The increasing focus on environmentally sustainable technologies has catalyzed significant advancements in electric vehicles (EVs), marking a pivotal shift in the transportation industry. Among these developments, wireless charging technology for EVs has emerged as a transformative innovation, attracting substantial interest in research and development. These advancements aim to reduce greenhouse gas emissions, establish EVs as a primary mode of transportation, and contribute to a more sustainable future. Electric vehicles are generally categorized into hybrid and pure electric types. Hybrid EVs combine internal combustion engines with onboard energy storage systems for propulsion and charging, serving as an intermediate step toward full electrification. In contrast, pure EVs rely entirely on external energy sources, necessitating the use of dedicated charging infrastructure. Despite the widespread adoption of conductive charging methods, they face challenges such as reliance on physical connections, which can be cumbersome and inefficient. Wireless charging, particularly through contactless power transfer (CPT), has demonstrated significant potential to overcome these challenges. This technology offers key benefits, including higher efficiency, tolerance to misalignment, and reduced charging times, positioning it as a viable alternative to conventional charging methods. Recent advancements, driven by extensive research, have further enhanced the practicality and efficiency of wireless charging systems. This study investigates dynamic wireless charging systems for EVs, addressing the critical need to reduce environmental impact and enhance charging convenience. It utilizes simulations to analyze the performance of dynamic charging systems employing resonant inductive power transfer technology under real-world conditions. Variations in parameters such as alignment and gap are examined to provide insights into system performance and optimization. The findings of this research aim to advance the development of wireless charging technology, emphasizing its potential to revolutionize the transportation sector. By addressing existing challenges and offering innovative solutions, this study contributes to the pursuit of sustainable and efficient mobility systems.
Citation: Nikolaos S. Korakianitis, Nikolaou Nikolaos, Georgios A. Vokas, George Ch. Ioannidis, Stavros D. Kaminaris. Simulation-Based evaluation of dynamic wireless charging systems for electric vehicles: Efficiency, limitations, and future directions[J]. AIMS Energy, 2025, 13(3): 590-631. doi: 10.3934/energy.2025023
[1] | Yitian Wang, Xiaoping Liu, Yuxuan Chen . Semilinear pseudo-parabolic equations on manifolds with conical singularities. Electronic Research Archive, 2021, 29(6): 3687-3720. doi: 10.3934/era.2021057 |
[2] | Yaning Li, Yuting Yang . The critical exponents for a semilinear fractional pseudo-parabolic equation with nonlinear memory in a bounded domain. Electronic Research Archive, 2023, 31(5): 2555-2567. doi: 10.3934/era.2023129 |
[3] | Mingyou Zhang, Qingsong Zhao, Yu Liu, Wenke Li . Finite time blow-up and global existence of solutions for semilinear parabolic equations with nonlinear dynamical boundary condition. Electronic Research Archive, 2020, 28(1): 369-381. doi: 10.3934/era.2020021 |
[4] | Jun Zhou . Initial boundary value problem for a inhomogeneous pseudo-parabolic equation. Electronic Research Archive, 2020, 28(1): 67-90. doi: 10.3934/era.2020005 |
[5] | Qianqian Zhu, Yaojun Ye, Shuting Chang . Blow-up upper and lower bounds for solutions of a class of higher order nonlinear pseudo-parabolic equations. Electronic Research Archive, 2024, 32(2): 945-961. doi: 10.3934/era.2024046 |
[6] | Fanqi Zeng, Wenli Geng, Ke An Liu, Boya Wang . Differential Harnack estimates for the semilinear parabolic equation with three exponents on Rn. Electronic Research Archive, 2025, 33(1): 142-157. doi: 10.3934/era.2025008 |
[7] | Yang Cao, Qiuting Zhao . Initial boundary value problem of a class of mixed pseudo-parabolic Kirchhoff equations. Electronic Research Archive, 2021, 29(6): 3833-3851. doi: 10.3934/era.2021064 |
[8] | Milena Dimova, Natalia Kolkovska, Nikolai Kutev . Global behavior of the solutions to nonlinear Klein-Gordon equation with critical initial energy. Electronic Research Archive, 2020, 28(2): 671-689. doi: 10.3934/era.2020035 |
[9] | Lianbing She, Nan Liu, Xin Li, Renhai Wang . Three types of weak pullback attractors for lattice pseudo-parabolic equations driven by locally Lipschitz noise. Electronic Research Archive, 2021, 29(5): 3097-3119. doi: 10.3934/era.2021028 |
[10] | Hui Yang, Futao Ma, Wenjie Gao, Yuzhu Han . Blow-up properties of solutions to a class of p-Kirchhoff evolution equations. Electronic Research Archive, 2022, 30(7): 2663-2680. doi: 10.3934/era.2022136 |
The increasing focus on environmentally sustainable technologies has catalyzed significant advancements in electric vehicles (EVs), marking a pivotal shift in the transportation industry. Among these developments, wireless charging technology for EVs has emerged as a transformative innovation, attracting substantial interest in research and development. These advancements aim to reduce greenhouse gas emissions, establish EVs as a primary mode of transportation, and contribute to a more sustainable future. Electric vehicles are generally categorized into hybrid and pure electric types. Hybrid EVs combine internal combustion engines with onboard energy storage systems for propulsion and charging, serving as an intermediate step toward full electrification. In contrast, pure EVs rely entirely on external energy sources, necessitating the use of dedicated charging infrastructure. Despite the widespread adoption of conductive charging methods, they face challenges such as reliance on physical connections, which can be cumbersome and inefficient. Wireless charging, particularly through contactless power transfer (CPT), has demonstrated significant potential to overcome these challenges. This technology offers key benefits, including higher efficiency, tolerance to misalignment, and reduced charging times, positioning it as a viable alternative to conventional charging methods. Recent advancements, driven by extensive research, have further enhanced the practicality and efficiency of wireless charging systems. This study investigates dynamic wireless charging systems for EVs, addressing the critical need to reduce environmental impact and enhance charging convenience. It utilizes simulations to analyze the performance of dynamic charging systems employing resonant inductive power transfer technology under real-world conditions. Variations in parameters such as alignment and gap are examined to provide insights into system performance and optimization. The findings of this research aim to advance the development of wireless charging technology, emphasizing its potential to revolutionize the transportation sector. By addressing existing challenges and offering innovative solutions, this study contributes to the pursuit of sustainable and efficient mobility systems.
In this paper, we consider the following initial boundary value problem of semilinear pseudo-parabolic equations with conical degeneration
ut−ΔBut−ΔBu=|u|p−1u, (xb,˜x)∈intB,t>0, | (1.1) |
u(xb,˜x,0)=u0, (xb,˜x)∈intB, | (1.2) |
u(0,˜x,t)=0, (0,˜x)∈∂B,t≥0, | (1.3) |
where
ΔB=∇2B=(xb∂xb)2+∂2x1+...+∂2xl, |
which is the totally characteristic degeneracy operators on a stretched conical manifold, and
The classical pseudo-parabolic equation
ut−Δut−Δu=|u|p−1u, x∈Ω,t>0, | (1.4) |
defined on a bounded domain
It is well known that equation (1.4) in the domains contained in classical Euclidean space with regular boundary has been well investigated. Cao et al. [9] considered the Cauchy problem of following model
∂∂tu−k∂Δu∂t=Δu+up, x∈Rn,t>0, |
and obtained the critical global existence exponent and the critical Fujita exponent by integral representation and contraction mapping principle. Subsequently, its uniqueness was proved by Khomrutai in [27] for the case
ut−kΔut=Δu+|x|σup, x∈Rn,t>0, |
and achieved the global existence and blowup in finite time of solutions with the critical Fujita exponent and the second critical exponent respectively. They also showed that the inhomogeneous term
∂tu−Δ∂tu=Δu+V(x,t)up, x∈Rn,t>0, |
where
∂∂tu−k∂Δu∂t=Δu+up+f(x), x∈Rn,t>0, |
and revealed that small perturbation may develop large variation of solutions as time evolves. We also recommend that the reader refer to [43] to learn more about the effects of the power index of nonlinearity on the dynamical behavior of the solution. Different from above studies that focus on the influence of the nonlinearities especially the power index on the global well-posedness of the solution, [50,49,36] comprehensively studied equation (1.4) by considering the influences of the initial data on the global well-posedness and corresponding properties of solution. Depending on the potential well depth, they classified the initial data to subcritical initial energy level
∂tu−Δu−Δ∂tu=uln|u|, x∈Ω,t>0 |
and proved the global existence and the finite time blow up of solutions under the subcritical and critical initial energy case, respectively. Focusing on the high initial energy level, Xu and Wang et al [51] studied the problem proposed in [50] and gave a sufficient condition on initial data leading to blow up in finite time by the potential well method, at the same time, they also estimated the upper bound of the blowup time. As an important method to reveal the influence of initial data on the dynamical behavior of solutions, the potential well theory can be applied not only to the study of the problem of parabolic equations, but also to the study of the problem for various types of nonlinear evolution equations or systems. Xu and Lian et al [48] investigated the global well-posedness of solutions for coupled parabolic systems in the variational framework, and the initial data leading to the global existence or finite time blow up of the solution are divided. Chen and Xu [15] considered a class of damped fourth-order nonlinear wave equations with logarithmic sources. By examining the effect of weak nonlinear sources on the blow up of the solution, they revealed the confrontation mechanism between the damping structure and the nonlinear source and found the initial data that caused the solution to blow up in infinite time. For related results of polynomial nonlinear sources, we refer to [52]. Furthermore, we suggest the readers refer to [53] for the study of high order nonlinear wave equations, [54,34] for the study of damped nonlinear wave equation problems using improved potential well methods at high initial energy levels, and so on, which are representative recent results, of course we can not list all of the results obtained by the potential well theory here due to the huge amount.
