation

    u(t)=λ(Jβ,ψa+,t)[u]+(Jα+β,ψa+,t)[F]+(K(t;a))β(K(t;η)Γ(β+2)Δ{(Jα+β,ψa+,T)[F]λ(Jβ,ψa+,T)[u]μ(Jα+β+γ,ψa+,ξ)[F]+μλ(Jβ+γ,ψa+,ξ)[u]}(K(t;a))βΔ(K(η;a))β((K(T;a))β(K(T;t))Γ(β+2)μ(K(ξ;a))β+γ[(β+1)(K(ξ;t))γ(K(t;a))]Γ(β+γ+2)(β+1))×{(Jα+β,ψa+,η)[F]λ(Jβ,ψa+,η)[u]}, (3.2)

    where

    Δ=[(K(T;a))βK(T;η)Γ(β+2)μ(K(ξ;a))β+γ[(β+1)K(ξ;η)γK(η;a)]Γ(β+γ+2)(β+1)]0. (3.3)

    Proof. Applying (Jα,ψa+,t) on both sides of (3.1-a), we have

    (cDβ,ψa+,t+λ)[u]=(Jα,ψa+,t)[F]+c1+c2(ψ(t)ψ(a)), (3.4)

    for c1,c2R.

    Now applying (Jβ,ψa+,t) to both sides of (3.4), we get

    u(t)=λ(Jβ,ψa+,t)[u]+(Jα+β,ψa+,t)[F]+c1(Jβ,ψa+,t)[1]+c2(Jβ,ψa+,t)[K(τ;a)]+c3,

    where c3R.

    Using the boundary conditions in (3.1-b), we obtain c3:=c3(F)=0 and

    Jδ,ψa+,t[u]=λ(Jβ+δ,ψa+,t)[u]+(Jα+β+δ,ψa+,t)[F]+c1(Jβ+δ,ψa+,t)[1]+c2(Jβ+δ,ψa+,t)[K(τ;a)]. (3.5)

    Further, we get a system of linear equations with respect to c1, c2 as follows

    (σ11σ12σ21σ22)(c1c2)=(b1b2),

    where

    b1=λ(Jβ,ψa+,η)[u](Jα+β,ψa+,η)[F]

    and

    b2=λ((Jβ,ψa+,T)[u]μ(Jβ+δ,ψa+,ξ)[u])((Jα+β,ψa+,T)[F]μ(Jα+β+δ,ψa+,ξ)[F]).

    We note

    Δdet(σ)=|σ11σ22σ21σ12|.

    Because the determinant of coefficients for Δ0. Thus, we have

    c1:=c1(F)=σ22b1σ12b2Δandc2:=c2(F)=σ11b2σ21b1Δ.

    Substituting these values of c1 and c2 in (3.5), we finally obtain (3.2) as

    u(t)=λ(Jβ,ψa+,t)[u]+(Jα+β,ψa+,t)[F]+σ22b1σ12b2Δ(Jβ,ψa+,t)[1]+σ11b2σ21b1Δ(Jβ,ψa+,t)[K(τ;a)]. (3.6)

    That is, the integral equation (3.6) can be written as (3.2) and

    (Jδ,ψa+,t)[u]=λ(Jβ+δ,ψa+,t)[u]+(Jα+β+δ,ψa+,t)[F]+σ22b1σ12b2Δ(Jβ+δ,ψa+,t)[1]+σ11b2σ21b1Δ(Jβ+δ,ψa+,t)[K(τ;a)].

    Differentiating the above relations one time we obtain (3.1-a), also it is easy to get that the condition (3.1-b) is satisfied. The proof is complete.

    For convenience, we define the following functions

    d11(t)=1Δ(σ22(Jβ,ψa+,t)[1]σ21(Jβ,ψa+,t)[K(τ;a)]),d21(t)=d11(t) (3.7)

    and

    d12(t)=1Δ(σ12(Jβ,ψa+,t)[1]σ11(Jβ,ψa+,t)[K(τ;a)]),d22(t)=d12(t). (3.8)

    The following result is an immediate consequence of Lemma 3.1.

    Lemma 3.2. Let  λR. Then problem (1.1) is equivalent to the integral equation

    u(t)=λ(Jβ,ψa+,t)[u]+(Jα+β,ψa+,t)[Fu]+ϕu(F), (3.9)

    where

    ϕu(F)=d11(t)(Jα+β,ψa+,η)[Fu]+d12(t)((Jα+β,ψa+,T)[Fu]μ(Jα+β+γ,ψa+,ξ)[Fu])+λd21(t)(Jβ,ψa+,η)[u]λd22(t)((Jβ,ψa+,T)[u]μ(Jβ+γ,ψa+,ξ)[u]) (3.10)

    and dij are defined in (3.7) and (3.8).

    From the expression of (1.1-a) and (3.9), we can see that if all the conditions in Lemmas 3.1 and 3.2 are satisfied, the solution is a C[a,T] solution of the ψ-Caputo fractional boundary value problem (1.1).

    In order to lighten the statement of our result, we adopt the following notation.

    ς11=supt[a,T]|λ(Jβ,ψa+,t)[1]+ρ11+L1((Jα+β,ψa+,t)[1]+ρ12)|, (3.11)
    ς12=L2ς13whereς13=supt[a,T]|(Jα+β,ψa+,t)[1]|+ρ12, (3.12)
    ς21=supt[a,T]|λ(Jβγ,ψa+,t)[1]+ρ21+L1((Jα+βγ,ψa+,t)[1]+ρ22)|, (3.13)
    ς22=L2ς23whereς23=supt[a,T]|(Jα+βγ,ψa+,t)[1]|+ρ22,

    with

    ρ11=|λ|supt[a,T](|d21(t)|(Jβ,ψa+,η)[1]+|d22(t)|((Jβ,ψa+,T)[1]μ(Jβ+γ,ψa+,ξ)[1])), (3.14)
    ρ12=supt[a,T](|d11(t)|(Jα+β,ψa+,η)[1]+|d12(t)|((Jα+β,ψa+,T)[1]μ(Jα+β+γ,ψa+,ξ)[1])), (3.15)
    ρ21=|λ|supt[a,T](|(cDγ,ψa+,t)[d21]|(Jβ,ψa+,η)[1]+|(cDγ,ψa+,t)[d22]|(Jβ,ψa+,T)[1]μ(Jβ+γ,ψa+,ξ)[1]), (3.16)

    and

    ρ22=supt[a,T](|(cDγ,ψa+,t)[d11]|(Jα+β,ψa+,η)[1]+|(cDγ,ψa+,t)[d12]|(Jα+β,ψa+,T)[1]μ(Jα+β+γ,ψa+,ξ)[1]). (3.17)

    We are now in a position to establish the existence and uniqueness results. Fixed point theorems are the main tool to prove this.

    Let C=C([a,T],R) be a Banach space of all continuous functions defined on [a,T] endowed with the usual supremum norm. Define the space

    E={u:uC3([a,T],R), (cDγ,ψa+,t)[u]C}, (3.18)

    equipped with the norm

    uE=max{u,(cDγ,ψa+,t)[u]}.

    Then, we may conclude that (E,.E) is a Banach space.

    To introduce a fixed point problem associated with (3.9) we consider an integral operator Ψ:EE defined by

    (Ψu)(t)=λ(Jβ,ψa+,t)[u]+(Jα+β,ψa+,t)[Fu]+ϕu(F). (3.19)

    Theorem 3.3. Assume that F:[a,T]×R×RR+ is a continuous function that satisfies (A1). If we suppose that

    0<ς=max{ς11,ς12,ς21,ς22}<1, (3.20)

    holds. Then the problem (1.1) has a unique solution on E.

    Proof. The proof will be given in two steps.

    Step 1. The operator Ψ maps bounded sets into bounded sets in E.

    For our purpose, consider a function uE. It is clear that ΨuE. Also by (2.1), (3.10) and (3.19), we have

    (cDδ,ψa+,t)(Ψu)=λ(Jβδ,ψa+,t)[u]+(Jα+βδ,ψa+,t)[Fu]+(cDδ,ψa+,t)[ϕu(F)]. (3.21)

    Indeed, it is sufficient to prove that for any r>0, for each uBr={uE:uEr}, we have ΨuEr.

    Denoting

    L0=supt[a,T]{|F(t,0,0|:t[a,T]}<andLB=L1supt[a,T]|u(t)|+L2supt[a,T]|(cDδ,ψa+,t)[u]|+L0.

    By (A1) we have for each t[a,T]

    |Fu(t)|=|Fu(t)F0(t)+F0(t)||Fu(t)F0(t)|+|F0(t)|LB.

    Firstly, we estimate |ϕu(F)| as follows

    |ϕu(F)|=|λd21(t)(Jβ,ψa+,η)[u]|+|d12(t)((Jα+β,ψa+,T)[|FuF0|+F0]μ(Jα+β+δ,ψa+,ξ)[|FuF0|+F0])|+|λd22(t)((Jβ,ψa+,T)[u]μ(Jβ+δ,ψa+,ξ)[u])|+|d11(t)(Jα+β,ψa+,η)[|FuF0|+F0]|.

    Then

    |ϕu(F)||d11(t)(Jα+β,ψa+,η)[LB]|+|d12(t)((Jα+β,ψa+,T)[LB]μ(Jα+β+δ,ψa+,ξ)[LB])|+|λd21(t)(Jβ,ψa+,η)[u]|+|λd22(t)((Jβ,ψa+,T)[u]μ(Jβ+δ,ψa+,ξ)[u])|.

    Taking the maximum over [a,T], we get

    supt[a,T]|ϕu(F)|ρ11supt[a,T]|u(t)|+ρ12(L1supt[a,T]|u(t)|+L2supt[a,T]|(cDδ,ψa+,t)[u]|+L0), (3.22)

    where ϕu, dij(t) and ρij defined by (3.10), (3.7), (3.8) and (3.14–3.17) respectively. Using (3.19) and (3.22), we obtain

    (Ψu)ς11supt[a,T]|u(t)|+ς12supt[a,T]|(cDδ,ψa+,t)[u]|+ς13L0, (3.23)

    where ςij defined by (3.11) and (3.12). On the other hand

    (cDδ,ψa+,t)[ϕu(F)]=(cDδ,ψa+,t)[d11](Jα+β,ψa+,η)[Fu]+(cDδ,ψa+,t)[d12]((Jα+β,ψa+,T)[Fu]μ(Jα+β+δ,ψa+,ξ)[Fu])+λ(cDδ,ψa+,t)[d21](Jβ,ψa+,η)[u]λ(cDδ,ψa+,t)[d22]((Jβ,ψa+,T)[u]μ(Jβ+δ,ψa+,ξ)[u]).

    Taking the maximum over [a,T], we get

    supt[a,T]|(cDδ,ψa+,t)[ϕu(F)]|ρ21supt[a,T]|u(t)|+ρ22(L1supt[a,T]|u(t)|+L2supt[a,T]|(cDδ,ψa+,t)[u]|+L0). (3.24)

    Using (3.21) and (3.24), we obtain

    (cDδ,ψa+,t)(Ψu)ς21supt[a,T]|u(t)|+ς22supt[a,T]|(cDδ,ψa+,t)[u]|+ς23L0. (3.25)

    Consequently, by (3.23) and (3.25), we have

    (Ψu)EςuE+L0max{ς13,ς23}ςr+(1ς)r=r,

    where ς is defined by (3.20) and choose

    r>L0max{ς13,ς23}(1ς), 0<ς<1.

    The continuity of the functional Fu would imply the continuity of (Ψu) and (cDδ,ψa+,t)(Ψu) Hence, Ψ maps bounded sets into bounded sets in E.

    Step 2.Now we show that Ψ is a contraction. By (A1) and (3.19), for u,vE and t[a,T], we have

    |(Ψu)(t)(Ψv)(t)||λ||(Jβ,ψa+,t)[uv]|+|(Jα+β,ψa+,t)[FuFv]|+|ϕu(F)ϕv(F)|,

    where

    |(Jα+β,ψa+,t)[FuFv]||(Jα+β,ψa+,t)[1]|(L1|uv|+L2|(cDδ,ψa+,t)[uv]|)

    and

    ϕu(F)ϕv(F)=d11(t)(Jα+β,ψa+,η)[FuFv]+d12(t)((Jα+β,ψa+,T)[FuFv]μ(Jα+β+δ,ψa+,ξ)[FuFv])+λd21(t)(Jβ,ψa+,η)[uv]λd22(t)((Jβ,ψa+,T)[uv]μ(Jβ+δ,ψa+,ξ)[uv]),

    for all t[a,T], which implies

    |ϕu(F)ϕv(F)|(ρ11+L1ρ12)supt[a,T]|u(t)v(t)|+ρ12L2supt[a,T]|(cDδ,ψa+,t)[uv]|.

    Hence, we get

    |(Ψu)(t)(Ψv)(t)||λ||supt[a,T](Jβ,ψa+,t)[1]|supt[a,T]|u(t)v(t)|+supt[a,T]|(Jα+β,ψa+,t)[1]|(L1supt[a,T]|u(t)v(t)|+L2supt[a,T]|(cDδ,ψa+,t)[uv]|)+supt[a,T]|ϕu(F)ϕv(F)|.      

    Consequently,

    (Ψu)(Ψv)ς11supt[a,T]|u(t)v(t)|+ς12supt[a,T]|(cDδ,ψa+,t)[uv]|. (3.26)

    A similar argument shows that

    |(cDδ,ψa+,t)[(Ψu)(Ψv)]|=|λ||(Jβδ,ψa+,t)[uv]|+|(Jα+βδ,ψa+,t)[FuFv]|+|(cDδ,ψa+,t)[ϕu(F)ϕv(F)]|, (3.27)

    where

    supt[a,T]|(cDδ,ψa+,t)[ϕu(F)ϕv(F)]|(ρ21+L1ρ22)supt[a,T]|u(t)v(t)|+ρ22L2supt[a,T]|(cDδ,ψa+,t)[uv]|+ρ22L0. (3.28)

    Combining (3.27) and (3.28), we obtain

    (cDδ,ψa+,t)(Ψu)(cDδ,ψa+,t)(Ψv)ς21supt[a,T]|u(t)v(t)|+ς22supt[a,T]|(cDδ,ψa+,t)[uv]|. (3.29)

    Consequently, by (3.26) and (3.29), we have

    (Ψu)(Ψv)EςuvE

    and choose ς=max{ς11,ς12,ς21,ς22}<1. Hence, the operator Ψ is a contraction, therefore Ψ maps bounded sets into bounded sets in E. Thus, the conclusion of the theorem follows by the contraction mapping principle.

    For simplicity of presentation, we let

    Λ11=(Jα+β,ψa+,T)[1]+(Jα+βγ,ψa+,T)[1]+(d11(T)+(cDγ,ψa+,T)[d11])(Jα+β,ψa+,η)[1],
    Λ12=(d12(T)+(cDγ,ψa+,T)[d12])((Jα+β,ψa+,T)[1]μ(Jα+β+γ,ψa+,ξ)[1]),
    Λ21=(Jβ,ψa+,T)[1]+d21(T)(Jβ,ψa+,η)[1]+d22(T)((Jβ,ψa+,T)[1]μ(Jβ+γ,ψa+,ξ)[1]),
    Λ22=(Jβγ,ψa+,T)[1]+(cDγ,ψa+,T)[d21](Jβ,ψa+,η)[1]+(cDγ,ψa+,T)[d22]((Jβ,ψa+,T)[1]μ(Jβ+γ,ψa+,ξ)[1]).

    We consider the space defined by (3.18) equipped with the norm

    uE=u+(cDγ,ψa+,t)[u]. (3.30)

    It is easy to know that (E,.E) is a Banach space with norm (3.30). On this space, by virtue of Lemma 3.2, we may define the operator Ψ:EE by

    (Ψu)(t)=(Ψ1u)(t)+(Ψ2u)(t)=(λ(Jβ,ψa+,t)[u]+(Jα+β,ψa+,t)[Fu]+ϕu(F)),

    where Ψ1 and Ψ2 are the two operators defined on Br by

    (Ψ1u)(t)=(Jα+β,ψa+,t)[Fu]+d11(t)(Jα+β,ψa+,η)[Fu]+d12(t)((Jα+β,ψa+,T)[Fu]μ(Jα+β+γ,ψa+,ξ)[Fu]) (3.31)

    and

    (Ψ2u)(t)=λ(Jβ,ψa+,t)[u]+λd21(t)(Jβ,ψa+,η)[u]λd22(t)((Jβ,ψa+,T)[u]μ(Jβ+γ,ψa+,ξ)[u]), (3.32)

    where dij(t) are defined by (3.7) and (3.8).

    Applying (cDγ,ψa+,t) on both sides of (3.31) and (3.32), we have

    (cDγ,ψa+,t)[Ψ1u]=(Jα+βγ,ψa+,t)[Fu]+(cDγ,ψa+,t)[d11](Jα+β,ψa+,η)[Fu]+(cDγ,ψa+,t)[d12]((Jα+β,ψa+,T)[Fu]μ(Jα+β+γ,ψa+,ξ)[Fu])

    and

    (cDγ,ψa+,t)[Ψ2u]=λ(Jβγ,ψa+,t)[u]+λ(cDγ,ψa+,t)[d21](Jβ,ψa+,η)[u]λ(cDγ,ψa+,t)[d22]((Jβ,ψa+,T)[u]μ(Jβ+γ,ψa+,ξ)[u]). (3.33)

    Thus, Ψ is well-defined because Ψ1 and Ψ2 are well-defined. The continuity of the functional Fu confirms the continuity of (Ψu)(t) and (cDγ,ψa+,t)[Ψu](t), for each t[a,T]. Hence the operator Ψ maps E into itself.

    In what follows, we utilize fixed point techniques to demonstrate the key results of this paper. In light of Lemma 3.2, we rewrite problem (3.9) as

    u=Ψu, uE. (3.34)

    Notice that problem (3.9) has solutions if the operator Ψ in (3.34) has fixed points. Conversely, the fixed points of Ψ are solutions of (1.1). Consider the operator Ψ:EE.  For u,vBr, we find that

    ΨuE=Ψ1uE+Ψ2uE.

    Theorem 3.4. Assume that F:[a,T]×R×RR+ is a continuous function and the assumption (A3) holds. If

    0<|λ|(Λ21+Λ22)<1, (3.35)

    then, problem (1.1) has at least one fixed point on [a,T].

    Proof. The proof will be completed in four steps:

    Step 1. Firstly, we prove that, for any u,vBr, Ψ1u+Ψ2vBr, it follows that

    (Ψ1u)E=(Ψ1u)+(cDδ,ψa+,t)(Ψ1u)[(Jα+β,ψa+,T)[1]+d11(T)(Jα+β,ψa+,η)[1]+d12(T)((Jα+β,ψa+,T)[1]μ(Jα+β+δ,ψa+,ξ)[1])]Fu+[(Jα+βδ,ψa+,T)[1]+(cDδ,ψa+,t)[d11](Jα+β,ψa+,η)[1]]Fu+[(cDδ,ψa+,t)[d12]((Jα+β,ψa+,T)[1]μ(Jα+β+δ,ψa+,ξ)[1])]Fu,

    we obtain

    (Ψ1u)E×Fu1=(Jα+β,ψa+,T)[1]+(Jα+βδ,ψa+,T)[1]+(d11(T)+(cDδ,ψa+,t)[d11])(Jα+β,ψa+,η)[1]+(d12(T)+(cDδ,ψa+,t)[d12])((Jα+β,ψa+,T)[1]μ(Jα+β+δ,ψa+,ξ)[1]).

    Then, we have

    (Ψ1u)E(Λ11+Λ12)×Fu, Λ11+Λ12<, (3.36)

    which yields that Ψ1 is bounded. On the opposite side

    1|λ|(Ψ2v)E×v1E(Jβ,ψa+,T)+d21(T)(Jβ,ψa+,η)[1]+d22(T)((Jβ,ψa+,T)[1]μ(Jβ+δ,ψa+,ξ)[1])+(Jβδ,ψa+,T)[1]+(cDδ,ψa+,t)[d21](Jβ,ψa+,η)[1]+(cDδ,ψa+,t)[d22]((Jβ,ψa+,T)[1]μ(Jβ+δ,ψa+,ξ)[1]),

    which implies

    (Ψ2v)E|λ|(Λ21+Λ22)×vE. (3.37)

    Then, from (3.36) and (3.37), it follows that

    Ψ(u,v)E(Λ11+Λ12)×Fu+|λ|(Λ21+Λ22)×vE. (3.38)

    By (A3) and (3.38), we have that

    (Λ11+Λ12)×Fu+|λ|(Λ21+Λ22)×vE(Λ11+Λ12)×L+|λ|(Λ21+Λ22)×rr.

    Then

    r>(Λ11+Λ12)×L1|λ|(Λ21+Λ22), 0<|λ|(Λ21+Λ22)<1,

    which concludes that Ψ1u+Ψ2vBr for all u,vBr.

    Step 2. Next, for u,vBr, Ψ2 is a contraction. From (3.32) and (3.33), we have

    (Ψ2u)(Ψ2v)E=(Ψ2u)(Ψ2v)+(cDδ,ψa+,t)(Ψ2u)(cDδ,ψa+,t)(Ψ2v),

    where

    (Ψ2u)(Ψ2v)|λ|((Jβ,ψa+,t)[1]+d21(T)(Jβ,ψa+,η)[1]+d22(T)((Jβ,ψa+,T)[1]μ(Jβ+δ,ψa+,ξ)[1]))uv. (3.39)

    From (3.39), we can write

    (Ψ2u)(Ψ2v)|λ|Λ21×uv. (3.40)

    On the other hand

    (cDδ,ψa+,t)(Ψ2u)(cDδ,ψa+,t)(Ψ2v)×uv1|λ|((Jβδ,ψa+,t)[1]+(cDδ,ψa+,T)[d21](Jβ,ψa+,η)[1]+(cDδ,ψa+,T)[d22]((Jβ,ψa+,T)[1]μ(Jβ+δ,ψa+,ξ)[1])),

    which yields

    (cDδ,ψa+,t)(Ψ2u)(cDδ,ψa+,t)(Ψ2v)|λ|Λ22×uv. (3.41)

    Thus, using (3.40) and (3.41), it follows that

    (Ψ2u)+(Ψ2v)E|λ|(Λ21+Λ22)×uvE,

    and choose 0<|λ|(Λ21+Λ22)<1. Hence, the operator Ψ2 is a contraction.

    Step 3. The continuity of Ψ1 follows from that of Fu. Let {un} be a sequence such that unu in E. Then for each t[a,T]

    |(Ψ1un)(t)(Ψ1u)(t)|=(Jα+β,ψa+,t)[FunFu]+d11(t)(Jα+β,ψa+,η)[FunFu]+d12(t)((Jα+β,ψa+,T)[FunFu]μ(Jα+β+δ,ψa+,ξ)[FunFu]).

    By last equality with Eq (3.31), we can write

    |(Ψ1un)(t)(Ψ1u)(t)|[(Jα+β,ψa+,t)[1]+d11(t)(Jα+β,ψa+,η)[1]+d12(t)((Jα+β,ψa+,T)[1]μ(Jα+β+δ,ψa+,ξ)[1])]supt[a,T]|FunFu|.

    It follows that

    \begin{eqnarray} &&\left \Vert \left( \Psi _{1}u_{n}\right) -\left( \Psi _{1}u\right) \right \Vert _{E} = \left \Vert \left( \Psi _{1}u_{n}\right) -\left( \Psi _{1}u\right) \right \Vert _{\infty }+\left \Vert \left( ^{c}\mathfrak{D}_{a+,t}^{\delta ,\psi }\right) \left( \left( \Psi _{1}u_{n}\right) -\left( \Psi _{1}u\right) \right) \right \Vert _{\infty }\leq \\ &&\left[ \left( J_{a+,T}^{\alpha +\beta ,\psi }\right) +d_{11}\left( T\right) \left( J_{a_{+},\eta }^{\alpha +\beta ,\psi }\right) +d_{12}\left( T\right) \left( \left( J_{a_{+},T}^{\alpha +\beta ,\psi }\right) -\mu \left( J_{a_{+},\xi }^{\alpha +\beta +\delta ,\psi }\right) \right) \right] \left \Vert \mathfrak{F}_{u_{n}}-\mathfrak{F}_{u}\right \Vert _{\infty } \\ &&+\left[ \left( J_{a+,T}^{\alpha +\beta -\delta ,\psi }\right) +\left( ^{c}\mathfrak{D}_{a+,t}^{\delta ,\psi }\right) \left[ d_{11}\right] \left( J_{a_{+},\eta }^{\alpha +\beta ,\psi }\right) \right. \\ &&+\left. \left( ^{c}\mathfrak{D}_{a+,t}^{\delta ,\psi }\right) \left[ d_{12}\right] \left( \left( J_{a_{+},T}^{\alpha +\beta ,\psi }\right) -\mu \left( J_{a_{+},\xi }^{\alpha +\beta +\delta ,\psi }\right) \right) \right] \left \Vert \mathfrak{F}_{u_{n}}-\mathfrak{F}_{u}\right \Vert _{\infty }. \end{eqnarray} (3.42)

    By (3.42), we have

    \begin{eqnarray} &&\left \Vert \left( \Psi _{1}u_{n}\right) -\left( \Psi _{1}u\right) \right \Vert _{E}\left \Vert \mathfrak{F}_{u_{n}}-\mathfrak{F}_{u}\right \Vert _{\infty }^{-1}\leq \\ &&\left( J_{a+,T}^{\alpha +\beta ,\psi }\left[ 1\right] \right) +\left( J_{a+,T}^{\alpha +\beta -\delta ,\psi }\left[ 1\right] \right) +\left( d_{11}\left( T\right) +\left( ^{c}\mathfrak{D}_{a+,t}^{\delta ,\psi }\right) \left[ d_{11}\right] \right) \left( J_{a_{+},\eta }^{\alpha +\beta ,\psi }\left[ 1 \right] \right) \\ &&+\left( d_{12}\left( T\right) +\left( ^{c}\mathfrak{D}_{a+,t}^{\delta ,\psi }\right) \left[ d_{12}\right] \right) \left( \left( J_{a_{+},T}^{\alpha +\beta ,\psi } \left[ 1\right] \right) -\mu \left( J_{a_{+},\xi }^{\alpha +\beta +\delta ,\psi }\left[ 1\right] \right) \right) . \end{eqnarray} (3.43)

    Consequently, by (3.43), we have

    \begin{equation*} \left \Vert \left( \Psi _{1}u_{n}\right) -\left( \Psi _{1}u\right) \right \Vert _{\infty }\leq \left( \Lambda _{11}+\Lambda _{12}\right) \times \left \Vert \mathfrak{F}_{u_{n}}-\mathfrak{F}_{u}\right \Vert _{\infty },\ \Lambda _{11}+\Lambda _{12} < \infty . \label{EQ104} \end{equation*}

    Since \mathfrak{F}_{u} is a continuous function, then by Lebesgue's dominated convergence theorem it follows that

    \begin{equation*} \left \Vert \left( \Psi _{1}u_{n}\right) -\left( \Psi _{1}u\right) \right \Vert _{\infty}\longrightarrow 0{\rm{ as }}n\longrightarrow \infty . \label{EQ105} \end{equation*}

    Furthermore, \Psi _{1} is uniformly bounded on B_{r} as \left \Vert \left(\Psi _{1}u\right) \right \Vert _{E}\leq \left(\Lambda _{11}+\Lambda _{12}\right) \times \left \Vert \mathfrak{F}_{u}\right \Vert _{\infty }, due to (3.36).