Actually, geometric singularities have attracted considerable interest and have become the focus of extensive physical and mathematical research in recent years. To find static solutions of Einstein's equations coupled to brane sources, Michele [39] studied the generalizations of the so-called "football" shaped extra dimensions scenario to include two codimension branes, which can be transformed into the mathematical problem of solving the Liouville equation with singularities, where the function space he constructed can be described as a sphere with conical singularities at the brane locations. After that some cone solitons (in the case of compact surfaces) were found by Hamilton [25], where cone singularities also arise naturally on the study of such kind of solitons. Not only being widely applied in cosmology and physics, the cone singular manifold itself also brings a lot of interesting topics to pure mathematics, such as the analytic proof of the cobordism theorem [31]. Conical singularities become a hotspot mainly for reasons of two aspects. Firstly, a manifold with conical singularities is one of the most fundamental stratified spaces and the investigation on it is motivated by the desire of understanding the dynamic behavior of the solution of nonlinear evolution equations on such stratified space. Topologically these spaces are of iterated cone type, in which, due to the conical singularity, the classical differential operator cannot be applied to such manifolds. Secondly, the methods developed for the domains with smooth boundaries cannot be directly applied to domains with singularities. It is a challenge and also an interesting problem in the community to restitute the conclusions established on the smooth domain for the problems defined on the conical space.
Inspired by above, it is natural to bring some ideas and develop techniques to establish a comprehensive understanding of operator theory on the manifolds with conical singularities, which was first explored by Kondrat'ev in [29] by introducing the celebrated Mellin-Sobolev spaces
ut=Δum+V(x)up, x∈D,t>0 |
in a cone
ut−Δum=f(u,t), x∈D,t>0 | (1.5) |
Roidos and Schrohe [44] obtained some results about the existence, uniqueness and maximal
As a differential operator reflecting the diffusion form on the conical singular manifold, the emergence of the cone operator
−ΔBu=|u|p−1u, x∈intB, |
and obtained the existence of non-trivial weak solution. Moreover, they also established the well-known cone Sobolev inequality and Poincar
In order to understand the effect of different initial data belonging to
ut−ΔBu=|u|p−1u, x∈intB,t>0, |
and obtained not only the existence of global solutions with exponential decay, but also the blow up in finite time under low initial energy level and critical initial energy level. Recently, Mohsen and Morteza [1] studied the semilinear conical-degenerate parabolic equation
∂tu−ΔBu+V(x)u=g(x)|u|p−1u, x∈intB,t>0, |
where
Our goal is to obtian local and global well-posedness of solutions to problem (1.1)-(1.3). In details, by the potential well method, we classify the initial datum and give a threshold condition, which tells us that as long as the initial datum falls into the specified invariant set and the initial energy satisfies
The content of this paper is arranged as follows. In Section 2, we give the geometric description of conical singularities, the definitions of the weighted Sobolev spaces and several propositions of the manifold with conical singularities. Then we introduce the potential well structure for problem (1.1)-(1.3) and prove a series of corresponding properties in Section 3. Section 4 is concerned with the local existence and uniqueness theory. In Section 5, we not only prove the invariant manifolds, global existence and decay of solutions to describe the corresponding asymptotic behavior, but also prove the finite time blow up of solutions and estimate the lower bound of blowup time in Theorem 5.2. In Section 6, we give a sufficient condition to obtain the finite time blow up of the solution in Theorem 6.4. In particular, we also estimate the upper bound of the blowup time of the solution. Finally, some remarks and acknowledgements about this paper are given.
In this section, main definitions of the manifold with conical singularities together with a brief description of its properties are given, for more details we refer to [45,18] and the references therein. Furthermore, we introduce some functional inequalities on the manifold with conical singularity, for more applications of these inequalities one can refer to [12,13].
For
XΔ={ˆx∈R1+l | ˆx=0 or ˆx|ˆx|∈X}. |
The polar coordinates
Now we extend it to a more general situation by describing the singular space associated with a manifold with conical singularities. A finite dimensional manifold
a)
b) Any
By above assumptions we can define the stretched manifold associated with
B−B0≅B−∂B:=intB. |
Furthermore, the restriction of this diffeomorphism to
The typical differential operators on a manifold with conical singularities, i.e., the so-called Fuchsian type operators in a neighborhood of
A:=x−μbμ∑k=0ak(xb)(−xb∂∂xb)k |
with
Definition 2.1 (The space
Hm,γp(Rn+):={u∈D′(Rn+) | xNp−γb(xb∂xb)k∂α˜xu∈Lp(Rn+)} |
for any
Therefore,
‖u‖Hm,γp(Rn+)=∑k+|α|≤m(∫R+∫RNxNb|x−γb(xb∂xb)k∂α˜xu(xb,˜x)|pdxbxbd˜x)1p. |
Definition 2.2 ([45] The space
(ⅰ) Let
‖u‖Hm,γp(X∧)=(N∑j=1‖(1×χ∗j)−1ψju‖pHm,γp(Rn+))1p, |
where
(ⅱ) Let
Hm,γp(B)={u∈Wm,ploc(intB) | ωu∈Hm,γp,0(X∧)} |
for any cut-off function
Hm,γp,0(B)=[ω]Hm,γp,0(X∧)+[1−ω]Wm,p0(intB), |
where the classical Sobolev space
Proposition 1 (Cone Sobolev inequality [12]). Assuming
‖u‖Lγ∗p∗(Rn+)≤c1‖(xb∂xb)u‖Lγp(Rn+)+(c1+c2)n∑i=1‖∂xiu‖Lγp(Rn+)+c2c3‖u‖Lγp(Rn+) | (2.1) |
holds, where
c1=(n−1)pn(n−p), |
c2=(n−1)p|(n−1)−(γ−1)(n−1)pn−p|1nn(n−p) |
and
c3=(n−1)pn−p. |
Moreover, for
‖u‖Lγ∗p∗(Rn+)≤C∗‖u‖H1,γp,0(Rn+), |
where
Proposition 2 (Cone Poincar
‖u(xb,˜x)‖Lγp(B)≤c‖∇Bu(xb,˜x)‖Lγp(B), |
where the optimal constant
Proposition 3 (Cone Hölder inequality [13]). If
∫B|uv|dxbxbd˜x≤(∫B|u|pdxbxbd˜x)1p(∫B|v|p′dxbxbd˜x)1p′. |
Proposition 4 (Eigenvalue problem [13]). There exist
{−ΔBψk=λkψk, (xb,˜x)∈intB,ψk=0, (xb,˜x)∈∂B, |
admits a non-trivial solution in
In order to state our main results, we shall introduce some definitions and notations as follows. In the sequel, for convenience we denote
(u,v)B=∫Buvdxbxbd˜x and ‖u‖Lnpp(B)=(∫B|u|pdxbxbd˜x)1p. |
Furthermore, we denote
Throughout the paper,
Definition 3.1. (Weak solution). A function
(ⅰ)
(ⅱ)
(ⅲ) for any
∫But(t)ηdxbxbd˜x+∫B∇But(t)∇Bηdxbxbd˜x+∫B∇Bu(t)∇Bηdxbxbd˜x |
=∫B|u(t)|p−1u(t)ηdxbxbd˜x |
holds for a.e.
Let us introduce the following functionals on the cone Sobolev space
J(u)=12∫B|∇Bu|2dxbxbd˜x−1p+1∫B|u|p+1dxbxbd˜x | (3.1) |
and the so-called Nehari functional
I(u)=∫B|∇Bu|2dxbxbd˜x−∫B|u|p+1dxbxbd˜x. | (3.2) |
Then
The weak solution
∫t0‖ut(τ)‖2H1,n22,0(B)dτ+J(u(t))=J(u0), 0≤t<T. | (3.3) |
By making use of the functionals above, we define the potential well depth
d=inf | (3.4) |
where the Nehari manifold
\begin{align} \mathcal{N} = \left\{u\in\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})\ \Big|\ I(u(t)) = 0,\int_{\mathbb{B}}|\nabla_{\mathbb{B}}u(t)|^{2}\frac{{\rm d}x_b}{x_b}{\rm d}\widetilde{x}\neq0\right\} \end{align} | (3.5) |
separates the whole space
\begin{align} \mathcal{N}_{+} = \left\{u\in\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})\ \Big|\ I(u(t)) > 0\right\} \end{align} | (3.6) |
and
\begin{align} \mathcal{N}_{-} = \left\{u\in\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})\ \Big|\ I(u(t)) < 0\right\}. \end{align} | (3.7) |
Furthermore, we introduce the following potential well
\begin{align} \mathcal{W}: = \mathcal{N}_{+} \cup \{0\} \end{align} | (3.8) |
and the outside of the corresponding potential well
\begin{align} \mathcal{V}: = \mathcal{N}_{-}. \end{align} | (3.9) |
Now, we give some corresponding properties of the potential well as follows.
Lemma 3.2 (The properties of the energy functional
(i)
(ii) there exist a unique
(iii)
(iv)
Proof. (ⅰ) From the definition of
\begin{align*} j(\lambda) = J(\lambda u) = \frac{\lambda^{2}}{2}\int_{\mathbb{B}}|\nabla_{\mathbb{B}}u|^{2}\frac{{\rm d}x_b}{x_b}{\rm d}\widetilde{x}-\frac{\lambda^{p+1}}{p+1} \int_{\mathbb{B}}|u|^{p+1}\frac{{\rm d}x_b}{x_b}{\rm d}\widetilde{x}, \end{align*} |
which gives
(ⅱ) An easy calculation shows that
\begin{align} j'(\lambda) = \lambda\left(\int_{\mathbb{B}}|\nabla_{\mathbb{B}}u|^{2}\frac{{\rm d}x_b}{x_b}{\rm d}\widetilde{x}-\lambda^{p-1} \int_{\mathbb{B}}|u|^{p+1}\frac{{\rm d}x_b}{x_b}{\rm d}\widetilde{x}\right). \end{align} | (3.10) |
Then taking
\begin{align*} \lambda^{*} = \left(\frac{\int_{\mathbb{B}}|\nabla_{\mathbb{B}}u|^{2}\frac{{\rm d}x_b}{x_b}{\rm d}\widetilde{x}}{\int_{\mathbb{B}}|u|^{p+1} \frac{{\rm d}x_b}{x_b}{\rm d}\widetilde{x}}\right)^{\frac{1}{p-1}} > 0. \end{align*} |
(ⅲ) By a direct calculation, (3.10) gives
(ⅳ) The conclusion follows from
\begin{align*} i(\lambda) = I(\lambda u) = \lambda^{2}\int_{\mathbb{B}}|\nabla_{\mathbb{B}}u|^{2}\frac{{\rm d}x_b}{x_b}{\rm d}\widetilde{x}-\lambda^{p+1} \int_{\mathbb{B}}|u|^{p+1}\frac{{\rm d}x_b}{x_b}{\rm d}\widetilde{x} = \lambda j'(\lambda). \end{align*} |
Next we give the relationship between
Lemma 3.3 (The properties of the Nehari functional
(i) If
(ii) If
(iii) If
Proof. (ⅰ) From
\begin{align*} \int_{\mathbb{B}}|u|^{p+1}\frac{{\rm d}x_b}{x_b}{\rm d}\widetilde{x}&\leq C^{p+1}_{*}\|u\|^{p+1}_{\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})} < C^{p+1}_{*}r^{p-1}\|u\|^{2}_{\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})}\\& = \frac{1}{c^2+1}\|u\|^{2}_{\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})} \le \|\nabla_{\mathbb{B}}u\|^2_{L^{\frac{n}{2}}_{2}(\mathbb{B})}. \end{align*} |
Then by the definitions of
(ⅱ) It is easy to see that
\begin{align*} \|u\|^{2}_{\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})} & = \int_{\mathbb{B}}|\nabla_{\mathbb{B}}u|^{2}\frac{{\rm d}x_b}{x_b}{\rm d}\widetilde{x}+\int_{\mathbb{B}}|u|^{2}\frac{{\rm d}x_b}{x_b}{\rm d}\widetilde{x}\\ &\leq (c^2+1)\int_{\mathbb{B}}|\nabla_{\mathbb{B}}u|^{2}\frac{{\rm d}x_b}{x_b}{\rm d}\widetilde{x}\\ & < (c^2+1)\int_{\mathbb{B}}|u|^{p+1}\frac{{\rm d}x_b}{x_b}{\rm d}\widetilde{x} \notag\\ &\leq (c^2+1)C^{p+1}_{*}\|u\|^{p+1}_{\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})}, \notag \end{align*} |
then we get
\begin{align*} \|u\|_{\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})} > \left(\frac{1}{ (c^2+1)C^{p+1}_{*}}\right)^{\frac{1}{p-1}} = r. \end{align*} |
(ⅲ) If
\begin{align*} \|u\|^{2}_{\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})}& = \int_{\mathbb{B}}|\nabla_{\mathbb{B}}u|^{2}\frac{{\rm d}x_b}{x_b}{\rm d}\widetilde{x}+\int_{\mathbb{B}}|u|^{2}\frac{{\rm d}x_b}{x_b}{\rm d}\widetilde{x}\\ &\leq (c^2+1)\int_{\mathbb{B}}|\nabla_{\mathbb{B}}u|^{2}\frac{{\rm d}x_b}{x_b}{\rm d}\widetilde{x}\\ & = (c^2+1)\int_{\mathbb{B}}|u|^{p+1}\frac{{\rm d}x_b}{x_b}{\rm d}\widetilde{x} \notag\\ &\leq (c^2+1)C^{p+1}_{*}\|u\|^{p+1}_{\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})}, \notag \end{align*} |
we get
The depth
Lemma 3.4 (The potential well depth). Suppose that
\begin{align} d = \inf\limits_{u\in\mathcal{N}}J(u) = \frac{p-1}{2(p+1)}\left(\frac{1}{ (c^2+1)^{\frac{p+1}{2}}C^{p+1}_{*}}\right)^{\frac{2}{p-1}}, \end{align} | (3.11) |
where
Proof. Suppose that
\begin{align*} J(u)& = \left(\frac{1}{2}-\frac{1}{p+1}\right)\int_{\mathbb{B}}|\nabla_{\mathbb{B}}u|^{2}\frac{{\rm d}x_b}{x_b}{\rm d}\widetilde{x}+\frac{1}{p+1}I(u) \\ &\geq\left(\frac{1}{2}-\frac{1}{p+1}\right)\frac{1}{c^2+1}\|u\|^{2}_{\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})} \notag\\ &\geq \frac{p-1}{2(p+1)(c^2+1)}r^{2},\notag \end{align*} |
which gives (3.11).
Lemma 3.5 (Osgood Lemma, [10]). Let
\rho(t)\le a+\int^{t}_{t_0}\gamma(s)\mu(\rho(s)){\rm d}s, |
holds almost everywhere for
-M(\rho(t))+M(a)\le \int^{t}_{t_0}\gamma(s){\rm d}s, |
is true almost everywhere for
In this section, we prove the local existence of the solution of problem (1.1)-(1.3). The local existence theorem is given as follows,
Theorem 4.1 (Local existence). Suppose that
T_{\max} = \sup\{T > 0: u = u(t)\ \mathit{\text{exists on}}\ [0,T]\} < \infty, |
then
\lim\limits_{t\rightarrow T_{\max}}\| u(t)\|_{\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})} = \infty. |
Proof. We divide the proof into 2 steps.
Step 1. Local exisence. We prove the local existence of the solution to problem (1.1)-(1.3) by virtue of the Galerkin method and the compactness property [35]. For the initial data
\begin{align} u_{m0} = \sum\limits^{m}_{j = 1}(\nabla_{\mathbb{B}}u_0,\nabla_{\mathbb{B}}\psi_{j})_{\mathbb{B}}\psi_{j},\ m\in \mathbb{N}^+ \end{align} | (4.1) |
such that
\begin{align} u_{m0}\rightarrow u_0\ \text{in}\ \mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})\ \text{as}\ m\rightarrow \infty. \end{align} | (4.2) |
For all
\begin{align} u_{m}(t, x_b, \widetilde{x}) = \sum^{m}_{j = 1}g_{mj}(t)\psi_{j}(x_b, \widetilde{x}), \end{align} | (4.3) |
which solves the problem
\begin{align} \begin{cases} (u_{mt}(t),\psi_{j})_{\mathbb{B}} +(\nabla_{\mathbb{B}}u_{mt}(t),\nabla_{\mathbb{B}}\psi_{j})_{\mathbb{B}} +(\nabla_{\mathbb{B}}u_m(t),\nabla_{\mathbb{B}}\psi_{j})_{\mathbb{B}} = (|u_m(t)|^{p-1}u_m(t),\psi_{j})_{\mathbb{B}},\\ u_{m}(0,x_b, \widetilde{x}) = u_{m0}, \end{cases} \end{align} | (4.4) |
for
\begin{align} \begin{cases} (1+\lambda_j)g_{mjt}(t)+\lambda_jg_{mj}(t) = (|u_m(t)|^{p-1}u_m(t),\psi_j)_{\mathbb{B}},\\ g_{mj}(0) = (\nabla_{\mathbb{B}}u_0,\nabla_{\mathbb{B}}\psi_j)_{\mathbb{B}},\ j = 1,2,...,m. \end{cases} \end{align} | (4.5) |
One can deduce that for any fixed
\begin{align*} &(u_{mt}(t), u_{mt}(t))_{\mathbb{B}}+(\nabla_{\mathbb{B}}u_{mt}(t),\nabla_{\mathbb{B}}u_{mt}(t))_{\mathbb{B}}+(\nabla_{\mathbb{B}}u_m(t),\nabla_{\mathbb{B}}u_{mt}(t))_{\mathbb{B}} \\& = (|u_m(t)|^{p-1}u_m(t), u_{mt}(t))_{\mathbb{B}}, \end{align*} |
which tells us that for all