    Step 4. Finally, we establish the compactness of \Psi _{1}. Let u, v\in B_{r} , for t_{1}, t_{2}\in \left[ a, T\right], \; t_{1} < t_{2}, we have

    \begin{eqnarray} &&\left \Vert \left( \Psi _{1}u\right) \left( t_{2}\right) -\left( \Psi _{1}u\right) \left( t_{1}\right) \right \Vert _{\infty } \\ &\leq &\left[ \left( J_{a+,t_{2}}^{\alpha +\beta ,\psi }\right) \left[ 1 \right] +d_{11}\left( t_{2}\right) \left( J_{a_{+},\eta }^{\alpha +\beta ,\psi }\right) \left[ 1\right] +d_{12}\left( t_{2}\right) \left( \left( J_{a_{+},T}^{\alpha +\beta ,\psi }\right) \left[ 1\right] -\mu \left( J_{a_{+},\xi }^{\alpha +\beta +\delta ,\psi }\right) \left[ 1\right] \right) \right] \left \Vert \mathfrak{F}_{u}\right \Vert _{\infty } \\ &&-\left[ \left( J_{a+,t_{1}}^{\alpha +\beta ,\psi }\right) \left[ 1\right] +d_{11}\left( t_{1}\right) \left( J_{a_{+},\eta }^{\alpha +\beta ,\psi }\right) \left[ 1\right] +d_{12}\left( t_{1}\right) \left( \left( J_{a_{+},T}^{\alpha +\beta ,\psi }\right) \left[ 1\right] -\mu \left( J_{a_{+},\xi }^{\alpha +\beta +\delta ,\psi }\right) \right) \left[ 1\right] \right] \left \Vert \mathfrak{F}_{u}\right \Vert _{\infty } \\ &\leq &\left[ \left( \left( J_{a+,t_{2}}^{\alpha +\beta ,\psi }\right) \left[ 1\right] -\left( J_{a+,t_{1}}^{\alpha +\beta ,\psi }\right) \left[ 1\right] \right) +\Lambda _{41}\left( J_{a_{+},\eta }^{\alpha +\beta ,\psi }\right) \left[ 1\right] \right. \\ &&\left. +\Lambda _{42}\left( \left( J_{a_{+},T}^{\alpha +\beta ,\psi }\right) \left[ 1\right] -\mu \left( J_{a_{+},\xi }^{\alpha +\beta +\delta ,\psi }\right) \left[ 1\right] \right) \right] \left \Vert \mathfrak{F}_{u}\right \Vert _{\infty }. \end{eqnarray} (3.44)

    On the other hand

    \begin{eqnarray} &&\left \Vert \left( ^{c}\mathfrak{D}_{a+,t}^{\delta ,\psi }\right) \left( \Psi _{1}u\right) \left( t_{2}\right) -\left( ^{c}\mathfrak{D}_{a+,t}^{\delta ,\psi }\right) \left( \Psi _{1}u\right) \left( t_{1}\right) \right \Vert _{\infty } \\ &\leq &\left[ \left( J_{a+,t_{2}}^{\alpha +\beta -\delta ,\psi }\right) +\left( ^{c}\mathfrak{D}_{a+,t_{2}}^{\delta ,\psi }\right) \left[ d_{11}\right] \left( J_{a_{+},\eta }^{\alpha +\beta ,\psi }\right) +\left( ^{c}\mathfrak{D}_{a+,t_{2}}^{\delta ,\psi }\right) \left[ d_{12}\right] \left( \left( J_{a_{+},T}^{\alpha +\beta ,\psi }\right) -\mu \left( J_{a_{+},\xi }^{\alpha +\beta +\delta ,\psi }\right) \right) \right] \left \Vert \mathfrak{F}_{u}\right \Vert _{\infty } \\ &&-\left[ \left( J_{a+,t_{1}}^{\alpha +\beta -\delta ,\psi }\right) +\left( ^{c}\mathfrak{D}_{a+,t_{1}}^{\delta ,\psi }\right) \left[ d_{11}\right] \left( J_{a_{+},\eta }^{\alpha +\beta ,\psi }\right) +\left( ^{c}\mathfrak{D}_{a+,t_{1}}^{\delta ,\psi }\right) \left[ d_{12}\right] \left( \left( J_{a_{+},T}^{\alpha +\beta ,\psi }\right) -\mu \left( J_{a_{+},\xi }^{\alpha +\beta +\delta ,\psi }\right) \right) \right] \left \Vert \mathfrak{F}_{u}\right \Vert _{\infty } \\ &&\left[ \left( \left( J_{a+,t_{2}}^{\alpha +\beta -\delta ,\psi }\right) -\left( J_{a+,t_{1}}^{\alpha +\beta -\delta ,\psi }\right) \right) +\Lambda _{43}\left( J_{a_{+},\eta }^{\alpha +\beta ,\psi }\right) +\Lambda _{44}\left( \left( J_{a_{+},T}^{\alpha +\beta ,\psi }\right) -\mu \left( J_{a_{+},\xi }^{\alpha +\beta +\delta ,\psi }\right) \right) \right] \left \Vert \mathfrak{F}_{u}\right \Vert _{\infty }. \end{eqnarray} (3.45)

    Using (3.44) and (3.45), we get

    \begin{eqnarray} &&\left \Vert \left( \Psi _{1}u\right) \left( t_{2}\right) -\left( \Psi _{1}u\right) \left( t_{1}\right) \right \Vert _{E} \\ &\leq &\left[ \left( \left( J_{a+,t_{2}}^{\alpha +\beta ,\psi }\right) \left[ 1\right] -\left( J_{a+,t_{1}}^{\alpha +\beta ,\psi }\right) \left[ 1\right] \right) +\left( \left( J_{a+,t_{2}}^{\alpha +\beta -\delta ,\psi }\right) -\left( J_{a+,t_{1}}^{\alpha +\beta -\delta ,\psi }\right) \right) \right. \\ &&\left. +\left( \Lambda _{41}+\Lambda _{43}\right) \left( J_{a_{+},\eta }^{\alpha +\beta ,\psi }\right) \left[ 1\right] +\left( \Lambda _{42}+\Lambda _{44}\right) \left( \left( J_{a_{+},T}^{\alpha +\beta ,\psi }\right) \left[ 1\right] -\mu \left( J_{a_{+},\xi }^{\alpha +\beta +\delta ,\psi }\right) \left[ 1\right] \right) \right] \left \Vert \mathfrak{F}_{u}\right \Vert _{\infty }, \end{eqnarray}

    where

    \begin{equation*} \Lambda _{41} = d_{11}\left( t_{2}\right) -d_{11}\left( t_{1}\right), \Lambda _{42} = d_{12}\left( t_{2}\right) -d_{12}\left( t_{1}\right) \end{equation*}

    and

    \begin{equation*} \Lambda _{43} = \left( ^{c}\mathfrak{D}_{a+,t_{2}}^{\delta ,\psi }\right) \left[ d_{11} \right] -\left( ^{c}\mathfrak{D}_{a+,t_{1}}^{\delta ,\psi }\right) \left[ d_{11}\right], \Lambda _{44} = \left( ^{c}\mathfrak{D}_{a+,t_{2}}^{\delta ,\psi }\right) \left[ d_{12}\right] -\left( ^{c}\mathfrak{D}_{a+,t_{1}}^{\delta ,\psi }\right) \left[ d_{11}\right] . \end{equation*}

    Consequently, we have

    \begin{equation*} \left \Vert \left( \Psi _{1}u\right) \left( t_{2}\right) -\left( \Psi _{1}u\right) \left( t_{1}\right) \right \Vert \times \left \Vert \mathfrak{F}_{u}\right \Vert ^{-1}\longrightarrow 0{\rm{ as }}t_{1}\rightarrow t_{2}. \label{EQ113} \end{equation*}

    Thus, \Psi _{1} is relatively compact on B_{r} . Hence, by the Arzela-Ascoli Theorem, \Psi _{1} is completely continuous on B_{r} . Therefore, according to Theorem 2.8, the Problem (1.1) has at least one solution on B_{r} . This completes the proof.

    Hereafter, we discuss the Ulam–Hyers and Ulam–Hyers–Rassias stability of solutions of the FLE (1.1). In the proofs of Theorems 4.4 and 4.9, we use integration by parts in the settings of \psi -fractional operators. Denoting

    \begin{equation} \varphi _{1}\left( t\right) = \left( J_{a_{+},t}^{\beta ,\psi }\right) \left[ 1\right] \;{\rm{ and }}\;\varphi _{2}\left( t\right) = \left( J_{a_{+},t}^{\beta ,\psi }\right) \left[ \mathcal{K}\left( \tau ;a\right) \right] . \end{equation} (4.1)

    Remark 4.1. For every \epsilon > 0, a function \tilde{u}\in \mathcal{C} is a solution of of the inequality

    \begin{equation} \left \vert \left( ^{c}\mathfrak{D}_{a+,t}^{\alpha ,\psi }\right) \left( ^{c}\mathfrak{D}_{a+,t}^{\beta ,\psi }+\lambda \right) \left[ \tilde{u}\right] -\mathfrak{F}(t, \tilde{u}(t),^{c}\mathfrak{D}_{a+,t}^{\gamma ,\psi }\left[ \tilde{u}\right] )\right \vert \leq \epsilon \Phi \left( t\right) ,\ t\in \left[ a,T\right] , \end{equation} (4.2)

    where \Phi \left(t\right) \geq 0 if and only if there exists a function g\in \mathcal{C}, (which depends on \tilde{u} ) such that

    (\textbf{i}) \; \left \vert g\left(t\right) \right \vert \leq \epsilon \Phi \left(t\right), \ \forall t\in \left[ a, T\right];

    (\textbf{ii}) \; \left(^{c}\mathfrak{D}_{a+, t}^{\alpha, \psi }\right) \left(^{c}\mathfrak{D}_{a+, t}^{\beta, \psi }+\lambda \right) \left[ \tilde{u}\right] = \mathfrak{F}(t, \tilde{u}(t), ^{c}\mathfrak{D}_{a+, t}^{\gamma, \psi }\left[ \tilde{u}\right])+g\left(t\right).

    Lemma 4.2. If \tilde{u}\in \mathcal{C} is a solution of the inequality (4.2) then \tilde{u} is a solution of the following integral inequality

    \begin{equation} \left \vert \tilde{u}(t)-\left( -\lambda \left( J_{a_{+},t}^{\beta ,\psi }\right) \left[ \tilde{u}\right] +\left( J_{a_{+},t}^{\alpha +\beta ,\psi }\right) \left[ \mathfrak{F}_{\tilde{u}}\right] +\phi _{\tilde{u}}\left( \mathfrak{F}\right) \right) \right \vert \leq C_{\Phi }\left( t\right) , \end{equation} (4.3)

    where

    \begin{equation*} C_{\Phi }\left( t\right) = \epsilon \left( J_{a_{+},t}^{\alpha +\beta ,\psi }\right) \left[ \Phi \right] +c_{1}\left( \epsilon \Phi \right) \varphi _{1}\left( t\right) +c_{2}\left( \epsilon \Phi \right) \varphi _{2}\left( t\right) +c_{3}\left( \epsilon \Phi \right) , \label{EQ117} \end{equation*}

    where c_{1}\left(\epsilon \Phi \right)-c_{3}\left(\epsilon \Phi \right) are real constants with \mathfrak{F}_{ \tilde{u}} = \Phi and C_{\Phi } is independent of \tilde{u}\left(t\right) and \mathfrak{F}_{\tilde{u}}.

    Proof. Let \tilde{u}\in \mathcal{C} be a solution of the inequality (4.2). Then by Remark 4.1- (ii) , we have that

    \begin{equation} \tilde{u}\left( t\right) = -\lambda \left( J_{a_{+},t}^{\beta ,\psi }\right) \left[ \tilde{u}\right] +\left( J_{a_{+},t}^{\alpha +\beta ,\psi }\right) \left[ \mathfrak{F}_{\tilde{u}}+g\right] +\phi _{\tilde{u}}\left( \mathfrak{F}_{\tilde{u} }+g\right) , \end{equation} (4.4)

    where

    \begin{equation*} \phi _{\tilde{u}}\left( \mathfrak{F}_{\tilde{u}}+g\right) = c_{1}\left( \mathfrak{F}_{\tilde{u} }+g\right) \varphi _{1}\left( t\right) +c_{2}\left( \mathfrak{F}_{\tilde{u}}+g\right) \varphi _{2}\left( t\right) +c_{3}\left( \mathfrak{F}_{\tilde{u}}+g\right) , \label{EQ119} \end{equation*}

    with

    \begin{equation*} c_{j}\left( \mathfrak{F}_{\tilde{u}}+g\right) = c_{j}\left( \mathfrak{F}_{\tilde{u}}\right) +c_{j}\left( g\right) ,\ j = 1,2,3. \label{EQ120} \end{equation*}

    In view of (A _{1} ) and (4.3), we obtain

    \begin{eqnarray*} &&\left \vert \tilde{u}\left( t\right) -\left( -\lambda \left( J_{a_{+},t}^{\beta ,\psi }\right) \left[ \tilde{u}\right] +\left( J_{a_{+},t}^{\alpha +\beta ,\psi }\right) \left[ \mathfrak{F}_{\tilde{u}}\right] +\phi _{\tilde{u}}\left( \mathfrak{F}\right) \right) \right \vert \quad \notag \\ & = &\left \vert \left( J_{a_{+},t}^{\alpha +\beta ,\psi }\right) \left[ g \right] +c_{1}\left( g\right) \varphi _{1}\left( t\right) +c_{2}\left( g\right) \varphi _{2}\left( t\right) +c_{3}\left( g\right) \right \vert \notag \\ &\leq &\left \vert \left( J_{a_{+},t}^{\alpha +\beta ,\psi }\right) \left[ \epsilon \Phi \right] +c_{1}\left( \epsilon \Phi \right) \varphi _{1}\left( t\right) +c_{2}\left( \epsilon \Phi \right) \varphi _{2}\left( t\right) +c_{3}\left( \epsilon \Phi \right) \right \vert = C_{\Phi }\left( t\right) . \label{EQ121} \end{eqnarray*}

    As an outcome of Lemma 4.2, we have the following result:

    Corollary 4.3. Assume that \mathfrak{F}_{\tilde{u}} is a continuous function that satisfies (A_{1}). If \tilde{u}\in \mathcal{C} is a solution of the inequality

    \begin{equation} \left \vert ^{c}\mathfrak{D}_{a+,t}^{\alpha ,\psi }\left( ^{c}\mathfrak{D}_{a+,t}^{\beta ,\psi }+\lambda \right) u(t)-\mathfrak{F}(t,u(t),^{c}\mathfrak{D}_{a+,t}^{\gamma ,\psi }\left[ u\right] (t))\right \vert \leq \epsilon ,\ t\in \left[ a,T\right] , \end{equation} (4.5)

    then \tilde{u} is a solution of the following integral inequality

    \begin{equation} \left \vert \tilde{u}(t)-\left( -\lambda \left( J_{a_{+},t}^{\beta ,\psi }\right) \left[ \tilde{u}\right] +\left( J_{a_{+},t}^{\alpha +\beta ,\psi }\right) \left[ \mathfrak{F}_{\tilde{u}}\right] +\phi _{\tilde{u}}\left( \mathfrak{F}\right) \right) \right \vert \leq C_{\epsilon }, \end{equation} (4.6)

    with

    \begin{equation} \tilde{u}(a) = 0,\; \tilde{u}(\eta ) = 0,\; \tilde{u}(T) = \mu \left( J_{a+,\xi }^{\gamma ,\psi }\right) \left[ \tilde{u}\right] ,\; a < \eta < \xi < T,\ 0 < \mu , \end{equation} (4.7)

    where

    \begin{equation} C_{\epsilon } = \epsilon \varsigma _{13}, \end{equation} (4.8)

    where \varsigma _{13} is given by (3.12).