\begin{align} &\|u_{mt}(t)\|^2_{L^{\frac{n}{2}}_{2}(\mathbb{B})}+\|\nabla_{\mathbb{B}}u_{mt}(t)\|^2_{L^{\frac{n}{2}}_{2}(\mathbb{B})}+\frac{1}{2}\frac{{\rm d}}{{\rm d}t}\|\nabla_{\mathbb{B}}u_{m}(t)\|^2_{L^{\frac{n}{2}}_{2}(\mathbb{B})}\\ = &\int_{\mathbb{B}}|u_m(t)|^{p-1}u_m(t)u_{mt}(t)\frac{{\rm d}x_b}{x_b}{\rm d}\widetilde{x}. \end{align} | (4.6) |
For the last term in equation (4.6), by using the cone Hölder inequality (Proposition 1), cone Sobolev inequality (Proposition 3) and Young's inequality, we deduce
\begin{align} \int_{\mathbb{B}}|u_m(t)|^{p-1}u_m(t)u_{mt}(t)\frac{{\rm d}x_b}{x_b}{\rm d}\widetilde{x} \le&\int_{\mathbb{B}}|u_m(t)|^{p}|u_{mt}(t)|\frac{{\rm d}x_b}{x_b}{\rm d}\widetilde{x}\\ \le&\|u_{mt}(t)\|_{L^{\frac{n}{p+1}}_{p+1}(\mathbb{B})}\|u_m(t)\|^p_{L^{\frac{n}{p+1}}_{p+1}(\mathbb{B})}\\ \le&C^{p+1}_*\|\nabla_\mathbb{B}u_{mt}(t)\|_{L^{\frac{n}{2}}_{2}(\mathbb{B})}\|\nabla_\mathbb{B}u_m(t)\|^p_{L^{\frac{n}{2}}_{2}(\mathbb{B})}\\ \le&\frac12\|\nabla_\mathbb{B}u_{mt}(t)\|^2_{L^{\frac{n}{2}}_{2}(\mathbb{B})}+\frac{C^{2(p+1)}_*}{2}\|\nabla_\mathbb{B}u_m(t)\|^{2p}_{L^{\frac{n}{2}}_{2}(\mathbb{B})}, \end{align} | (4.7) |
which together with (4.6) gives,
\begin{align} \|u_{mt}(t)\|^2_{\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})}+\frac{{\rm d}}{{\rm d}t}\|\nabla_{\mathbb{B}}u_{m}(t)\|^2_{L^{\frac{n}{2}}_{2}(\mathbb{B})}\le C^{2(p+1)}_*\|\nabla_\mathbb{B}u_m(t)\|^{2p}_{L^{\frac{n}{2}}_{2}(\mathbb{B})},t\in[0,t_m]. \end{align} | (4.8) |
Integrating (4.8) over
\begin{align*} &\|\nabla_{\mathbb{B}}u_{m}(t)\|^2_{L^{\frac{n}{2}}_{2}(\mathbb{B})}+\int^{t}_{0}\|u_{mt}(s)\|^{2}_{\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})}{\rm d}s \\&\le \|\nabla_{\mathbb{B}}u_{m}(0)\|^2_{L^{\frac{n}{2}}_{2}(\mathbb{B})} +C_*^{2(p+1)}\int^{t}_{0}\|\nabla_\mathbb{B}u_m(s)\|^{2p}_{L^{\frac{n}{2}}_{2}(\mathbb{B})}{\rm d}s, \end{align*} |
which combining the formula (4.2) and the fact
\begin{align} \|\nabla_{\mathbb{B}}u_{m}(t)\|^2_{L^{\frac{n}{2}}_{2}(\mathbb{B})}+\int^{t}_{0}\|u_{mt}(s)\|^{2}_{\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})}{\rm d}s \le R^2 +C_*^{2(p+1)}\int^{t}_{0}\|\nabla_\mathbb{B}u_m(s)\|^{2p}_{L^{\frac{n}{2}}_{2}(\mathbb{B})}{\rm d}s, \end{align} | (4.9) |
for
For any fixed
\rho(t) = \sum\limits^m_{j = 1}\lambda_j|g_{mj}(t)|^2\le m\max\limits_{1\le j\le m}\left(\lambda_j\max\limits_{t\in[0,t_m]} |g_{mj}(t)|^2\right): = \alpha_m < +\infty, |
which implies that
\begin{align*} \gamma(s)&\equiv C^{2(p+1)}_*:[0,t_m]\rightarrow \mathbb{R}\ \text{is a locally integrable, positive function},\\ \mu(s)& = s^p:[0,\alpha_{m}]\rightarrow [0,+\infty)\ \text{is a continuous, non-decreasing function}, \end{align*} |
which satisfies
\begin{align*} M(\nu) = \int^{\alpha_m}_\nu\frac{{\rm d}s}{\mu(s)} = \frac{1}{p-1}\left(\nu^{-(p-1)}-\alpha_m^{-(p-1)}\right). \end{align*} |
Therefore, we have
\begin{align*} -M(\rho(t))+M(a)\le \int^t_0\gamma(s){\rm d}s = C^{2(p+1)}_* t, \end{align*} |
that is,
\begin{align*} \frac{1}{p-1}\left(\alpha_m^{-(p-1)}-\|\nabla_{\mathbb{B}}u_{m}(t)\|^{-2(p-1)}_{L^{\frac{n}{2}}_{2}(\mathbb{B})}\right) +\frac{1}{p-1}\left(R^{-2(p-1)}-\alpha_m^{-(p-1)}\right)\le C^{2(p+1)}_* t. \end{align*} |
By a simple calculation, we obtain
\begin{align} \|\nabla_{\mathbb{B}}u_{m}(t)\|^2_{L^{\frac{n}{2}}_{2}(\mathbb{B})}\leq \left[R^{2(1-p)}-(p-1)C_*^{2(p+1)} t \right]^{-\frac{1}{p-1}}, \ \ t\in[0,t_m]. \end{align} | (4.10) |
Taking
\begin{align} T = T(R): = \frac{R^{2(1-p)}}{2 (p-1)C_*^{2(p+1)}}, \end{align} | (4.11) |
it follows from estimates (4.9)-(4.11) that
\begin{equation} \|\nabla_{\mathbb{B}}u_{m}(t)\|^2_{L^{\frac{n}{2}}_{2}(\mathbb{B})}+\int^{t}_{0}\|u_{mt}(s)\|^{2}_{\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})}{\rm d}s\le C(R),\ \ t\in[0, T],\ m\ge m_0, \end{equation} | (4.12) |
where
\begin{equation*} C(R) = R^2\left(1+\frac{2^{\frac{1}{p-1}}}{p-1}\right). \end{equation*} |
Then combining with (4.12) and Proposition 1 we obtain
\begin{equation} \||u_m(t)|^{p-1}u_m(t)\|_{L^{\frac{np}{p+1}}_{\frac{p+1}{p}}(\mathbb{B})} = \|u_m(t)\|^p_{L^{\frac{n}{p+1}}_{p+1}(\mathbb{B})}\leq C_*^{p}\|\nabla_{\mathbb{B}}u_{m}(t)\|^p_{L^{\frac{n}{2}}_{2}(\mathbb{B})}\leq \left(C_*\sqrt{C(R)}\right)^{p} \end{equation} | (4.13) |
for all
\begin{align*} &\{u_m\}\ \ \hbox{is bounded in}\ \ L^\infty(0, T; \mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})),\\ &\{u_{mt}\}\ \ \hbox{is bounded in}\ \ L^2(0, T; \mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})),\\ &\{|u_m|^{p-1}u_m\}\ \ \hbox{is bounded in}\ \ L^\infty(0, T; L^{\frac{np}{p+1}}_{\frac{p+1}{p}}(\mathbb{B})). \end{align*} |
Hence, by the Aubin-Lions-Simon Lemma [46] and the weak compactness there exist a
\begin{equation} \begin{split} &u_{m}\rightarrow u\ \hbox{in}\ L^{\infty}(0,T;\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B}))\ \hbox{weakly star}, \\ &u_{m}\rightarrow u\ \hbox{in}\ C([0, T]; L^{\frac{n}{2}}_{2}(\mathbb{B}))\ \hbox{and a.e. in}\ [0, T]\times \text{int}\mathbb{B},\\ & u_{mt}\rightarrow u_t\ \hbox{in}\ L^2(0, T;\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B}))\ \hbox{weakly},\\ & |u_{m}|^{p-1}u_m\rightarrow \chi \ \hbox{in}\ L^\infty(0,T; L^{\frac{np}{p+1}}_{\frac{p+1}{p}}(\mathbb{B}))\ \hbox{weakly star}, \end{split} \end{equation} | (4.14) |
which together with the Lions Lemma [35,Chap. 1,p12] deduce that
\begin{equation*} \chi = |u|^{p-1}u. \end{equation*} |
Then for each
\begin{align*} &\int_{\mathbb{B}}u_{t}(t) \psi_{j}\frac{{\rm d}x_b}{x_b}{\rm d}\widetilde{x} + \int_{\mathbb{B}}\nabla_{\mathbb{B}}u(t)\nabla_{\mathbb{B}} \psi_{j}\frac{{\rm d}x_b}{x_b}{\rm d}\widetilde{x} +\int_{\mathbb{B}}\nabla_{\mathbb{B}}u_{t}(t)\nabla_{\mathbb{B}}\psi_{j}\frac{{\rm d}x_b}{x_b}{\rm d}\widetilde{x} \\& = \int_{\mathbb{B}}|u(t)|^{p-1}u(t)\psi_{j}\frac{{\rm d}x_b}{x_b}{\rm d}\widetilde{x} \end{align*} |
for a.e.
\begin{align*} (u_{t}(t), \eta)_{\mathbb{B}} +(\nabla_{\mathbb{B}}u(t), \nabla_{\mathbb{B}}\eta)_{\mathbb{B}} +(\nabla_{\mathbb{B}}u_{t}(t), \nabla_{\mathbb{B}}\eta)_{\mathbb{B}} = \int_{\mathbb{B}}|u(t)|^{p-1}u(t) \eta\frac{{\rm d}x_b}{x_b}{\rm d}\widetilde{x} \end{align*} |
for a.e.