    Proof. By Remark 4.1- (ii), (4.4), and by using (3.10) with the conditions (4.7), we have

    \begin{eqnarray*} \phi _{\tilde{u}}\left( \mathfrak{F}+g\right) & = &d_{11}\left( t\right) \left( J_{a_{+},\eta }^{\alpha +\beta ,\psi }\right) \left[ \mathfrak{F}_{\tilde{u}}\right] +d_{12}\left( t\right) \left( \left( J_{a_{+},T}^{\alpha +\beta ,\psi }\right) \left[ \mathfrak{F}_{\tilde{u}}\right] -\mu \left( J_{a_{+},\xi }^{\alpha +\beta +\delta ,\psi }\right) \left[ \mathfrak{F}_{\tilde{u}}\right] \right) \notag \\ &&+\lambda d_{21}\left( t\right) \left( J_{a_{+},\eta }^{\beta ,\psi }\right) \left[ \tilde{u}\right] -\lambda d_{22}\left( t\right) \left( \left( J_{a_{+},T}^{\beta ,\psi }\right) \left[ \tilde{u}\right] -\mu \left( J_{a_{+},\xi }^{\beta +\delta ,\psi }\right) \left[ \tilde{u}\right] \right) \notag \\ &&+d_{11}\left( t\right) \left( J_{a_{+},\eta }^{\alpha +\beta ,\psi }\right) \left[ g\right] +d_{12}\left( t\right) \left( \left( J_{a_{+},T}^{\alpha +\beta ,\psi }\right) \left[ g\right] -\mu \left( J_{a_{+},\xi }^{\alpha +\beta +\delta ,\psi }\right) \left[ g\right] \right) . \label{EQ126} \end{eqnarray*}

    The solution of the problem (4.4) is given by

    \begin{eqnarray*} &&\left \vert \tilde{u}\left( t\right) -\left( -\lambda \left( J_{a_{+},t}^{\beta ,\psi }\right) \left[ \tilde{u}\right] +\left( J_{a_{+},t}^{\alpha +\beta ,\psi }\right) \left[ \mathfrak{F}_{\tilde{u}}\right] +\phi _{\tilde{u}}\left( \mathfrak{F}\right) \right) \right \vert \quad \notag \\ &\leq &\left \vert \left( J_{a_{+},t}^{\alpha +\beta ,\psi }\right) \left[ g \right] +d_{11}\left( t\right) \left( J_{a_{+},\eta }^{\alpha +\beta ,\psi }\right) \left[ g\right] +d_{12}\left( t\right) \left( \left( J_{a_{+},T}^{\alpha +\beta ,\psi }\right) \left[ g\right] -\mu \left( J_{a_{+},\xi }^{\alpha +\beta +\delta ,\psi }\right) \left[ g\right] \right) \right \vert , \label{EQ127} \end{eqnarray*}

    which implies that

    \begin{equation*} \left \vert \tilde{u}\left( t\right) -\left( -\lambda \left( J_{a_{+},t}^{\beta ,\psi }\right) \left[ \tilde{u}\right] +\left( J_{a_{+},t}^{\alpha +\beta ,\psi }\right) \left[ \mathfrak{F}_{\tilde{u}}\right] +\phi _{\tilde{u}}\left( \mathfrak{F}\right) \right) \right \vert \leq \Phi _{\epsilon }\left( t\right) , \label{EQ128} \end{equation*}

    where

    \begin{equation*} \Phi _{\epsilon }\left( t\right) = \left( J_{a_{+},t}^{\alpha +\beta ,\psi }\right) \left[ \epsilon \right] +c_{1}\left( \epsilon \right) \varphi _{1}\left( t\right) +c_{2}\left( \epsilon \right) \varphi _{2}\left( t\right) +c_{3}\left( \epsilon \right) \label{EQ130} \end{equation*}

    with

    \begin{equation*} C_{\epsilon }\equiv \sup\limits_{t\in \left[ a,T\right] }\left \vert \Phi _{\epsilon }\left( t\right) \right \vert = \epsilon \varsigma _{13}, \label{EQ131} \end{equation*}

    which is the desired inequality (4.6).

    This corollary is obtained from Lemma 4.2 by setting \Phi \left(t\right) = 1 , for all \ t\in \left[ a, T\right], with (4.7).

    Theorem 4.4. Assume that \mathfrak{F}_{\tilde{u}} is a continuous function that satisfies (A _{1} ) and (A _{4} ). The Eq (1.1-a) is H-U-R stable with respect to \Phi \ if there exists a real number l_{\alpha, \psi } > 0 such that for each \epsilon > 0 and for each solution \tilde{u} \in \mathcal{C}^{3}\left(\left[ a, T\right], \mathbb{R} \right) of the inequality (4.2), \ there exists a solution u^{\ast }\in \mathcal{C}^{3}\left(\left[ a, T\right], \mathbb{R} \right) of (1.1-a) with

    \begin{equation} \left \vert \tilde{u}(t)-u^{\ast }(t)\right \vert \leq \epsilon l_{\alpha ,\psi }\Phi \left( t\right) . \end{equation} (4.9)

    Proof. Using (4.2) and (1.1), we obtain

    \begin{eqnarray} \tilde{u}\left( t\right) & = &-\lambda \left( J_{a_{+},t}^{\beta ,\psi }\right) \left[ \tilde{u}\right] +\left( J_{a_{+},t}^{\alpha +\beta ,\psi }\right) \left[ \mathfrak{F}_{\tilde{u}}+g\right] +c_{1}\left( \mathfrak{F}_{\tilde{u}}+g\right) \varphi _{1}\left( t\right) +c_{2}\left( \mathfrak{F}_{\tilde{u}}+g\right) \varphi _{2}\left( t\right) +c_{3}\left( \mathfrak{F}_{\tilde{u}}+g\right) \\ & = &\theta _{\tilde{u}}\left( t,\mathfrak{F}_{\tilde{u}}+g\right) +c_{1}\left( \mathfrak{F}+g\right) \varphi _{1}\left( t\right) +c_{2}\left( \mathfrak{F}+g\right) \varphi _{2}\left( t\right) +c_{3}\left( \mathfrak{F}+g\right) \end{eqnarray} (4.10)

    and

    \begin{eqnarray*} u^{\ast }\left( t\right) & = &-\lambda \left( J_{a_{+},t}^{\beta ,\psi }\right) \left[ u^{\ast }\right] +\left( J_{a_{+},t}^{\alpha +\beta ,\psi }\right) \left[ \mathfrak{F}_{u^{\ast }}\right] +c_{1}^{\prime }\left( \mathfrak{F}_{u^{\ast }}\right) \varphi _{1}\left( t\right) +c_{2}^{\prime }\left( \mathfrak{F}_{u^{\ast }}\right) \varphi _{2}\left( t\right) +c_{3}^{\prime }\left( \mathfrak{F}_{u^{\ast }}\right) \notag \\ & = &\theta _{u^{\ast }}\left( t,\mathfrak{F}\right) +c_{1}^{\prime }\left( \mathfrak{F}_{u^{\ast }}\right) \varphi _{1}\left( t\right) +c_{1}^{\prime }\left( \mathfrak{F}_{u^{\ast }}\right) \varphi _{1}\left( t\right) +c_{2}^{\prime }\left( \mathfrak{F}_{u^{\ast }}\right) \varphi _{2}\left( t\right) +c_{3}^{\prime }\left( \mathfrak{F}_{u^{\ast }}\right) , \label{EQ134} \end{eqnarray*}

    where

    \begin{equation} \theta _{\tilde{u}}\left( t,\mathfrak{F}\right) = -\lambda \left( J_{a_{+},t}^{\beta ,\psi }\right) \left[ \tilde{u}\right] +\left( J_{a_{+},t}^{\alpha +\beta ,\psi }\right) \left[ \mathfrak{F}_{\tilde{u}}\right] . \end{equation} (4.11)

    By using (4.9) and (4.10), we have the following inequalities

    \begin{eqnarray*} \left \vert \tilde{u}(t)-u^{\ast }(t)\right \vert &\leq &\left \vert \tilde{u} \left( t\right) -\left( \theta _{u^{\ast }}\left( t,\mathfrak{F}\right) +c_{1}^{\prime }\left( \mathfrak{F}_{u^{\ast }}\right) \varphi _{1}\left( t\right) +c_{2}^{\prime }\left( \mathfrak{F}_{u^{\ast }}\right) \varphi _{2}\left( t\right) +c_{3}^{\prime }\left( \mathfrak{F}_{u^{\ast }}\right) \right) \right \vert \notag \\ &\leq &\left \vert \tilde{u}\left( t\right) -\left( \theta _{\tilde{u}}\left( t,\mathfrak{F}\right) +c_{1}\left( \mathfrak{F}_{\tilde{u}}\right) \varphi _{1}\left( t\right) +c_{1}\left( \mathfrak{F}_{\tilde{u}}\right) \varphi _{1}\left( t\right) +c_{2}\left( \mathfrak{F}_{\tilde{u}}\right) \varphi _{2}\left( t\right) +c_{3}\left( \mathfrak{F}_{\tilde{u} }\right) \right) \right \vert \notag \\ &&+\left \vert \theta _{\tilde{u}}\left( t,\mathfrak{F}\right) -\theta _{u^{\ast }}\left( t,\mathfrak{F}\right) \right \vert +\left \vert \left( c_{1}\left( \mathfrak{F}_{ \tilde{u}}\right) -c_{1}^{\prime }\left( \mathfrak{F}_{u^{\ast }}\right) \right) \varphi _{1}\left( t\right) \right \vert \notag \\ &&+\left \vert \left( c_{2}\left( \mathfrak{F}_{\tilde{u}}\right) -c_{2}^{\prime }\left( \mathfrak{F}_{u^{\ast }}\right) \right) \right \vert \varphi _{2}\left( t\right) +\left \vert c_{3}\left( \mathfrak{F}_{\tilde{u}}\right) -c_{3}^{\prime }\left( \mathfrak{F}_{u^{\ast }}\right) \right \vert . \label{EQ136} \end{eqnarray*}

    By setting

    \begin{equation*} c_{33} = c_{3}\left( \mathfrak{F}_{\tilde{u}}\right) -c_{3}^{\prime }\left( \mathfrak{F}_{u^{\ast }}\right) = \tilde{u}\left( a\right) -u^{\ast }\left( a\right) ,\ c_{11} = c_{1}\left( \mathfrak{F}_{\tilde{u}}\right) -c_{1}^{\prime }\left( \mathfrak{F}_{u^{\ast }}\right) \;{\rm{ and }}\;c_{22} = c_{2}\left( \mathfrak{F}_{\tilde{u} }\right) -c_{2}^{\prime }\left( \mathfrak{F}_{u^{\ast }}\right) , \label{EQ137} \end{equation*}

    and

    \begin{equation*} w\left( \eta \right) = \tilde{u}\left( \eta \right) -u^{\ast }\left( \eta \right) +\theta _{\tilde{u}}\left( \eta ,\mathfrak{F}\right) -\theta _{u^{\ast }}\left( \eta ,\mathfrak{F}\right) \;{\rm{ and }}\;w\left( T\right) = \tilde{u}\left( T\right) -u^{\ast }\left( T\right) +\theta _{\tilde{u}}\left( T,\mathfrak{F}\right) -\theta _{u^{\ast }}\left( T,\mathfrak{F}\right) . \label{EQ138} \end{equation*}

    It follows from (4.9) and (4.10), that

    \begin{equation*} \left( \begin{array}{cc} \varphi _{1}\left( \eta \right) & \varphi _{2}\left( \eta \right) \\ \varphi _{1}\left( T\right) & \varphi _{2}\left( T\right) \end{array} \right) \left( \begin{array}{c} c_{11} \\ c_{22} \end{array} \right) = \left( \begin{array}{c} w\left( \eta \right) \\ w\left( T\right) \end{array} \right) , \label{EQ139} \end{equation*}

    Applying Lemma 4.2 and from estimation (4.11), it follows

    \begin{equation*} \left \vert \tilde{u}(t)-u^{\ast }(t)\right \vert \leq C_{\Phi }\left( t\right) +\left \vert \theta _{\tilde{u}}\left( t,\mathfrak{F}\right) -\theta _{u^{\ast }}\left( t,\mathfrak{F}\right) \right \vert +c_{11}\varphi _{1}\left( t\right) +c_{22}\varphi _{2}\left( t\right) +c_{33}, \label{EQ140} \end{equation*}

    where

    \begin{eqnarray*} \left \vert \theta _{\tilde{u}}\left( t,\mathfrak{F}\right) -\theta _{u^{\ast }}\left( t,\mathfrak{F}\right) \right \vert & = &\left \vert -\lambda \left( J_{a_{+},t}^{\beta ,\psi }\right) \left[ \tilde{u}\right] +\left( J_{a_{+},t}^{\alpha +\beta ,\psi }\right) \left[ \mathfrak{F}_{\tilde{u}}\right] -\left( -\lambda \left( J_{a_{+},t}^{\beta ,\psi }\right) \left[ u^{\ast }\right] +\left( J_{a_{+},t}^{\alpha +\beta ,\psi }\right) \left[ \mathfrak{F}_{u^{\ast }}\right] \right) \right \vert \notag \\ &\leq &\left \vert -\lambda \left( J_{a_{+},t}^{\beta ,\psi }\right) \left[ \tilde{u}-u^{\ast }\right] +\left( J_{a_{+},t}^{\alpha +\beta ,\psi }\right) \left[ \mathfrak{F}_{\tilde{u}}-\mathfrak{F}_{u^{\ast }}\right] \right \vert . \label{EQ141} \end{eqnarray*}

    Using Lemma 2.4 and (A _{1} ), we have

    \begin{equation*} \left( J_{a_{+},t}^{\alpha +\beta ,\psi }\right) \left[ \left \vert \left( ^{c}\mathfrak{D}_{a_{+},t}^{\delta ,\psi }\right) \left[ \tilde{u}-u^{\ast }\right] \right \vert \right] = z_{0}\left( t\right) -\left( J_{a_{+},t}^{\alpha +\beta -\delta ,\psi }\right) \left[ \tilde{u}-u^{\ast }\right] \label{EQ142} \end{equation*}

    and

    \begin{equation*} \left \vert \left( J_{a_{+},t}^{\alpha +\beta ,\psi }\right) \left[ \mathfrak{F}_{\tilde{ u}}-\mathfrak{F}_{u^{\ast }}\right] \right \vert \leq \left \vert L_{1}\left( J_{a_{+},t}^{\alpha +\beta ,\psi }\right) \left[ \tilde{u}-u^{\ast }\right] \right \vert +L_{2}\left \vert z_{0}\left( t\right) -\left( J_{a_{+},t}^{\alpha +\beta -\delta ,\psi }\right) \left[ \tilde{u}-u^{\ast } \right] \right \vert , \label{EQ143} \end{equation*}

    where

    \begin{equation*} z_{0}\left( t\right) = \frac{\left \vert \tilde{u}\left( a\right) -u^{\ast }\left( a\right) \right \vert }{\Gamma \left( \alpha +\beta \right) }\times \left( J_{a,t-}^{1-\delta ,\psi }\right) \left[ \left( \mathcal{K}\left( t;a\right) \right) ^{\alpha +\beta -1}\right] . \label{EQ144} \end{equation*}

    Set

    \begin{equation*} q\left( t\right) = \mathcal{G}\left( t\right) +L_{2}\frac{\left \vert \tilde{u} \left( a\right) -u^{\ast }\left( a\right) \right \vert }{\Gamma \left( \alpha +\beta \right) }\times \left( J_{a,t-}^{1-\delta ,\psi }\right) \left[ \left( \mathcal{K}\left( t;a\right) \right) ^{\alpha +\beta -1}\right] , \label{EQ145} \end{equation*}

    where

    \begin{equation*} \mathcal{G}\left( t\right) = C_{\Phi }\left( t\right) +c_{11}\varphi _{1}\left( t\right) +c_{22}\varphi _{2}\left( t\right) +c_{33}, \label{EQ146} \end{equation*}

    with

    \begin{equation*} C_{\Phi }\left( t\right) = \epsilon \left( J_{a_{+},t}^{\alpha +\beta ,\psi }\right) \left[ \Phi \right] +c_{1}\left( \epsilon \Phi \right) \varphi _{1}\left( t\right) +c_{2}\left( \epsilon \Phi \right) \varphi _{2}\left( t\right) +c_{3}\left( \epsilon \Phi \right) . \label{EQ147} \end{equation*}

    This means that

    \begin{equation} p\left( t\right) \leq q\left( t\right) +\lambda \left( J_{a_{+},t}^{\beta ,\psi }\right) \left[ \tilde{u}-u^{\ast }\right] +L_{1}\left( J_{a_{+},t}^{\alpha +\beta ,\psi }\right) \left[ \tilde{u}-u^{\ast }\right] +L_{2}\left( J_{a_{+},t}^{\alpha +\beta -\delta ,\psi }\right) \left[ \tilde{ u}-u^{\ast }\right] . \end{equation} (4.12)

    Using Lemma 2.13, the above inequality implies the estimation for p\left(t\right) such as

    \begin{equation*} p\left( t\right) \leq q\left( t\right) +\sum\limits_{k = 1}^{\infty }\left( \begin{array}{l} \tfrac{\left( \lambda \Gamma \left( \beta \right) \right) ^{k}}{\Gamma \left( k\beta \right) }\int_{a}^{t}\left[ \psi ^{\prime }\left( \tau \right) \left( \mathcal{K}\left( t;\tau \right) \right) ^{k\beta -1}\right] q\left( \tau \right) \mathrm{d}\tau \\ + \\ \tfrac{\left( L_{1}\Gamma \left( \alpha +\beta \right) \right) ^{k}}{\Gamma \left( k\left( \alpha +\beta \right) \right) }\int_{a}^{t}\left[ \psi ^{\prime }\left( \tau \right) \left( \mathcal{K}\left( t;\tau \right) \right) ^{k\left( \alpha +\beta \right) -1}\right] q\left( \tau \right) \mathrm{d}\tau \\ + \\ \tfrac{\left( L_{2}\Gamma \left( \alpha +\beta -\delta \right) \right) ^{k}}{ \Gamma \left( k\left( \alpha +\beta -\delta \right) \right) }\int_{a}^{t} \left[ \psi ^{\prime }\left( \tau \right) \left( \mathcal{K}\left( t;\tau \right) \right) ^{k\left( \alpha +\beta -\delta \right) -1}\right] q\left( \tau \right) \mathrm{d}\tau \end{array} \right) . \label{EQ149} \end{equation*}

    Therefore, with (A _{4} ), the inequality (4.12) can be rewritten as

    \begin{equation*} p\left( t\right) = \left \vert \tilde{u}(t)-u^{\ast }(t)\right \vert \leq \epsilon l_{\alpha ,\psi }\Phi \left( t\right) . \label{EQ150} \end{equation*}

    By Remark 2.14, one can obtain

    \begin{eqnarray*} p\left( t\right) &\leq &q\left( t\right) \left[ E_{\beta }\left( \lambda \Gamma \left( \beta \right) \left( \mathcal{K}\left( t;a\right) \right) ^{\beta }\right) +E_{\alpha +\beta }\left( \lambda \Gamma \left( \alpha +\beta \right) \left( \mathcal{K}\left( t;a\right) \right) ^{\alpha +\beta }\right) \right. \\ &&+\left. E_{\alpha +\beta +\delta }\left( \lambda \Gamma \left( \alpha +\beta +\delta \right) \left( \mathcal{K}\left( t;a\right) \right) ^{\alpha +\beta +\delta }\right) \right] . \end{eqnarray*}

    Thus, we complete the proof.

    Theorem 4.5. Assume that the assumptions (A _{1} ) and (A _{4} ). If a continuously differentiable function \tilde{u}:\left[ a, T\right] \longrightarrow \mathbb{R} satisfies (4.2), where \Phi :\left[ a, T\right] \longrightarrow \mathbb{R} ^{+} is a continuous function with (A _{3} ), then there exists a unique continuous function u^{\ast }:\left[ a, T\right] \longrightarrow \mathbb{R} of problem (1.1) such that

    \begin{equation} \left \vert \tilde{u}\left( t\right) -u^{\ast }\left( t\right) \right \vert \leq \epsilon l_{\alpha ,\psi }\Phi \left( t\right) , \end{equation} (4.13)

    with

    \begin{equation} \left \vert \tilde{u}\left( a\right) -u^{\ast }\left( a\right) \right \vert = \left \vert \tilde{u}\left( \eta \right) -u^{\ast }\left( \eta \right) \right \vert = \left \vert \tilde{u}\left( T\right) -u^{\ast }\left( T\right) \right \vert = 0. \end{equation} (4.14)

    Proof. Assume that \tilde{u}\in \mathcal{C}^{3}\left(\left[ a, T\right], \mathbb{R} \right) is a solution of the (4.2). In view of proof of Theorem 4.4, we get

    \begin{equation*} \mathcal{G}\left( t\right) = C_{\Phi }\left( t\right) +c_{11}\varphi _{1}\left( t\right) +c_{22}\varphi _{2}\left( t\right) +c_{33} = C_{\Phi }\left( t\right), \label{EQ153} \end{equation*}

    with the conditions (4.14), we have

    \begin{equation*} C_{\Phi }\left( t\right) = \epsilon \left \vert \left( J_{a_{+},t}^{\alpha +\beta ,\psi }\right) \left[ \Phi \right] +\left( J_{a_{+},\eta }^{\alpha +\beta ,\psi }\right) \left[ \Phi \right] d_{11}\left( t\right) +\left( \left( J_{a_{+},T}^{\alpha +\beta ,\psi }\right) \left[ \Phi \right] -\mu \left( J_{a_{+},\xi }^{\alpha +\beta +\delta ,\psi }\right) \left[ \Phi \right] \right) d_{12}\left( t\right) \right \vert . \label{EQ154} \end{equation*}

    Set q\left(t\right) = C_{\Phi }\left(t\right).\ Using Theorem 4.4 and (A _{4} ), we conclude that, the estimation for p\left(t\right) = \left \vert u\left(t\right) -\tilde{u}\left(t\right) \right \vert such as (4.12).\ So the inequality (4.12) can be rewritten as

    \begin{equation*} p\left( t\right) = \left \vert u\left( t\right) -\tilde{u}\left( t\right) \right \vert \leq \epsilon l_{\alpha ,\psi }\Phi \left( t\right) . \label{EQ156} \end{equation*}

    By Remark 2.14, one can obtain

    \begin{eqnarray*} p\left( t\right) &\leq &q\left( t\right) \left[ E_{\beta }\left( \lambda \Gamma \left( \beta \right) \left( \mathcal{K}\left( t;a\right) \right) ^{\beta }\right) +E_{\alpha +\beta }\left( \lambda \Gamma \left( \alpha +\beta \right) \left( \mathcal{K}\left( t;a\right) \right) ^{\alpha +\beta }\right) \right. \\ &&+\left. E_{\alpha +\beta +\delta }\left( \lambda \Gamma \left( \alpha +\beta +\delta \right) \left( \mathcal{K}\left( t;a\right) \right) ^{\alpha +\beta +\delta }\right) \right] . \end{eqnarray*}

    This proves that the problem (1.1) is, Ulam–Hyers–Rassias stable.

    Theorem 4.6. Assume that the assumptions (A _{2} ), (A _{4} ) and (4.2) hold. Then Eq (1.1-a) is H-U-R stable.

    Proof. By (A _{2} ) and (4.11), we have

    \begin{equation*} \left \vert \left( J_{a_{+},t}^{\alpha +\beta ,\psi }\right) \left[ \mathfrak{F}_{\tilde{ u}}\right] -\left( J_{a_{+},t}^{\alpha +\beta ,\psi }\right) \left[ \mathfrak{F}_{u} \right] \right \vert \leq \left \vert \left( J_{a_{+},t}^{\alpha +\beta ,\psi }\right) \left[ \tilde{\chi}\right] -\left( J_{a_{+},t}^{\alpha +\beta ,\psi }\right) \left[ \chi \right] \right \vert \label{EQ157} \end{equation*}

    and

    \begin{equation*} \left \vert \tilde{u}(t)-u^{\ast }(t)\right \vert \leq C_{\Phi }\left( t\right) +\left \vert \theta _{\tilde{u}}\left( t,\mathfrak{F}+g\right) -\theta _{u^{\ast }}\left( t,\mathfrak{F}\right) \right \vert +c_{11}\left \vert \varphi _{1}\left( t\right) \right \vert +c_{22}\left \vert \varphi _{2}\left( t\right) \right \vert +c_{33}, \label{EQ158} \end{equation*}

    where

    \begin{eqnarray*} &&\left \vert \theta _{\tilde{u}}\left( t,\mathfrak{F}+g\right) -\theta _{u^{\ast }}\left( t,\mathfrak{F}\right) \right \vert \notag \\ & = &\left \vert -\lambda \left( J_{a_{+},t}^{\beta ,\psi }\right) \left[ \tilde{u}\right] +\left( J_{a_{+},t}^{\alpha +\beta ,\psi }\right) \left[ \mathfrak{F}_{ \tilde{u}}+g\right] -\left( -\lambda \left( J_{a_{+},t}^{\beta ,\psi }\right) \left[ u^{\ast }\right] +\left( J_{a_{+},t}^{\alpha +\beta ,\psi }\right) \left[ \mathfrak{F}_{u^{\ast }}\right] \right) \right \vert \notag \\ &\leq &\left \vert -\lambda \left( J_{a_{+},t}^{\beta ,\psi }\right) \left[ \tilde{u}-u^{\ast }\right] +\left( J_{a_{+},t}^{\alpha +\beta ,\psi }\right) \left[ \mathfrak{F}_{\tilde{u}}-\mathfrak{F}_{u^{\ast }}\right] \right \vert +\left \vert \left( J_{a_{+},t}^{\alpha +\beta ,\psi }\right) \left[ g\right] \right \vert . \label{EQ159} \end{eqnarray*}

    Using Lemma 4.2, we have

    \begin{equation*} p\left( t\right) \leq q\left( t\right) +\lambda \left( J_{a_{+},t}^{\beta ,\psi }\right) \left[ \tilde{u}-u^{\ast }\right] , \label{EQ160} \end{equation*}

    where

    \begin{equation*} q\left( t\right) = \mathcal{G}\left( t\right) +\left \vert \left( J_{a_{+},t}^{\alpha +\beta ,\psi }\right) \left[ \tilde{\chi}\right] -\left( J_{a_{+},t}^{\alpha +\beta ,\psi }\right) \left[ \chi \right] \right \vert , \label{EQ161} \end{equation*}

    with

    \begin{equation*} \mathcal{G}\left( t\right) = C_{\Phi }\left( t\right) +c_{11}\varphi _{1}\left( t\right) +c_{22}\varphi _{2}\left( t\right) +c_{33}. \label{EQ162} \end{equation*}

    From the above, it follows

    \begin{equation*} p\left( t\right) \leq q\left( t\right) +\sum\limits_{k = 1}^{\infty } \begin{array}{l} \dfrac{\left( \lambda \Gamma \left( \beta \right) \right) ^{k}}{\Gamma \left( k\beta \right) }\int_{a}^{t}\left[ \psi ^{\prime }\left( \tau \right) \left( \mathcal{K}\left( t;\tau \right) \right) ^{k\beta -1}\right] q\left( \tau \right) \mathrm{d}\tau \end{array} . \label{EQ163} \end{equation*}

    By Remark 2.14, one can obtain

    \begin{equation*} p\left( t\right) \leq q\left( t\right) E_{\beta }\left( \lambda \Gamma \left( \beta \right) \left( \mathcal{K}\left( t;a\right) \right) ^{\beta }\right) . \end{equation*}

    Remark 4.7. If \Phi \left(t\right) is a constant function in the inequalities (4.2), then we say that (1.1-a) is Ulam–Hyers stable.

    Corollary 4.8. Assume that the assumptions (A _{2} ), (A _{4} ) and (4.2) hold. Then Eq (1.1-a) with (4.13) is Ulam–Hyers–Rassias stable.

    Proof. Using Theorem 4.6, we have

    \begin{equation*} p\left( t\right) \leq q\left( t\right) +\lambda \left( J_{a_{+},t}^{\beta ,\psi }\right) \left[ \tilde{u}-u^{\ast }\right] , \label{EQ164} \end{equation*}

    where

    \begin{equation*} p\left( t\right) = \left \vert \tilde{u}\left( t\right) -u\left( t\right) \right \vert {\rm{ and}}\ q\left( t\right) = C_{\Phi }\left( t\right) +\left \vert \left( J_{a_{+},t}^{\alpha +\beta ,\psi }\right) \left[ \tilde{ \chi}\right] -\left( J_{a_{+},t}^{\alpha +\beta ,\psi }\right) \left[ \chi \right] \right \vert . \label{EQ165} \end{equation*}

    We conclude that

    \begin{equation*} p\left( t\right) \leq q\left( t\right) +\sum\limits_{k = 1}^{\infty } \begin{array}{l} \dfrac{\left( \lambda \Gamma \left( \beta \right) \right) ^{k}}{\Gamma \left( k\beta \right) }\int_{a}^{t}\left[ \psi ^{\prime }\left( \tau \right) \left( \mathcal{K}\left( t;\tau \right) \right) ^{k\beta -1}\right] q\left( \tau \right) \mathrm{d}\tau \end{array} . \label{EQ166} \end{equation*}

    By Remark 2.14, one can obtain

    \begin{equation*} p\left( t\right) \leq q\left( t\right) E_{\beta }\left( \lambda \Gamma \left( \beta \right) \left( \mathcal{K}\left( t;a\right) \right) ^{\beta }\right) . \end{equation*}

    Theorem 4.9. Assume that the assumptions (A _{1} ) and (4.2) with (4.14) hold. Then problem (1.1) is Ulam–Hyers stable and consequently generalized Ulam–Hyers stable.