\begin{equation} \|\nabla_{\mathbb{B}}u(t)\|^2_{L^{\frac{n}{2}}_{2}(\mathbb{B})}+\int^{t}_{0}\|u_{t}(s)\|^{2}_{\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})}{\rm d}s\le C(R),\ \ t\in[0, T]. \end{equation} | (4.15) |
Moreover, it follows from the fact
\begin{equation*} u_{m0} = u_m(0)\rightarrow u(0)\ \ \hbox{in}\ \ L^{\frac{n}{2}}_{2}(\mathbb{B}), \end{equation*} |
which combining with (4.2) implies that
\begin{equation*} u(0) = u_0\ \ \hbox{in}\ \ \mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B}). \end{equation*} |
Thus,
Step 2. Uniqueness. Suppose that there are two solutions
\begin{align} &w_{t}-\Delta_{\mathbb{B}} w_{t}-\Delta_{\mathbb{B}}w = |u|^{p-1}u-|v|^{p-1}v, && (x_b, \widetilde{x})\in \text{int}\mathbb{B},t > 0, \end{align} | (4.16) |
\begin{align} &w(x_b, \widetilde{x},0) = 0,&& (x_b, \widetilde{x})\in \text{int}\mathbb{B}, \end{align} | (4.17) |
\begin{align} &w(0, \widetilde{x},t) = 0, && (0, \widetilde{x})\in\partial \mathbb{B},t\ge0. \end{align} | (4.18) |
Since
\begin{equation} \begin{split} & \frac{\mathrm d}{\mathrm d t}\left(\|w\|^2_{L^{\frac{n}{2}}_{2}(\mathbb{B})}+\|\nabla_{\mathbb{B}}w\|^2_{L^{\frac{n}{2}}_{2}(\mathbb{B})}\right)+ 2\|\nabla_{\mathbb{B}}w\|^2_{L^{\frac{n}{2}}_{2}(\mathbb{B})}\\ = \ &2\int_{\mathbb{B}}\left(|u|^{p-1}u-|v|^{p-1}v\right)w \frac{{\rm d}x_b}{x_b}{\rm d}\widetilde{x}, \ \ t\in [0, T], \end{split} \end{equation} | (4.19) |
For the last term in equation (4.19), by using the cone Hölder inequality (Proposition 1), cone Sobolev inequality (Proposition 3) and estimate (4.15), we deduce
\begin{equation*} \begin{split} &2\int_{\mathbb{B}}\left(|u|^{p-1}u-|v|^{p-1}v\right)w \frac{{\rm d}x_b}{x_b}{\rm d}\widetilde{x}\\ = \ & 2p\int_{\mathbb{B}}\int_0^1|\theta u+(1-\theta)v|^{p-1}|w|^2 {\rm d} \theta \frac{{\rm d}x_b}{x_b}{\rm d}\widetilde{x} \\ \leq\ & 2p\int_{\mathbb{B}}\left(|u|^{p-1}+|v|^{p-1}\right)|w|^2\frac{{\rm d}x_b}{x_b}{\rm d}\widetilde{x}\\ \leq\ & 2p \left( \|u\|^{p-1}_{L^{\frac{n}{p+1}}_{p+1}(\mathbb{B})}+ \|v\|^{p-1}_{L^{\frac{n}{p+1}}_{p+1}(\mathbb{B})}\right) \|w\|^2_{L^{\frac{n}{p+1}}_{p+1}(\mathbb{B})}\\ \leq\ & 2pC_*^{p+1} \left( \|\nabla_\mathbb{B}u\|^{p-1}_{L^{\frac{n}{2}}_{2}(\mathbb{B})}+ \|\nabla_\mathbb{B}v\|^{p-1}_{L^{\frac{n}{2}}_{2}(\mathbb{B})}\right) \|\nabla_\mathbb{B}w\|^2_{L^{\frac{n}{2}}_{2}(\mathbb{B})}\\ \leq\ & C_1(R)\|\nabla_\mathbb{B}w\|^2_{L^{\frac{n}{2}}_{2}(\mathbb{B})}, \ \ t\in [0, T], \end{split} \end{equation*} |
with
\begin{equation} \frac{\mathrm d}{\mathrm d t}\left(\|w\|^2_{L^{\frac{n}{2}}_{2}(\mathbb{B})}+\|\nabla_{\mathbb{B}}w\|^2_{L^{\frac{n}{2}}_{2}(\mathbb{B})}\right)\leq C_1(R)\left(\|w\|^2_{L^{\frac{n}{2}}_{2}(\mathbb{B})} +\|\nabla_{\mathbb{B}}w\|^2_{L^{\frac{n}{2}}_{2}(\mathbb{B})}\right),\ \ t\in[0,T]. \end{equation} | (4.20) |
Applying the Gronwall inequality to (4.20) and making use of (4.17), we have
\begin{equation*} \|w(t)\|^2_{\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})}\leq e^{C_1(R) t} \|w(0)\|^2_{\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})} = 0,\ \ \forall t\in [0, T], \end{equation*} |
which leads to the uniqueness of weak solution.
Concerning formula (4.11) we observe that the local existence time
\begin{align} \limsup\limits_{t\rightarrow T_{\max}}\|\nabla_{\mathbb{B}} u(t)\|^2_{L^{\frac{n}{2}}_{2}(\mathbb{B})} = +\infty. \end{align} | (4.21) |
In fact, if
\sup\limits_{t\in [0,T_{\max})}\|\nabla_{\mathbb{B}} u(t)\|^2_{L^{\frac{n}{2}}_{2}(\mathbb{B})}\le M(T_{\max}), |
then for any
Moreover, we give the following corollary.
Corollary 1 (Blow-up of the weak solution). Suppose that
\begin{align*} \lim\limits_{t\rightarrow T_{\max}}\|u(t)\|^2_{L^{\frac{n}{s}}_{s}(\mathbb{B})} = \infty\ \ \ \mathit{\text{for}}\ \ \ s\geq \max \left\{1,\frac{n(p-1)}{2}\right\}. \end{align*} |
Proof. Recalling the definition of energy functional
\begin{align*} \frac{1}{2}\|\nabla_\mathbb{B}u\|^2_{L^{\frac{n}{2}}_{2}(\mathbb{B})} \leq \frac{1}{p+1}\|u\|^{p+1}_{L^{\frac{n}{p+1}}_{p+1}(\mathbb{B})}+J(u_0)\ \text{for all}\ t \in [0,T_{\max}). \end{align*} |
Combining with the following Gagliardo-Nirenberg interpolation inequality
\begin{align*} \|u\|_{L^{\frac{n}{B_1}}_{B_1}(\mathbb{B})} \leq C\|\nabla_\mathbb{B}u\|^{a}_{L^{\frac{n}{B_2}}_{B_2}(\mathbb{B})} \|u\|^{1-a}_{L^{\frac{n}{B_3}}_{B_3}(\mathbb{B})} \end{align*} |
for
\begin{align*} \frac{1}{2}\|\nabla_\mathbb{B}u\|^2_{L^{\frac{n}{2}}_{2}(\mathbb{B})}-J(u_0) \leq \frac{1}{p+1}\|u\|^{p+1}_{L^{\frac{n}{p+1}}_{p+1}(\mathbb{B})} \leq C\|\nabla_\mathbb{B}u\|^{(p+1)a}_{L^{\frac{n}{2}}_{2}(\mathbb{B})} \|u\|^{(p+1)(1-a)}_{L^{\frac{n}{s}}_{s}(\mathbb{B})}, \end{align*} |
where
\begin{align*} \frac{1}{2}\|\nabla_\mathbb{B}u\|^{2-(p+1)a}_{L^{\frac{n}{2}}_{2}(\mathbb{B})} -J(u_0)\|\nabla_\mathbb{B}u\|^{-(p+1)a}_{L^{\frac{n}{2}}_{2}(\mathbb{B})} \leq C\|u\|^{(p+1)(1-a)}_{L^{\frac{n}{s}}_{s}(\mathbb{B})}, \end{align*} |
which implies that
In this section, we study the well-posedness of solutions of problem (1.1)-(1.3) in the case of sub-critical and critical initial energy levels. The succeeding result is given to show the invariant sets of the solution for problem (1.1)-(1.3).
Lemma 5.1. Suppose that
(i) all weak solutions of problem (1.1)-(1.3) belong to
(ii) all weak solutions of problem (1.1)-(1.3) belong to
Proof. (ⅰ) Suppose that
\begin{align} \int^{t_0}_{0}\|u_t(\tau)\|^{2}_{\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})}{\rm d}\tau+J(u(t_0)) = J(u_{0}) < d \end{align} | (5.1) |
for any
(ⅱ) Similar to the proof of (i), we can obtain that
Theorem 5.2 (Global existence and asymptotic behavior). Suppose that
\begin{equation} \|u(t)\|^{2}_{\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})}+\int^{t}_{0}\|u_t(\tau)\|^{2}_{\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})}{\rm d}\tau < \left(1+\frac{2(p+1)(c^2+1)}{p-1}\right)d,\ \ t\ge0. \end{equation} | (5.2) |
Moreover, the solution satisfies the estimate
\begin{align*} \|u\|^{2}_{\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})}\leq e^{-2\beta t}\|u_0\|^{2}_{\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})},\ \ \ 0\leq t < \infty, \end{align*} |
where
Proof. We divide the proof into two parts, which are the global existence and the asymptotic behavior.
Part Ⅰ: Global existence.
First, we give the global existence of the solution of problem (1.1)-(1.3) for
Since the conclusion is trivial when
\begin{equation} J(u(t)) = \frac{p-1}{2(p+1)}\|\nabla_{\mathbb{B}}u(t)\|^{2}_{L^{\frac{n}{2}}_{2}(\mathbb{B})}+\frac{1}{p+1}I(u(t)) \end{equation} | (5.3) |
and
\begin{align} \int^{t}_{0}\|u_t(\tau)\|^{2}_{\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})}{\rm d}\tau+J(u(t)) = J(u_{0}) < d. \end{align} | (5.4) |
for all
\begin{align*} u(t)\in\mathcal{W},\ \text{for all}\ 0 < t < T_{\max}, \end{align*} |
which implies
\begin{equation} I(u(t)) > 0\ \ \hbox{for all}\ \ 0 < t < T_{\max}. \end{equation} | (5.5) |
Thus, the combination of (5.3)-(5.5) and Proposition 1 shows that
\begin{equation} \|u(t)\|^{2}_{\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})}+\int^{t}_{0}\|u_t(\tau)\|^{2}_{\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})}{\rm d}\tau < \left(1+\frac{2(p+1)(c^2+1)}{p-1}\right)d,\ \ 0 < t < T_{\max}. \end{equation} | (5.6) |
Therefore, by virtue of the Continuation Principle, it follows
For the case
Let
\begin{align} &u_{t}-\Delta_{\mathbb{B}} u_{t}-\Delta_{\mathbb{B}}u = |u|^{p-1}u,&& (x_b, \widetilde{x})\in \text{int}\mathbb{B},t > 0, \end{align} | (5.7) |
\begin{align} &u(x_b, \widetilde{x},0) = u_{k}(0),&& (x_b, \widetilde{x})\in \text{int}\mathbb{B}, \end{align} | (5.8) |
\begin{align} &u(0, \widetilde{x},t) = 0,&& (0, \widetilde{x})\in\partial \mathbb{B},t\ge0, \end{align} | (5.9) |
according to Theorem 4.1 and the estimate (5.6), we know that the weak solution
\begin{align} \int^{t}_{0}\|u_{t}(\tau)\|^{2}_{\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})}{\rm d}\tau+J(u(t)) = J(u_k(0)), 0 < t < T_{\max}, \end{align} | (5.10) |
where
By
Since
\begin{align} u_{k}(0)\rightarrow u_0\ \text{strongly in}\ \mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B}),\ \text{as}\ k\rightarrow \infty, \end{align} | (5.11) |
and
\begin{align} \int^{t}_{0}\|u_{kt}(\tau)\|^{2}_{\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})}{\rm d}\tau+J(u_{k}(t)) = J(u_{k}(0)) < J(u_0) = d,\ \ 0 < t < \tilde{T}, \end{align} | (5.12) |
then we can obtain the boundness of
Part Ⅱ: Asymptotic behavior.