    Proof. Let u^{\ast } be a unique solution of the fractional Langevin type problem (1.1), that is, u^{\ast }(t) = \left(\Psi u^{\ast }\right) (t) . Assume that \tilde{u}\in \mathcal{C}\left(\left[ a, T\right], \mathbb{R} \right) is a solution of the (4.2). By using the estimation

    \begin{equation*} \left \vert \left( \Psi \tilde{u}\right) \left( t\right) -\left( \Psi u^{\ast }\right) \left( t\right) \right \vert \leq \lambda \left \vert \left( J_{a_{+},t}^{\beta ,\psi }\right) \left[ \tilde{u}-u^{\ast }\right] \right \vert +\left \vert \left( J_{a_{+},t}^{\alpha +\beta ,\psi }\right) \left[ \mathfrak{F}_{u^{\ast }}-\left( \mathfrak{F}_{\tilde{u}}+g\right) \right] \right \vert +\left \vert \phi _{\tilde{u}}\left( \mathfrak{F}+g\right) -\phi _{u^{\ast }}\left( t,\mathfrak{F}\right) \right \vert , \label{EQ168} \end{equation*}

    where

    \begin{eqnarray} &&\left \vert \phi _{\tilde{u}}\left( \mathfrak{F}+g\right) -\phi _{u^{\ast }}\left( t,\mathfrak{F}\right) \right \vert \\ & = &d_{11}\left( t\right) \left( J_{a_{+},\eta }^{\alpha +\beta ,\psi }\right) \left[ \mathfrak{F}_{\tilde{u}}-\mathfrak{F}_{u^{\ast }}\right] +d_{12}\left( t\right) \left( \left( J_{a_{+},T}^{\alpha +\beta ,\psi }\right) \left[ \mathfrak{F}_{\tilde{u} }-\mathfrak{F}_{u^{\ast }}\right] -\mu \left( J_{a_{+},\xi }^{\alpha +\beta +\delta ,\psi }\right) \left[ \mathfrak{F}_{\tilde{u}}-\mathfrak{F}_{u^{\ast }}\right] \right) \\ &&+\lambda d_{21}\left( t\right) \left( J_{a_{+},\eta }^{\beta ,\psi }\right) \left[ \tilde{u}-u^{\ast }\right] -\lambda d_{22}\left( t\right) \left( \left( J_{a_{+},T}^{\beta ,\psi }\right) \left[ \tilde{u}-u^{\ast } \right] -\mu \left( J_{a_{+},\xi }^{\beta +\delta ,\psi }\right) \left[ \tilde{u}-u^{\ast }\right] \right) \\ &&+d_{11}\left( t\right) \left( J_{a_{+},\eta }^{\alpha +\beta ,\psi }\right) \left[ g\right] +d_{12}\left( t\right) \left( \left( J_{a_{+},T}^{\alpha +\beta ,\psi }\right) \left[ g\right] -\mu \left( J_{a_{+},\xi }^{\alpha +\beta +\delta ,\psi }\right) \left[ g\right] \right) . \end{eqnarray} (4.15)

    Taking the maximum over \left[ a, T\right], we get

    \begin{equation*} \sup\limits_{t\in \left[ a,T\right] }\left \vert \left( \Psi \tilde{u}\right) \left( t\right) -\left( \Psi u^{\ast }\right) \left( t\right) \right \vert \leq \varsigma _{11}\sup\limits_{t\in \left[ a,T\right] }\left \vert \tilde{u} \left( t\right) -u^{\ast }\left( t\right) \right \vert +\varsigma _{12}\sup\limits_{t\in \left[ a,T\right] }\left \vert \left( ^{c}\mathfrak{D}_{a+,t}^{\delta ,\psi }\right) \left[ \tilde{u}-u^{\ast }\right] \right \vert +\epsilon \varsigma _{13}. \label{EQ170} \end{equation*}

    Using Lemma 2.3 and (4.15), we obtain

    \begin{equation*} \sup\limits_{t\in \left[ a,T\right] }\left \vert \left( \Psi \tilde{u}\right) \left( t\right) -\left( \Psi u^{\ast }\right) \left( t\right) \right \vert \leq \left( \varsigma _{11}+\varsigma _{12}\kappa _{0}\right) \sup\limits_{t\in \left[ a,T\right] }\left \vert \tilde{u}\left( t\right) -u^{\ast }\left( t\right) \right \vert +\epsilon \varsigma _{13}, \label{EQ172} \end{equation*}

    where

    \begin{equation*} \kappa _{0} = \frac{1}{\Gamma \left( 2-\delta \right) }\left( \psi \left( T\right) -\psi \left( a\right) \right) ^{1-\delta }. \label{EQ173} \end{equation*}

    We conclude that

    \begin{equation*} \left \Vert \tilde{u}-u^{\ast }\right \Vert _{\infty }\leq \frac{\epsilon \varsigma _{13}}{\left( 1-\varsigma _{11}-\varsigma _{12}\kappa _{0}\right) } ,\ 0 < 1-\varsigma _{11}-\varsigma _{12}\kappa _{0} < 1. \label{EQ174} \end{equation*}

    Thus problem (1.1) is Ulam–Hyers stable. Further, using Theorem 4.5 implies that solution of (1.1) is generalized Ulam–Hyers stable. This completes the proof.

    Corollary 4.10. Let the conditions of Theorem 4.9 hold. Then Problem (1.1) is generalized Ulam–Hyers–Rassias stable.

    Proof. Set \epsilon = 1 in the proof of Theorem 4.9, we get

    \begin{equation} \left \Vert \tilde{u}-u^{\ast }\right \Vert _{\infty }\leq \frac{\varsigma _{13}}{\left( 1-\varsigma _{11}-\varsigma _{12}\kappa _{0}\right) },\ \ 0 < 1-\varsigma _{11}-\varsigma _{12}\kappa _{0} < 1. \end{equation} (4.16)

    Remark 4.11. () Considering (1.1) and inequality (4.2), then under the assumptions of Theorem 4.5, one can follow the same procedure to confirm that (1.1) is Ulam–Hyers stable.

    (ⅱ) Other stability results for the Eq (1.1) can be discussed in a similar manner.

    In this section, we provide some test problems to illustrate the applicability of the established results.

    Example 5.1. Without loss of generality, we only consider the following \psi -Caputo Langevin equations

    \begin{equation*} \left( ^{c}\mathfrak{D}_{a+,t}^{\alpha ,\psi }\right) \left( ^{c}\mathfrak{D}_{a+,t}^{\beta ,\psi }+\lambda \right) \left[ u\right] = \mathfrak{F}(t,u(t),^{c}\mathfrak{D}_{a+,t}^{\gamma ,\psi } \left[ u\right] ). \end{equation*}

    By taking

    \begin{equation} \mathfrak{F}\left( t,u,v\right) = \frac{\kappa }{20}E_{1/2}\left( t^{1/2}\right) u+\frac{ \kappa }{10}v,\ \kappa \in \left[ 0,+\infty \right) \end{equation} (5.1)

    we have

    \begin{equation*} L_{1} = \frac{\kappa }{20}\sup \left \{ E_{1/2}\left( t^{1/2}\right) :t\in \left[ a,T\right] \right \} {\rm{ \ and \ }}\ L_{2} = \frac{\kappa }{10}. \end{equation*}

    For \psi \left(t\right) = t, \ we shall show that condition (3.3) holds with

    \begin{equation} \alpha = 3/2,\ \beta = 6/7,\ \gamma = 5/7,\ \lambda = 1/6,\ \mu = 2,\ a = 0,\eta = 4/7,\ \xi = 4/5,\ T = 1. \end{equation} (5.2)

    A simple computation shows that

    \begin{equation*} \sigma _{11} = 0.653,\ \sigma _{12} = 0.201,\ \sigma _{21} = 0.0483\;{\rm{ and}}\ \sigma _{22} = 0.255. \end{equation*}
    \begin{equation*} \Delta \equiv \left \vert \sigma _{11}\sigma _{22}-\sigma _{21}\sigma _{12}\right \vert = 0.157. \end{equation*}

    (ⅰ) Thus, the hypotheses (\mathrm{A}_{1}) and (3.20) are satisfied with

    \begin{equation*} d_{11}\left( T\right) = 1.54,{\rm{ }}d_{12}\left( T\right) = 1.02,\ d_{21}\left( T\right) = 1.54\;{\rm{ and }}\;d_{22}\left( T\right) = 1.02, \end{equation*}
    \begin{equation*} \rho _{11} = 0.217,\ \rho _{12} = 0.345,\ \rho _{21} = 0.280\;{\rm{ and }}\;\rho _{22} = 0.635 \end{equation*}

    and

    \begin{equation*} \varsigma _{11} = 0.393+0.174\kappa ,\ \varsigma _{12} = 0.0696\kappa ,\ \varsigma _{21} = 0.458+0.328\kappa \;{\rm{ and }}\;\varsigma _{22} = 0.131\kappa, \end{equation*}

    where \rho _{11}, \ \rho _{12}, \ \rho _{21} , \rho _{22}, \ \varsigma _{11}, \ \varsigma _{12} and \varsigma _{21} are given by (3.14)–(3.17) and (3.11)–(3.13) respectively.

    Thus condition (3.20), with

    \begin{equation*} 0 < \kappa \leq 1.648 \end{equation*}

    is

    \begin{equation*} \varsigma \equiv \max \left \{ \varsigma _{11},\varsigma _{12},\varsigma _{21},\varsigma _{22}\right \} = 0.998 < 1,\ {\rm{with}}\ \kappa = 1.648 \end{equation*}

    and

    \begin{equation*} L_{0} = 0,\ \varsigma _{13} = 0.696,\ \varsigma _{23} = 1.31\;{\rm{ and }}\;\max \left \{ \varsigma _{13},\varsigma _{23}\right \} = 1.31. \end{equation*}

    Hence, by Theorem 3.3, the Problem (1.1) with (5.1) and (5.2) has a unique solution.

    (ⅱ) On the other hand, using (3.35), the condition

    \begin{equation*} \Lambda _{21} = 2.11,\ \Lambda _{22} = 2.14,\ 0 < \left \vert \lambda \right \vert \left( \Lambda _{21}+\Lambda _{22}\right) = 0.708 < 1, \end{equation*}

    is satisfied and

    \begin{equation*} r > \frac{\left( \Lambda _{11}+\Lambda _{12}\right) \times L}{1-\left \vert \lambda \right \vert \left( \Lambda _{21}+\Lambda _{22}\right) } = 6.88L\;{\rm{ with }}\;\Lambda _{11} = 1.31,\Lambda _{12} = 0.700. \end{equation*}

    So, by Theorem 3.4, the Problem (1.1) with (5.1) and (5.2) has at least one fixed point on [0, 1] .

    (ⅲ) It is easy to check that the condition (4.8) is satisfied. Indeed,

    \begin{equation*} C_{\epsilon } = \epsilon \varsigma _{13} = .696\epsilon . \end{equation*}

    Then by Corollary 4.3, we have, if \tilde{u}\in \mathcal{C} is a solution of the inequality (4.5), then \tilde{u} is a solution of the integral inequality (4.6).

    (ⅳ) Let \Phi \left(t\right) = \psi \left(t\right) -\psi \left(a\right) in Remark 2.14 satisfy (A_{4}).

    From (4.2) and the condition (\mathrm{A}_{4}), we get

    \begin{equation} \left( J_{a+,t}^{\alpha ,\psi }\right) \left[ \tau \right] = \frac{\Gamma \left( 2\right) }{\Gamma \left( \alpha +2\right) }t^{\alpha +1}\leq \frac{ \Gamma \left( 2\right) T^{\alpha }}{\Gamma \left( \alpha +2\right) } t,l_{\alpha ,t} = \frac{\Gamma \left( 2\right) T^{\alpha }}{\Gamma \left( \alpha +2\right) } \end{equation} (5.3)

    and

    \begin{equation*} \sup\limits_{t\in \left[ a,T\right] }\left \vert C_{\epsilon }\left( t\right) \right \vert \leq \epsilon \left \vert \tfrac{\Gamma \left( 2\right) T^{\alpha +\beta }}{\Gamma \left( \alpha +\beta +2\right) }+\tfrac{\Gamma \left( 2\right) \eta ^{\alpha +\beta }}{\Gamma \left( \alpha +\beta +2\right) } d_{11}\left( T\right) +\left( \tfrac{\Gamma \left( 2\right) T^{\alpha +\beta }}{\Gamma \left( \alpha +\beta +2\right) }-\mu \tfrac{\Gamma \left( 2\right) \xi ^{\alpha +\beta +\gamma }}{\Gamma \left( \alpha +\beta +\gamma +2\right) }\right) d_{12}\left( T\right) \right \vert . \end{equation*}

    With (5.2), we obtain

    \begin{equation*} \epsilon l_{\alpha ,\psi }\equiv \sup\limits_{t\in \left[ a,T\right] }C_{\epsilon }\left( t\right) = 0.216\epsilon . \end{equation*}

    By Lemma 2.13 and Remark 2.14, there exists l_{\alpha, \psi }\equiv 0.216 > 0 such that for each \varepsilon > 0 , we have

    \begin{equation*} p\left( t\right) \leq .216\epsilon t\left[ E_{6/7}\left( 1/6\Gamma \left( 6/7\right) t^{6/7}\right) +E_{33/14}\left( 1/6\Gamma \left( 33/14\right) t^{33/14}\right) +E_{43/14}\left( 1/6\Gamma \left( 43/14\right) t^{43/14}\right) \right] . \end{equation*}

    Therefore, by Theorem 4.5, the Problem (1.1) with (5.1) and (5.2) is generalized Ulam–Hyers–Rassias-Mittag-Leffler stable.

    (ⅴ) The condition (4.16) is satisfied with

    \begin{equation*} \kappa _{0} = 1.11,\ \varsigma _{11}+\varsigma _{12}\kappa _{0} = 0.807 < 1. \end{equation*}

    By Theorem 4.9, this implies that Problem (1.1) with (5.1) and (5.2) has Ulam–Hyers–Rassias stability.

    Further in the below tables (as Tables 1 and 2), we list the consequences of proposed theorems for different values of functions \psi .