In this part, we start with the claim that
If
If
\begin{align*} J(u(t_1))\ge d. \end{align*} |
In addition, by the energy identity (3.3), we have
\begin{align*} 0 < J(u(t_1)) = J(u_{0})-\int^{t_1}_{0}\|u_t(\tau)\|_{\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})}{\rm d}\tau\le d, \end{align*} |
which tells us that
(u_{t},u )_{\mathbb{B}} +(\nabla_{\mathbb{B}}u_{t}, \nabla_{\mathbb{B}} u )_{\mathbb{B}} +(\nabla_{\mathbb{B}}u, \nabla_{\mathbb{B}}u)_{\mathbb{B}} = \int_{\mathbb{B}}|u|^{p+1}\frac{{\rm d}x_b}{x_b}{\rm d}\widetilde{x}, t\ge0. |
Then from the definition of
\begin{align} (u_{t},u )_{\mathbb{B}} +(\nabla_{\mathbb{B}}u_{t}, \nabla_{\mathbb{B}} u )_{\mathbb{B}} = -I(u) < 0, t\in [0,t_1), \end{align} | (5.13) |
that is,
\frac{{\rm d}}{{\rm d}t}\|u_t\|^2_{\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})} = -2I(u) < 0, t\in[0,t_1), |
which contradicts with
Since
\begin{align} J(u_0)&\geq J(u(t)) \\ & = \left(\frac{1}{2}-\frac{1}{p+1}\right)\|\nabla_{\mathbb{B}}u\|^{2}_{L^{\frac{n}{2}}_{2}(\mathbb{B})}+ \frac{1}{p+1}I(u) \\ & > \frac{p-1}{2(p+1)(c^2+1)}\|u\|^{2}_{\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})}, \end{align} | (5.14) |
where
\begin{align} \int_{\mathbb{B}}|u|^{p+1}\frac{{\rm d}x_b}{x_b}{\rm d}\widetilde{x} &\leq C^{p+1}_{*}\|u\|^{p+1}_{\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})}\\ & = C^{p+1}_{*}\left(\|u\|^{2}_{\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})}\right)^{\frac{p-1}{2}}\|u\|^{2}_{\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})}. \end{align} | (5.15) |
Then from (5.14) we define
\begin{align*} \alpha: = &C^{p+1}_{*}\left(\|u\|^{2}_{\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})}\right)^{\frac{p-1}{2}}\\ < &C^{p+1}_{*}\left(\frac{2(p+1))(c^2+1)}{p-1}J(u_0)\right)^{\frac{p-1}{2}}\\ \le&C^{p+1}_{*}\left(\frac{2(p+1))(c^2+1)}{p-1}d\right)^{\frac{p-1}{2}} = \frac{1}{c^2+1} < 1. \end{align*} |
Hence, taking
\begin{align*} \int_{\mathbb{B}}|u|^{p+1}\frac{{\rm d}x_b}{x_b}{\rm d}\widetilde{x}\le\alpha\|u\|^{2}_{\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})} = (1-\beta)\|u\|^{2}_{\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})}, \end{align*} |
which gives
\begin{align} \beta\|u\|^{2}_{\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})}\le I(u(t)). \end{align} | (5.16) |
On the other hand, by the definition of
\begin{align} \frac{{\rm d}}{{\rm d}t}\left(\int_{\mathbb{B}}(|u(t)|^{2}+|\nabla_{\mathbb{B}}u(t)|^{2})\frac{{\rm d}x_b}{x_b}{\rm d}\widetilde{x}\right) = -2I(u(t))\leq -2\beta\|u\|^{2}_{\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})}. \end{align} | (5.17) |
Then by Gronwall's inequality we can obtain
\begin{align*} \|u\|^{2}_{\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})} \leq e^{-2\beta t}\|u_0\|^{2}_{\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})}. \end{align*} |
Theorem 5.3 (Finite time blow up and lower bound estimate of blowup time). Suppose that
\begin{align*} \lim\limits_{t\rightarrow T^{-}}\int^{t}_{0}\|u(\tau)\|^{2}_{\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})}{\rm d}\tau = +\infty,\ \ \ 0 < t < T. \end{align*} |
Moreover,
\begin{align*} T\geq \frac{\|u_0\|^{-p+1}_{\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})}-r^{-p+1}}{(p-1)C_*^{p+1}}. \end{align*} |
Proof. Firstly, by Theorem 4.1, we already have the local existence for
\begin{align} M(t): = \int^{t}_{0}\|u(\tau)\|^{2}_{\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})}{\rm d}\tau, t\in[0,\infty). \end{align} | (5.18) |
For
\begin{align} M'(t)& = \|u(t)\|^{2}_{\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})} = \|u(t)\|^{2}_{L^{\frac{n}{2}}_{2}(\mathbb{B})}+\|\nabla_{\mathbb{B}} u(t)\|^{2}_{L^{\frac{n}{2}}_{2}(\mathbb{B})} \end{align} | (5.19) |
and further by (1.1) and (3.2) we have
\begin{align} M''(t) = 2(u_{t}(t), u(t))_{\mathbb{B}}+2(\nabla_\mathbb{B} u_{t}(t),\nabla_\mathbb{B} u(t))_{\mathbb{B}} = -2I(u(t)). \end{align} | (5.20) |
Next, we will reveal that the solution actually does not exist globally by showing that
\begin{align} M''(t)& = -2(p+1)J(u)+(p-1) \| \nabla_{\mathbb{B}}u(t)\|^{2}_{L^{\frac{n}{2}}_{2}(\mathbb{B})} \\ &\geq2(p+1)\left(\int^{t}_{0}\| u_t\|^{2}_{\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})}{\rm d}\tau-J(u_0)\right)+\frac{(p-1) M'(t)}{c^2+1}, \end{align} | (5.21) |
where
\begin{align*} \left(\int^{t}_{0}(u,u_t)_{\mathbb{B}}{\rm d}\tau\right)^{2} = &\left(\frac{1}{2}\int^{t}_{0}\frac{{\rm d}}{{\rm d}\tau}\| u\|^{2}_{\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})}{\rm d}\tau\right)^{2} \notag \\ = &\frac{1}{4}\left(\|u\|^{4}_{\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})}-2\|u_0\|^{2}_{\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})}\| u\|^{2}_{\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})}+ \|u_0\|^{4}_{\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})}\right) \\ = &\frac{1}{4}\left((M'(t))^{2}-2M'(t)\| u_0\|^{2}_{\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})}+\| u_0\|^{4}_{\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})}\right), \end{align*} |
hence
\begin{align} (M'(t))^{2} = 4\left(\int^{t}_{0}(u,u_t)_{\mathbb{B}}{\rm d}\tau\right)^{2}+2\|u_0\|^{2}_{\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})}M'(t)-\| u_0\|^{4}_{\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})}. \end{align} | (5.22) |
From (5.18), (5.21) and (5.22), making use of the Hölder inequality, we have for
\begin{align} &M(t)M''(t)-\frac{p+1}{2}(M'(t))^{2} \\ \geq& \int^{t}_{0}\|u\|^{2}_{\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})}{\rm d}\tau\left(2(p+1)\left( \int^{t}_{0}\|u_t\|^{2}_{\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})}{\rm d}\tau-J(u_0)\right)+\frac{(p-1)M'(t)}{c^2+1}\right) \\ &-\frac{p+1}{2}\left(4\left(\int^{t}_{0}(u,u_t)_{\mathbb{B}}{\rm d}\tau\right)^{2}+2M'(t)\|u_0\|^{2}_{\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})} -\|u_0\|^{4}_{\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})}\right) \\ = &2(p+1)\left(\int^{t}_{0}\|u\|^{2}_{\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})}{\rm d}\tau\int^{t}_{0}\|u_t\|^{2}_{\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})}{\rm d}\tau -\left(\int^{t}_{0}(u,u_t)_{\mathbb{B}}{\rm d}\tau\right)^{2}\right) \\ &-2(p+1)J(u_0)M(t)+\frac{(p-1)M(t)M'(t)}{c^2+1} \\ &-(p+1)M'(t)\|u_0\|^{2}_{\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})}+\frac{p+1}{2}\|u_0\|^{4}_{\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})}\\ \geq&-2(p+1)J(u_{0})M(t)+\frac{(p-1)M(t)M'(t)}{c^2+1}-(p+1)M'(t)\|u_0\|^{2}_{\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})}. \end{align} | (5.23) |
To estimate the right hand side of (5.23), we claim first that
\begin{align} &M''(t) = -2I(u(t))\ge\delta,t\ge0, \end{align} | (5.24) |
Integrating over the both sides of (5.24) from
\begin{align} &M'(t)\ge\delta t+M'(0)\ge\delta t,t\ge0. \end{align} | (5.25) |
By applying the same operation that we took for (5.24), we have
\begin{align} &M(t)\ge\delta t^2+M(0)\ge\delta t^2,t\ge0. \end{align} | (5.26) |
Thus by (5.23), for sufficiently large
\begin{align} &M(t)M''(t)-\frac{p+1}{2}(M'(t))^{2}\\ \ge&-2(p+1)J(u_{0})M(t)+\frac{(p-1)M(t)M'(t)}{c^2+1}-(p+1)M'(t)\|u_0\|^{2}_{\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})}\\ = &M(t)\left(\frac{p-1}{2(c^2+1)}M'(t)-2(p+1)J(u_0)\right)\\ & \quad +M'(t)\left(\frac{p-1}{2(c^2+1)}M(t)-(p+1)\|u_0\|^2_{\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})}\right) > 0. \end{align} | (5.27) |
By direct computation we can get that
\begin{align} (M^{-\gamma}(t))'' = -\gamma M^{-\gamma-2}(t)\left(M(t)M''(t)-(\gamma+1)(M'(t))^{2}\right). \end{align} | (5.28) |
Let
Note first that there exists a sufficiently small
\begin{align*} N'(t) = -\gamma M^{-\gamma-1}M'(t) < 0,t\in(0,\infty), \end{align*} |
which makes
In fact, the case of the asymptote won't occur since
\begin{align*} N(t) = M(t)^{-\gamma}\rightarrow0,t\rightarrow T^-, \end{align*} |
which means also
Next, we seek the lower bound of the blow up time. By (5.20) we have
\begin{align} M''(t) = -2I(u(t)) = -2\|\nabla_{\mathbb{B}}u(t)\|^2_{L^{\frac{n}{2}}_{2}(\mathbb{B})}+2\|u(t)\|^{p+1}_{L^{\frac{n}{p+1}}_{p+1}(\mathbb{B})}. \end{align} | (5.29) |
Then Proposition 2, (5.19) and (5.29) imply
\begin{align} M''(t)\leq2C^{p+1}_*(M'(t))^{\frac{p+1}{2}}. \end{align} | (5.30) |
By (5.25) we have already known
\begin{align} \frac{M''(t)}{(M'(t))^{\frac{p+1}{2}}}\leq 2C^{p+1}_*. \end{align} | (5.31) |
Integrating the inequality (5.31) from
\begin{align} (M'(0))^{-\frac{p-1}{2}}-(M'(t))^{-\frac{p-1}{2}}\leq (p-1)C_*^{p+1}t. \end{align} | (5.32) |
Let
\begin{align*} T\geq \frac{\|u_0\|^{-p+1}_{\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})}-r^{-p+1}}{(p-1)C_*^{p+1}}. \end{align*} |
In this section we give the finite time blow up result for the sup-critical initial energy case, for which we introduce the following three lemmas first.
Lemma 6.1 ([26]). Suppose that a positive, twice-differentiable function
\begin{align*} \psi''(t)\psi(t)-(1+\theta)(\psi'(t))^2\ge0,\ t > 0,\psi(t)\in C^2,\psi(t) > 0 \end{align*} |
where
Lemma 6.2. Suppose that
\begin{align*} t\mapsto \|u(t)\|^2_{\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})} \end{align*} |
increases strictly while
Proof. Firstly, an auxiliary function is defined as follows
\begin{align} F(t): = \|u(t)\|^2_{\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})}. \end{align} | (6.1) |
Then it follows from (1.1) that
\begin{align} \begin{split} F'(t) = & 2(u_{t}(t), u(t))_{\mathbb{B}}+2(\nabla_{\mathbb{B}}u_{t}(t),\nabla_{\mathbb{B}}u(t))_{\mathbb{B}} = -2I(u). \end{split} \end{align} | (6.2) |
Hence by
\begin{align} F'(t) > 0,t\in[0, T_0], \end{align} | (6.3) |
which implies that the map
t\mapsto \|u(t)\|^2_{\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})} |
is strictly increasing for
Lemma 6.3 (Invariant set
\begin{equation} \frac{(p-1)}{2(c^2+1)(p+1)}\|u_0\|^2_{\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})} > J(u_0) > 0, \end{equation} | (6.4) |
where
Proof. First we claim that
\begin{align} J(u_0) = &\frac{1}{2}\|\nabla_{\mathbb{B}} u_0\|^2_{L^{\frac{n}{2}}_{2}(\mathbb{B})} - \frac{1}{p+1}\|u_0\|^{p+1}_{L^{\frac{n}{p+1}}_{p+1}(\mathbb{B})}\\ = &\left(\frac{1}{2}- \frac{1}{p+1}\right)\|\nabla_{\mathbb{B}} u_0\|^2_{L^{\frac{n}{2}}_{2}(\mathbb{B})}+\frac{1}{p+1}I(u_0)\\ \ge&\frac{(p-1)}{2(c^2+1)(p+1)}\|u_0\|^2_{\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})}+\frac{1}{p+1}I(u_0), \end{align} | (6.5) |
thus by (6.4) and (6.5) we can drive that
Then we prove that
\begin{align} \|u(t)\|^2_{\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})} > \|u_0\|^2_{\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})} > \frac{2(c^2+1)(p+1)}{(p-1)} J(u_0),\ t\in(0,t_1), \end{align} | (6.6) |
then from the continuity of
\begin{align} \|u(t_1)\|^2_{\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})} > \|u_0\|^2_{\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})} > \frac{2(c^2+1)(p+1)}{p-1} J(u_0). \end{align} | (6.7) |
On the other hand, recalling the definition of
\begin{align} J(u_0) = &J(u(t_1)) +\int_0^{t_{1}} \| u_t\|^2_{\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})} {\rm d}\tau\\ \ge &\frac{1}{2}\|\nabla_{\mathbb{B}} u(t_1)\|^2_{L^{\frac{n}{2}}_{2}(\mathbb{B})} - \frac{1}{p+1}\|u(t_1)\|^{p+1}_{L^{\frac{n}{p+1}}_{p+1}(\mathbb{B})}\\ = &\left(\frac{1}{2}- \frac{1}{p+1}\right)\|\nabla_{\mathbb{B}} u(t_1)\|^2_{L^{\frac{n}{2}}_{2}(\mathbb{B})}+\frac{1}{p+1}I(u(t_1)), \end{align} | (6.8) |
then applying the Cone Poincar
\begin{align} J(u_0)&\ge\frac{p-1}{2(p+1)}\|\nabla_{\mathbb{B}} u(t_1)\|^2_{L^{\frac{n}{2}}_{2}(\mathbb{B})}\\ &\ge\frac{(p-1)}{2(c^2+1)(p+1)}\|u(t_1)\|^2_{\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})},\\ &\ge\frac{(p-1)}{2(c^2+1)(p+1)}\|u_0\|^2_{\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})}, \end{align} | (6.9) |
which contradicts (6.7), thus we can drive that
Next we give the blow up results for arbitrary positive initial energy as follows:
Theorem 6.4 (Finite time Blow up with
\begin{align*} T\le\frac{4\|u_0\|^2_{\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})}}{(p-1)\sigma}, \end{align*} |
where
Proof. Similar as Theorem 5.2, we also divide the proof into two parts, which are the finite time blow up and the estimating of the upper bound of the blow up time.
Part Ⅰ: Finite time blow up.
Firstly, Theorem 4.1 has asserted the local existence of the solution, then arguing by contradiction, we suppose that
Now we take a sufficiently small
\begin{align} c_0 > \frac{1}{4}\varepsilon^{-2}\|u_0\|^4_{\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})} \end{align} | (6.10) |
and define a new auxiliary function for
\begin{align} P(t): = (M(t))^2+\varepsilon^{-1}\|u_0\|^2_{\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})} M(t)+c_0, \end{align} | (6.11) |
where
\begin{align} P'(t) = \left(2M(t)+\varepsilon^{-1}\|u_0\|^2_{\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})}\right)M'(t) \end{align} | (6.12) |
and
\begin{align*} P''(t) = \left(2M(t)+\varepsilon^{-1}\|u_0\|^2_{\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})}\right)M''(t)+2(M'(t))^2. \end{align*} |
Set
\begin{align*} (P'(t))^2& = \left(4(M(t))^2+4\varepsilon^{-1}\|u_0\|^2_{\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})}M(t)+\varepsilon^{-2}\|u_0\|^4_{\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})}\right)(M'(t))^2\\ & = \left(4(M(t))^2+4\varepsilon^{-1}\|u_0\|^2_{\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})}M(t)+4c_0-\xi\right)(M'(t))^2\\ & = \left(4P(t)-\xi\right)(M'(t))^2, \end{align*} |
which tells
\begin{align} 4P(t)(M'(t))^2 = (P'(t))^2+\xi(M'(t))^2,t\in[0,\infty). \end{align} | (6.13) |
By (6.13), for
\begin{align} &2P(t)P''(t)\\ = &2\left(\left(2M(t)+\varepsilon^{-1}\|u_0\|^2_{\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})}\right)M''(t)+2(M'(t))^2\right)P(t)\\ = &2\left(2M(t)+\varepsilon^{-1}\|u_0\|^2_{\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})}\right)M''(t)P(t)+4P(t)(M'(t))^2\\ = &2\left(2M(t)+\varepsilon^{-1}\|u_0\|^2_{\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})}\right)M''(t)P(t)+(P'(t))^2+\xi(M'(t))^2. \end{align} | (6.14) |
Then from (6.13) and (6.14), for
\begin{align} &2P(t)P''(t)-(1+\beta)(P'(t))^2\\ = & 2\left(2M(t)+\varepsilon^{-1}\|u_0\|^2_{\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})}\right)M''(t)P(t)+\xi(M'(t))^2-\beta(P'(t))^2\\ = & 2\left(2M(t)+\varepsilon^{-1}\|u_0\|^2_{\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})}\right)M''(t)P(t)+\xi(M'(t))^2-\beta(4P(t)-\xi)(M'(t))^2\\ = & 2\left(2M(t)+\varepsilon^{-1}\|u_0\|^2_{\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})}\right)M''(t)P(t)-4\beta P(t)(M'(t))^2+\xi(1+\beta)(M'(t))^2\\ > & 2\left(2M(t)+\varepsilon^{-1}\|u_0\|^2_{\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})}\right)M''(t)P(t)-4\beta P(t)(M'(t))^2, \end{align} | (6.15) |
where
Next, we estimate the term
\begin{align} \frac{1}{2}\frac{{\rm d}}{{\rm d}t}\|u\|^2_{\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})}& = -I(u)\\ & = -\|\nabla_{\mathbb{B}} u\|^2_{L^{\frac{n}{2}}_{2}(\mathbb{B})}+ \|u\|^{p+1}_{L^{\frac{n}{p+1}}_{p+1}(\mathbb{B})}\\ & = -2J(u)+\frac{p-1}{p+1}\|u\|^{p+1}_{L^{\frac{n}{p+1}}_{p+1}(\mathbb{B})}. \end{align} | (6.16) |
By (6.4), we can take
\begin{align} 1 < \beta < \frac{(p-1)\|u_0\|^{2}_{\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})}}{2(c^2+1)(p+1)J(u_0)}. \end{align} | (6.17) |
Notice by Lemma 6.3 that
\begin{align} &\frac{1}{2}\frac{{\rm d}}{{\rm d}t}\|u\|^2_{\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})}\\ = &-2J(u)+\frac{p-1}{p+1}\|u\|^{p+1}_{L^{\frac{n}{p+1}}_{p+1}(\mathbb{B})}\\ = &2(\beta-1)J(u)-2\beta J(u)+\frac{p-1}{p+1}\|u\|^{p+1}_{L^{\frac{n}{p+1}}_{p+1}(\mathbb{B})}\\ \geq&-2\beta J(u_0)+2\beta \int^t_0\|u_t\|^2_{\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})}{\rm d}\tau+\frac{p-1}{p+1}\|u\|^{p+1}_{L^{\frac{n}{p+1}}_{p+1}(\mathbb{B})}\\ = &-2\beta J(u_0)+2\beta \int^t_0\|u_t\|^2_{\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})}{\rm d}\tau-\frac{p-1}{p+1}I(u)+\frac{p-1}{p+1}\|\nabla_{\mathbb{B}} u\|^2_{L^{\frac{n}{2}}_{2}(\mathbb{B})}\\ > &-2\beta J(u_0)+2\beta \int^t_0\|u_t\|^2_{\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})}{\rm d}\tau+\frac{p-1}{p+1}\|\nabla_{\mathbb{B}} u\|^2_{L^{\frac{n}{2}}_{2}(\mathbb{B})}. \end{align} | (6.18) |
The application of Cone Poincar