    Table 1.  Numerical values for different parameters.
    Theorem 3.3 Theorem 3.4 Corollary 4.3 Theorem 4.9
    \psi(t) \kappa \varsigma r > \vert\lambda\vert(\Lambda _{21}+\Lambda _{22}) r > C_{\epsilon } \varsigma _{11}+\varsigma _{12}\kappa _{0}
    t 1.647 0.998 0 0.708 6.88L 0.696\varepsilon 0.807
    t^{1/3} 1.825 0.997 0 0.708 6.86L 0.693\varepsilon 0.723
    \ln(t+1) 1.262 0.999 0 0.594 2.49L 0.292\varepsilon 0.511
    \exp(t) 0.749 0.998 0 0.950 111L 2.52\varepsilon 0.919
    \sin t, \; [0, \frac{\pi}{2}] 0.406 0.999 0 0.708 6.87L 0.696\varepsilon 0.679

     | Show Table
    DownLoad: CSV
    Table 2.  Numerical values for different parameters.
    Theorem 4.5 Corollary 4.8
    \psi(t) [a, T] \kappa (d_{11}, d_{12}) l_{\alpha, \psi } l_{\alpha, \psi }
    t [0, 1] 1.647 (1.54, 1.020) 0.216 0.105
    t^{1/3} [0, 1] 1.825 (1.29, 0.470) 0.212 0.105
    \ln(t+1) [0, 1] 1.262 (1.17, 0.914) 0.0901 0.00442
    \exp(t) [0, 1] 0.749 (2.39, 1.16) 0.789 0.378
    \sin t, [0, \frac{\pi}{2}] 0.406 (1.37, 0.962) 0.213 0.105

     | Show Table
    DownLoad: CSV

    and

    Example 5.2. Let

    \begin{equation} \mathfrak{F}\left( t,u,v\right) = E_{1/2}\left( t^{1/2}\right) +\frac{\kappa }{20} E_{1/2}\left( t^{1/2}\right) u+\frac{\kappa }{10}v,\ \kappa \in \left[ 0,+\infty \right) \end{equation} (5.4)

    and

    \begin{equation} \alpha = 5/3,\ \beta = 3/4,\ \gamma = 1/2,\ \lambda = 1/8,\ \mu = 2,\ \eta = 5/4,\ \xi = 5/3. \end{equation} (5.5)

    Then, we have

    \begin{equation*} L_{0} = \sup E\left \{ _{1/2}\left( t^{1/2}\right) :t\in \left[ a,T\right] \right \} ,\ L_{1} = \frac{\kappa }{20}\sup E\left \{ _{1/2}\left( t^{1/2}\right) :t\in \left[ a,T\right] \right \} ,\ L_{2} = \frac{\kappa }{10}. \end{equation*}

    In the below tables (as Tables 3 and 4), we list the consequences of proposed theorems for different values of functions \psi .

    Table 3.  Numerical values for different parameters.
    Theorem 3.3 Theorem 3.4 Corollary 4.3 Theorem 4.9
    \psi(t) [a, T] \kappa \varsigma r > \vert\lambda\vert(\Lambda _{21}+\Lambda _{22}) r > C_{\epsilon } \varsigma _{11}+\varsigma _{12}\kappa _{0}
    \ln t [1, e] 0.131 0.999 31600 0.548 3.82L 0.674\varepsilon 0.750
    \sqrt{t} [1, 2] 2.439 0.988 213 0.144 0.315L 0.0781\varepsilon 0.455
    t^{2} [1/2, 1] 4.911 0.996 746 0.476 5.27L 0.213\varepsilon 0.885
    \sin t [0, \pi/2] 0.406 0.999 12100 0.708 6.87L 0.696\varepsilon 0.679
    2^{t} [1, 2] 0.1512 0.998 30200 0.785 37.4L 3.82\varepsilon 0.967
    \exp (t^{2}) [0, 1] 0.686 0.998 6330 0.723 89.5L 3.77\varepsilon 1.22

     | Show Table
    DownLoad: CSV
    Table 4.  Numerical values for different parameters.
    Theorem 4.5 Corollary 4.8
    \psi(t) [a, T] \kappa (d_{11}, d_{12}) l_{\alpha, \psi } l_{\alpha, \psi }
    \ln t [1, e] 0.131 (2.00, 1.19) 0.199 0.096
    \sqrt{t} [1, 2] 2.439 (1.46, 1.34) 0.0233 0.0111
    t^{2} [1/2, 1] 4.911 (1.07, 0.116) 0.0865 0.0479
    \sin t [0, \pi/2] 0.406 (1.37, 0.962) 0.213 0.105
    2^{t} [1, 2] 0.1525 (4.58, 1.66) 1.15 0.514
    \exp (t^{2}) [0, 1] 0.686 (0.688, 0.00777) 0.009 0.357

     | Show Table
    DownLoad: CSV

    If \Phi \left(t\right) = \psi \left(t\right) -\psi \left(a\right) then

    Example 5.3. () If we set \Phi \left(t\right) = \exp \left(\theta \left(\psi \left(t\right) -\psi \left(a\right) \right) \right) for every \theta \neq 0 , then by the changing of variables \theta \left(\psi \left(t\right) -\psi \left(a\right) \right) = u , we obtain

    \begin{equation} \left( J_{a+,t}^{\alpha ,\psi }\right) \left[ \Phi \left( t\right) \right] = \frac{\gamma \left( \alpha ,\theta \left( \psi \left( t\right) -\psi \left( a\right) \right) \right) }{\theta ^{\alpha }\Gamma \left( \alpha \right) } \exp \left( \theta \left( \psi \left( t\right) -\psi \left( a\right) \right) \right), \end{equation} (5.6)

    where \gamma \left(\alpha, t\right) is the incomplete Gamma function defined by

    \begin{equation} \gamma \left( \alpha ,t\right) = \int_{0}^{t}\tau ^{\alpha -1}e^{-\tau } \mathrm{d}\tau ,\ \Re(t) > 0,\ \left \vert \arg \left( t\right) \right \vert < \pi. \end{equation} (5.7)

    Thus

    \begin{equation} \frac{t^{\alpha }}{\alpha }e^{-t}\leq \gamma \left( \alpha ,t\right) \leq \frac{t^{\alpha }}{\alpha }. \end{equation} (5.8)

    Then by the above inequality, we obtain

    \begin{equation*} \left( J_{a+,t}^{\alpha ,\psi }\right) \left[ \Phi \left( t\right) \right] \leq \frac{\left( \theta \left( \psi \left( t\right) -\psi \left( a\right) \right) \right) ^{\alpha }}{\theta ^{\alpha }\Gamma \left( \alpha +1\right) } \exp \left( \theta \left( \psi \left( t\right) -\psi \left( a\right) \right) \right) ,\ {\rm{for \;all }}\;t\in \left[ a,T\right] . \end{equation*}

    Hence function \Phi \left(t\right) satisfies the condition (\mathrm{A}_{4}) with

    \begin{equation*} l_{\alpha ,\psi } = \frac{\left( \theta \left( \psi \left( t\right) -\psi \left( a\right) \right) \right) ^{\alpha }}{\theta ^{\alpha }\Gamma \left( \alpha +1\right) }. \end{equation*}

    () If we set \Phi \left(t\right) = E_{\alpha }\left(\theta \left(\psi \left(t\right) -\psi \left(a\right) \right) ^{\alpha }\right) for every \theta \neq 0 , then

    \begin{equation*} \left( J_{a+,t}^{\alpha ,\psi }\right) \left[ \Phi \left( t\right) \right] = \frac{1}{\theta }\left( E_{\alpha }\left( \theta \left( \psi \left( t\right) -\psi \left( a\right) \right) ^{\alpha }\right) -1\right) \leq \frac{1}{ \theta }E_{\alpha }\left( \theta \left( \psi \left( t\right) -\psi \left( a\right) \right) ^{\alpha }\right) . \end{equation*}

    Thus function \Phi \left(t\right) satisfies condition (\mathrm{A}_{4}) with

    \begin{equation*} l_{\alpha ,\psi } = \frac{1}{\theta }. \end{equation*}

    () The function \Phi \left(t\right) is positive and there exists a constant l_{\alpha, \psi } such that the condition (\mathrm{A}_{4}) is satisfied.

    Indeed, for each t\leq \left[ a, T\right] , we get

    \begin{equation*} \left( \psi \left( t\right) -\psi \left( \tau \right) \right) ^{\alpha -1}\leq \left( \psi \left( t\right) -\psi \left( a\right) \right) ^{\alpha -1}. \end{equation*}

    Where as \tau \in \left[ a, t\right], \ \alpha \geq 1 and \psi ^{\prime }\left(\tau \right) \geq 0

    \begin{eqnarray} \left( J_{a+,t}^{\alpha ,\psi }\right) \left[ \Phi \right] & = &\frac{1}{ \Gamma \left( \alpha \right) }\int_{a}^{t}\psi ^{\prime }\left( \tau \right) \left( \psi \left( t\right) -\psi \left( \tau \right) \right) ^{\alpha -1}\Phi \left( \tau \right) \mathrm{d}\tau \\ &\leq &\frac{\left( \psi \left( t\right) -\psi \left( a\right) \right) ^{\alpha -1}}{\Gamma \left( \alpha \right) }\int_{a}^{t}\psi ^{\prime }\left( \tau \right) \Phi \left( \tau \right) \mathrm{d}\tau, \end{eqnarray} (5.9)

    then

    \begin{eqnarray*} \int_{a}^{t}\psi ^{\prime }\left( \tau \right) \Phi \left( \tau \right) \mathrm{d}\tau & = &\left( \psi \left( t\right) \Phi \left( t\right) -\psi \left( a\right) \Phi \left( a\right) \right) -\int_{a}^{t}\psi \left( \tau \right) \Phi ^{\prime }\left( \tau \right) \mathrm{d}\tau \\ &\leq &\left( \psi \left( t\right) \Phi \left( t\right) -\psi \left( a\right) \Phi \left( a\right) \right) -\psi \left( a\right) \int_{a}^{t}\Phi ^{\prime }\left( \tau \right) \mathrm{d}\tau \\ & = &\left( \psi \left( t\right) -\psi \left( a\right) \right) \Phi \left( t\right) . \end{eqnarray*}
    \begin{equation*} \left( J_{a+,t}^{\alpha ,\psi }\right) \left[ \Phi \right] \leq \frac{\left( \psi \left( t\right) -\psi \left( a\right) \right) ^{\alpha }}{\Gamma \left( \alpha \right) }\Phi \left( t\right) . \end{equation*}

    Thus function \Phi \left(t\right) satisfies the condition (\mathrm{A}_{4}) with

    \begin{equation*} l_{\alpha ,\psi } = \frac{\left( \psi \left( t\right) -\psi \left( a\right) \right) ^{\alpha }}{\Gamma \left( \alpha \right) }. \end{equation*}

    Example 5.4. Let h\in \mathcal{C}^{2}\left(\mathbb{R}^{2}\right) be bounded and let g\in L_{1}\left[ 0, T\right] . Then the functions

    \begin{equation*} \mathfrak{F}\left( t,u,v\right) = g\left( t\right) h\left( u,v\right)\;\; {\rm{ or }}\;\;\mathfrak{F}\left( t,u,v\right) = g\left( t\right) +h\left( u,v\right) , \end{equation*}

    satisfies (5.4). In view of condition (\mathrm{A}_{2}), we consider the different values of function \mathfrak{F} (as Table 5),

    Table 5.  Upper bounds.
    \mathfrak{F}\left(t, u, v\right) \left \vert \mathfrak{F}\left(t, u, v\right) \right \vert \leq \mathfrak{F}\left(t, u, v\right) \left \vert \mathfrak{F}\left(t, u, v\right) \right \vert \leq
    g\left(t\right) \left(\frac{\left \vert u\right \vert +\left \vert v\right \vert }{\left \vert u\right \vert +\left \vert v\right \vert +1}\right) \left \vert g\left(t\right) \right \vert g\left(t\right) + \frac{\left \vert u\right \vert }{\left \vert u\right \vert +1}+\frac{\left \vert v\right \vert }{\left \vert v\right \vert +1} \left \vert g\left(t\right) \right \vert +2
    g\left(t\right) \sin u+\frac{2}{\pi }\arctan v 2\left \vert g\left(t\right) \right \vert g\left(t\right) \tanh u+sgn\left(v\right) \left \vert g\left(t\right) \right \vert +1

     | Show Table
    DownLoad: CSV

    where

    {sgn}(v) = \left\{\begin{array}{ccc} \frac{v}{|v|} & \text { if } & v \neq 0, \\ 0 & \text { if } & v = 0. \end{array}\right.

    The Langevin equation has been introduced to characterize dynamical processes in a fractal medium in which the fractal and memory features with a dissipative memory kernel are incorporated. Therefore, the consideration of Langevin equation in frame of fractional derivatives settings would be providing better interpretation for real phenomena. Consequently, scholars have considered different versions of Langevin equation and thus many interesting papers have been reported in this regard. However, one can notice that most of existing results have been carried out with respect to the classical fractional derivatives.

    In this paper, we have tried to promote the current results and considered the FLE in a general platform. The boundary value problem of nonlinear FLE involving \psi - fractional operators of different orders was investigated. One of the major differences in the problem considered in this work and relevant work already published in literature, is that, we are dealing with general fractional operator. Secondly, the forcing function depends on fractional derivative of unknown function. We employ the newly accommodated \psi - fractional calculus to prove the following for the considered problem:

    (ⅰ) The existence and uniqueness of solutions: Techniques of fixed point theorems are used to prove the results. Prior to the main theorems, the forms of solutions are derived for both linear and nonlinear problems.

    (ⅱ) Stability in sense of Ulam: We adopt the required definitions of Ulam–Hyers stability with respect to \psi - fractional derivative. The Ulam–Hyers–Rassias and generalized U-H-R stability of the solution are discussed. Gronwall inequality and integration by parts in frame of \psi - fractional derivative are also employed to complete the proofs.

    (ⅲ) Applications: Particular examples are addressed at the end of the paper to show the consistency of the theoretical results.

    We claim that the results of this paper are new and generalize some earlier results. Moreover, by fixing the parameters involved in the given problem, we can obtain some new results as special cases of the ones presented in this paper. For example, letting \psi = t, \mu = 0, a = 0 and T = 1 in the results of Section 3 , we get the ones derived in [40]. Besides, the existence results for the initial value problem of nonlinear classical Langevin equation of the form:

    \begin{equation*} \dddot{u}+\lambda \ddot{u} = \mathfrak{F}\left( t,u,\dot{u}\right) ,\ u\left( 0\right) = 0,\ u\left( \eta \right) = 0,\ u\left( 1\right) = 0,\ 0 < \eta < 1, \end{equation*}

    can be addressed by fixing a \alpha = 2 and \beta = 1 in the results of this paper.

    For further investigation, one can propose to study the properties of the solution of the considered problem via some numerical computations and simulations. We leave this as promising future work. Results obtained in the present paper can be considered as a contribution to the developing field of fractional calculus via generalized fractional derivative operators.

    The authors declare that they have no conflict of interest.