\begin{align} \frac{p-1}{p+1}\|\nabla_{\mathbb{B}} u\|^2_{L^{\frac{n}{2}}_{2}(\mathbb{B})}\geq \frac{(p-1)}{(c^2+1)(p+1)}\|u\|^2_{\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})}. \end{align} | (6.19) |
Putting (6.19) into (6.18), for
\begin{align} M''(t) = &\frac{{\rm d}}{{\rm d}t}\|u\|^2_{\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})}\\ > & -4\beta J(u_0)+4\beta \int^t_0\|u_t\|^2_{\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})}{\rm d}\tau+\frac{2(p-1)}{(c^2+1)(p+1)}\|u\|^2_{\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})}. \end{align} | (6.20) |
By (6.16), H
\begin{align} (M'(t))^2 = &\|u\|^4_{\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})}\\ = &\left(\|u_0\|^2_{\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})}+2\int^t_0(u,u_t)_{\mathbb{B}}{\rm d}\tau\right)^2\\ \leq& \left(\|u_0\|^2_{\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})}+2\left(\int^t_0\|u\|^2_{\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})}{\rm d}\tau\right)^{\frac{1}{2}}\left(\int^t_0\|u_t\|^2_{\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})}{\rm d}\tau\right)^{\frac{1}{2}}\right)^2\\ = &\|u_0\|^4_{\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})}+4\|u_0\|^2_{\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})}\left(\int^t_0\|u\|^2_{\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})}{\rm d}\tau\right)^{\frac{1}{2}}\left(\int^t_0\|u_t\|^2_{\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})}{\rm d}\tau\right)^{\frac{1}{2}}\\ &+4M(t)\int^t_0\|u_t\|^2_{\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})}{\rm d}\tau\\ \leq& \|u_0\|^4_{\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})}+2\varepsilon\|u_0\|^2_{\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})}M(t)+2\varepsilon^{-1}\|u_0\|^2_{\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})}\int^t_0\|u_t\|^2_{\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})}{\rm d}\tau\\ &+4M(t)\int^t_0\|u_t\|^2_{\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})}{\rm d}\tau. \end{align} | (6.21) |
Then from (6.20), (6.21) and (6.15), for
\begin{align*} &2P''(t)P(t)-(1+\beta)(P'(t))^2\\ > & 2\left(2M(t)+\varepsilon^{-1}\|u_0\|^2_{\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})}\right)M''(t)P(t)-4\beta P(t)(M'(t))^2\\ > & I_1I_2-I_3I_4, \end{align*} |
where
\begin{align*} I_1: = &2P(t)\left(2M(t)+\varepsilon^{-1}\|u_0\|^2_{\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})}\right),\\ I_2: = &-4\beta J(u_0)+4\beta \int^t_0\|u_t\|^2_{\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})}{\rm d}\tau+\frac{2(p-1)}{(c^2+1)(p+1)}\|u\|^2_{\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})},\\ I_3: = &4\beta P(t),\\ I_4: = &\|u_0\|^4_{\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})}+2\varepsilon\|u_0\|^2_{\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})}M(t)+2\varepsilon^{-1}\|u_0\|^2_{\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})}\int^t_0\|u_t\|^2_{\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})}{\rm d}\tau\\ &+4M(t)\int^t_0\|u_t\|^2_{\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})}{\rm d}\tau. \end{align*} |
Taking
\begin{align*} \varepsilon < \frac{\gamma}{2\beta \|u_0\|^2_{\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})}}, \end{align*} |
then recalling that
\begin{align*} &2P''(t)P(t)-(1+\beta)(P'(t))^2\\ > &I_1I_2-I_3I_4\\ = &I_1\left(4\beta \int^t_0\|u_t\|^2_{\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})}{\rm d}\tau+\gamma \right)-I_3I_4\\ > &I_1\left(4\beta \int^t_0\|u_t\|^2_{\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})}{\rm d}\tau+2\beta\varepsilon\|u_0\|^2_{\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})}\right)-I_3I_4\\ = &4\beta P(t)\left(2M(t)+\varepsilon^{-1}\|u_0\|^2_{\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})}\right)\left(2 \int^t_0\|u_t\|^2_{\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})}{\rm d}\tau+\varepsilon\|u_0\|^2\right)-I_3I_4\\ = &I_3\left(\left(2M(t)+\varepsilon^{-1}\|u_0\|^2_{\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})}\right)\left(2\int^t_0\|u_t\|^2_{\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})}{\rm d}\tau+\varepsilon\|u_0\|^2_{\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})}\right)-I_4\right)\\ = &0. \end{align*} |
Thus
\begin{align*} P''(t)P(t)-\frac{1+\beta}{2}(P'(t))^2 > 0,t\in[0,\infty). \end{align*} |
Since
\begin{align*} \lim\limits_{t\rightarrow T}P(t) = +\infty. \end{align*} |
According to the definition of
\begin{align*} \lim\limits_{t\rightarrow T}M(t) = +\infty, \end{align*} |
which claims the blow up of the solution.
Part Ⅱ: Upper bound of the blow up time
In Part I we have draw the conclusion that the maximal existence time
\begin{align} \psi(t): = \int^t_0\|u(\tau)\|^2_{\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})}{\rm d}\tau+(T-t)\|u_0\|^2_{\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})}+\mu(t+\nu)^2, \end{align} | (6.22) |
where
\begin{align} \psi'(t) = \|u(t)\|^2_{\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})}-\|u_0\|^2_{\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})}+2\mu(t+\nu), \end{align} | (6.23) |
then it follows from (3.3), Proposition 2 and (6.4) that
\begin{align} \psi''(t) = &-2I(u(t))+2\mu\\ \ge&(p-1)\|\nabla_{\mathbb{B}} u\|^2_{\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})}-2(p+1)J(u)\\ \ge&\frac{p-1}{c^2+1}\|u(t)\|^2_{\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})}-2(p+1)J(u)\\ = &\frac{p-1}{c^2+1}\|u(t)\|^2_{\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})}-2(p+1)J(u_0)+2(p+1)\int^t_0\|u_t\|^2_{\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})}{\rm d}\tau\\ \ge&2(p+1)\left(\frac{p-1}{2(c^2+1)(p+1)}\|u_0\|^2_{\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})}-J(u_0)+\int^t_0\|u_t\|^2_{\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})}{\rm d}\tau\right) > 0. \end{align} | (6.24) |
Furthermore, we obtain
On the other hand, we can derive that
\begin{align} -\frac{1}{4}(\psi'(t))^2 = &-\left(\frac{1}{2}\left(\|u(t)\|^2_{\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})}- \|u_0\|^2_{\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})}\right)+\mu(t+\nu)\right)^2\\ = &{\left(\int^t_0\|u\|^2_{\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})}{\rm d}\tau+\mu(t+\nu)^2\right)\left(\int^t_0\|u_t\|^2_{\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})}{\rm d}\tau+\mu\right)}\\ &-{\left(\frac{1}{2}\left(\|u(t)\|^2_{\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})}-\|u_0\|^2_{\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})}\right)+\mu(t+\nu)\right)^2}\\ &-\left(\psi(t)-(T-t)\|u_0\|^2_{\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})}\right)\left(\int^t_0\|u_t\|^2_{\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})}{\rm d}\tau+\mu\right)\\ = &I_5-I_6-\left(\psi(t)-(T-t)\|u_0\|^2_{\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})}\right)\left(\int^t_0\|u_t\|^2_{\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})}{\rm d}\tau+\mu\right), \end{align} | (6.25) |
where
\begin{align*} &I_5: = {\left(\int^t_0\|u\|^2_{\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})}{\rm d}\tau+\mu(t+\nu)^2\right)\left(\int^t_0\|u_t\|^2_{\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})}{\rm d}\tau+\mu\right)},\\ &I_6: = {\left(\frac{1}{2}\left(\|u(t)\|^2_{\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})}-\|u_0\|^2_{\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})}\right)