    J. Alzabut would like to thank Prince Sultan University for funding and supporting this work.



    [1] Najihah TS, Ibrahim M H, Zain NAM, et al. (2020) Activity of the oil palm seedlings exposed to a different rate of potassium fertilizer under water stress condition. AIMS Environ Sci 7: 46-68. doi: 10.3934/environsci.2020004
    [2] Sönmez FK, Kömüscü AÜ, Erkan A, et al. (2005) An analysis of spatial and temporal dimension of drought vulnerability in Turkey using the standardized precipitation index. Nat Hazards 35: 243-264. doi: 10.1007/s11069-004-5704-7
    [3] Manjowe M, Mushore TD, Gwenzi J, et al. (2018) Circulation mechanisms responsible for wet or dry summers over Zimbabwe. AIMS Environ Sci 5: 154-172. doi: 10.3934/environsci.2018.3.154
    [4] Smakhtin VU, Hughes DA, (2007) Automated estimation and analyses of meteorological drought characteristics from monthly rainfall data. Environ Modell Softw 22: 880-890. doi: 10.1016/j.envsoft.2006.05.013
    [5] Christy JR (2019) Examination of extreme rainfall events in two regions of the United States since the 19th century. AIMS Environ Sci 6: 109-126. doi: 10.3934/environsci.2019.2.109
    [6] Yahaya I, Adamu SJ, Muhammed BB, (2017) The use of Standardized Precipitation Index (SPI) for Drought Intensity Assessment in North-Eastern Nigeria. Researchjournal's J Geo 4:1-13
    [7] Feyissa G, Zeleke G, Bewket W, et al. (2018) Downscaling of future temperature and precipitation extremes in Addis Ababa under climate change. Climate 6: 58. doi: 10.3390/cli6030058
    [8] Engida M (1999) Annual rainfall and evapotranspiration in Ethiopia. Ethiopian Journal of Natural Resources 1: 137-154.
    [9] IPCC (2007) Climate Change 2007: Impacts, Adaptation and Vulnerability. Contribution of Working Group Ⅱ to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Edited by Parry, M., Canziani, O., Palutikof, J., Linden, P.vd., Hanson, C., Cambridge University Press 32 Avenue of the Americas, New York, USA, 10013-2473.
    [10] Alemu ZA, Dioha MO, (2020a) Climate change and trend analysis of temperature: the case of Addis Ababa, Ethiopia. Environ Syst Res 9: 1-15.
    [11] FDRE, Ethiopian Government Portal, 2018. Available from: http://www.ethiopia.gov.et/addis-ababa-city-administration.
    [12] Niemeyer S, New drought indices. European Commission, DG Joint Research Centre, Institute for Environment and Sustainability, T.P. 261, JRC-IES, I-21020 Ispra (VA), Italy, 2020 Availablefrom: https://om.ciheam.org/om/pdf/a80/00800451.pdf
    [13] Gebreyesus M, Cherint A, Ashine T, et al. Drought Analysis Using Reconnaissance Drought Index (RDI): In the case of Awash River Basin, Ethiopia2020. Available from: https://www.researchgate.net/publication/344440865_Drought_analysis_using_reconnaissance_drought_index_RDI_In_the_case_of_Awash_River_Basin_Ethiopia
    [14] Tigkas D, Vangelis H, Tsakiris G (2013) The RDI as a composite climatic index. E.W. Publications. European Water 41: 17-22.
    [15] McKee TB, Doesken NJ, Kleist J (1993) The relationship of drought frequency and duration of time scales. Eighth Conference on Applied Climatology, American Meteorological Society, Anaheim CA.
    [16] Aksoy H, Onoz B, Cetin M, et al. (2018) SPI-based Drought Severity-Duration-Frequency Analysis. 13th International Congress on Advances in Civil Engineering, Izmir/Turkey.
    [17] Pashiardis S, Michaelides S (2008) Implementation of the Standardized Precipitation Index (SPI) and the Reconnaissance Drought Index (RDI) for Regional Drought Assessment: A case study for Cyprus. E.W. Publications. Eur Water 23/24: 57-65.
    [18] Asadi-Zarch MA, Malekinezhad H, Mobin MH, et al. (2011) Drought Monitoring by Reconnaissance Drought Index (RDI) in Iran. Water Resour Manag 25: 3485-3504. doi: 10.1007/s11269-011-9867-1
    [19] Ansarifard S, Shamsnia SA (2018) Monitoring drought by Reconnaissance Drought Index (RDI) and Standardized Precipitation Index (SPI) using DrinC software. Water Utility J 20: 29-35.
    [20] Hayes MJ, Svoboda MD, Wilhite DA, et al. (1999) Monitoring the 1996 Drought Using the Standardized Precipitation Index. B Am Meteorol Soc 80: 429-438. doi: 10.1175/1520-0477(1999)080<0429:MTDUTS>2.0.CO;2
    [21] Zarei AR, Moghimi MM, Mahmoudi MR (2016) Analysis of Changes in Spatial Pattern of Drought Using RDI Index in south of Iran. Water Resour Manag 30: 3723-3743. doi: 10.1007/s11269-016-1380-0
    [22] Pramudya Y, Onishi T, (2018) Assessment of the Standardized Precipitation Index (SPI) in Tegal City, Central Java, Indonesia. IOP Conf. Series: Earth Environ Sci 129: 012-019.
    [23] Maroua BA, Nouiri I, (2018) Study of trends in historical variation and mapping of drought events in Tunisia: A global assessment of Standardized precipitation index (SPI) and Reconnaissance drought index (RDI) for the period 1973-2016. 3rd International Conference on Integrated Environmental Management for Sustainable Development. ISSN 1737-3638.
    [24] Vangelis H, Tigkas D, Tsakiris G, (2012) The effect of PET method on Reconnaissance Drought Index (RDI) calculation. J Arid Environ 88: 130-140. doi: 10.1016/j.jaridenv.2012.07.020
    [25] Tsakiris G, Vangelis H, Pangalou D, (2007) Regional Drought Assessment Based on the Reconnaissance Drought Index (RDI). Water Resour Manage 21: 821-833. doi: 10.1007/s11269-006-9105-4
    [26] Fitsume Y, (2014) Precipitation Extremes and their Pattern in the Central Highlands of Ethiopia: SPI Based Analysis. J Nat Sci Res 4: 92-97.
    [27] Gidey E, Dikinya O, Sebego R, et al. (2018) Modeling the Spatio-Temporal Meteorological Drought Characteristics Using the Standardized Precipitation Index (SPI) in Raya and Its Environs, Northern Ethiopia. Earth Sys Environ 2: 281-292. doi: 10.1007/s41748-018-0057-7
    [28] Spinoni J, Naumann G, Carrao H, et al. (2013) World drought frequency, duration, and severity for 1951-2010. Int J Climatol 34: 2792-2804. doi: 10.1002/joc.3875
    [29] Tigkas D, Vangelis H, Tsakiris G (2015) DrinC: a software for drought analysis based on drought indices. Earth Sci Inform 8: 697-709. doi: 10.1007/s12145-014-0178-y
    [30] Climate-Ethiopia, Climates to travel world climate guide, 2021. Available from: https://www.climatestotravel.com/climate/ethiopia.
    [31] Alemu ZA, Dioha MO (2020b) Modelling scenarios for sustainable water supply and demand in Addis Ababa city, Ethiopia. Environ Syst Res 9: 1-14.
    [32] FDRE, City Map of Addis Ababa City Administration, Ethiopia, 2020. Available from: http://www.addisababa.gov.et/de/web/guest/city-map
    [33] Rossi G, Bonaccorso B, Vega T (2007) Methods and tools for drought analysis and management, Springer Science and Business Media, Berlin. vol 62. ISBN 978-1-4020-5923-0
    [34] Tsakiris G, Nalbantis I, Pangalou D, et al. (2008) Drought meteorological monitoring network design for the reconnaissance drought index (RDI). In: Franco Lopez A. (Ed.), Proceedings of the 1st International Conference "Drought Management: scientific and technological innovations". Zaragoza, Spain: Option Méditerranéennes, Series A, 80: 57-62.
    [35] Vangelis H, Tigkas D, Tsakiris G (2013) The effect of PET method on Reconnaissance Drought Index (RDI) calculation. J Arid Environ 88: 130-140. doi: 10.1016/j.jaridenv.2012.07.020
    [36] Allen RG, Pereira LS, Raes D, et al. (1998) Crop evapotranspiration: guidelines for computing crop water requirements. FAO irrigation and drainage paper 56, 1st edition. Rome, Italy.
    [37] Hargreaves GH, Samani ZA (1985) Reference crop evapotranspiration from temperature. Appl Eng Agric 1: 96-99. doi: 10.13031/2013.26773
    [38] Tigkas D (2008) Drought Characterization and Monitoring in Regions of Greece. Eur Water 23/24: 29-39.
    [39] Khanmohammadi N, Rezaie H, Montaseri M, et al. (2017) The Effect of Temperature Adjustment on Reference Evapotranspiration and Reconnaissance Drought Index (RDI) in Iran. Water Resour Manag 31: 5001-5017. doi: 10.1007/s11269-017-1793-4
    [40] Gupta SP (2007) Statistical Methods. Seventh Revised and Enlarged Edition ed. Sultan Chand and Sons, Educational Publisher. New Delhi.
    [41] Helsel DR, Hirsch RM (2002) Statistical methods in water resources. Techniques of water-resources investigations of the United States geological survey, book 4, hydrologic analysis and interpretation. U. S. Geological survey
    [42] Philip S, Kew SF, Oldenborgh GJ, et al. (2018) Attribution Analysis of the Ethiopian Drought of 2015. American Meteorological Society 2465-2486.
    [43] Jamshidi H, Khalili D, Zadeh MR, et al. (2011) Assessment and comparison of SPI and RDI meteorological drought indices in selected synoptic stations of Iran. In World Environmental and Water Resources Congress 2011: Bearing Knowledge for Sustainability, 1161-1173.
    [44] Haied N, Foufou A, Chaab S, et al. (2017) Drought assessment and monitoring using meteorological indices in a semi-arid region. Energy Procedia 119: 518-529. doi: 10.1016/j.egypro.2017.07.064
    [45] Shah R, Bharadiya N, Manekar V (2015) Drought index computation using Standardized Precipitation Index (SPI) method for Surat district, Gujarat. J Aquat Proced 4: 1243-1249. doi: 10.1016/j.aqpro.2015.02.162
    [46] Thilakarathne M, Sridhar V (2017) Characterization of future drought conditions in the Lower Mekong River Basin. Weather Climate Extremes 17: 47-58. doi: 10.1016/j.wace.2017.07.004
    [47] Khatiwada KR, Pandey VP (2019) Characterization of hydro-meteorological drought in Nepal Himalaya: A case of Karnali River Basin. Weather Climate Extremes 26: 100239. doi: 10.1016/j.wace.2019.100239
    [48] Abdelmalek MB, Nouiri I (2020) Study of trends and mapping of drought events in Tunisia and their impacts on agricultural production. Sci Total Environ 734: 139311. doi: 10.1016/j.scitotenv.2020.139311
    [49] Almedeij J, (2014) Drought analysis for kuwait using standardized precipitation index. The Sc World J. 2014
    [50] NMSA, (1996) Climatic and agro climatic resources of Ethiopia. National Meteorology Service Agency of Ethiopia, Addis Ababa. 1: 137.
    [51] Temam D, Uddameri V, Mohammadi G, et al. (2019) Long-Term Drought Trends in Ethiopia with Implications for Dryland Agriculture. MDPI-Water 11: 2571. doi: 10.3390/w11122571
    [52] Cermak V, Bodri L, Safanda J, et al. (2019) Variability trends in the daily air temperatures series Running head: Variability trends prague. AIMS Environ Sci 6: 167-185. doi: 10.3934/environsci.2019.3.167
  • This article has been cited by:

    1. Kaihong Zhao, Existence, Stability and Simulation of a Class of Nonlinear Fractional Langevin Equations Involving Nonsingular Mittag–Leffler Kernel, 2022, 6, 2504-3110, 469, 10.3390/fractalfract6090469
    2. Saeed M. Ali, Mohammed S. Abdo, Abdellatif Ben Makhlouf, Qualitative Analysis for Multiterm Langevin Systems with Generalized Caputo Fractional Operators of Different Orders, 2022, 2022, 1563-5147, 1, 10.1155/2022/1879152
    3. Choukri Derbazi, Hadda Hammouche, Abdelkrim Salim, Mouffak Benchohra, Weak solutions for fractional Langevin equations involving two fractional orders in banach spaces, 2023, 34, 1012-9405, 10.1007/s13370-022-01035-3
    4. Songkran Pleumpreedaporn, Weerawat Sudsutad, Chatthai Thaiprayoon, Juan E. Nápoles, Jutarat Kongson, A Study of ψ-Hilfer Fractional Boundary Value Problem via Nonlinear Integral Conditions Describing Navier Model, 2021, 9, 2227-7390, 3292, 10.3390/math9243292
    5. Mohammed A. Almalahi, Satish K. Panchal, Fahd Jarad, Calogero Vetro, Multipoint BVP for the Langevin Equation under φ -Hilfer Fractional Operator, 2022, 2022, 2314-8888, 1, 10.1155/2022/2798514
    6. Kanoktip Kotsamran, Weerawat Sudsutad, Chatthai Thaiprayoon, Jutarat Kongson, Jehad Alzabut, Analysis of a Nonlinear ψ-Hilfer Fractional Integro-Differential Equation Describing Cantilever Beam Model with Nonlinear Boundary Conditions, 2021, 5, 2504-3110, 177, 10.3390/fractalfract5040177
    7. Abdulkafi M. Saeed, Mohammed A. Almalahi, Mohammed S. Abdo, Explicit iteration and unique solution for \phi -Hilfer type fractional Langevin equations, 2021, 7, 2473-6988, 3456, 10.3934/math.2022192
    8. Houas MOHAMED, Sequential fractional pantograph differential equations with nonlocal boundary conditions: Uniqueness and Ulam-Hyers-Rassias stability, 2022, 5, 2636-7556, 29, 10.53006/rna.928654
    9. Naoufel Hatime, Ali El Mfadel, M.’hamed Elomari, Said Melliani, EXISTENCE AND STABILITY OF SOLUTIONS FOR NONLINEAR FRACTIONAL DIFFERENTIAL EQUATIONS INVOLVING THE GRÖNWALL-FREDHOLM-TYPE INEQUALITY, 2024, 1072-3374, 10.1007/s10958-024-07202-0
    10. Ricardo Almeida, Euler–Lagrange-Type Equations for Functionals Involving Fractional Operators and Antiderivatives, 2023, 11, 2227-7390, 3208, 10.3390/math11143208
    11. Hamid Baghani, Juan J. Nieto, Some New Properties of the Mittag-Leffler Functions and Their Applications to Solvability and Stability of a Class of Fractional Langevin Differential Equations, 2024, 23, 1575-5460, 10.1007/s12346-023-00870-4
    12. Hacen Serrai, Brahim Tellab, Sina Etemad, İbrahim Avcı, Shahram Rezapour, Ψ-Bielecki-type norm inequalities for a generalized Sturm–Liouville–Langevin differential equation involving Ψ-Caputo fractional derivative, 2024, 2024, 1687-2770, 10.1186/s13661-024-01863-1
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(4195) PDF downloads(362) Cited by(4)

Figures and Tables

Figures(9)  /  Tables(5)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog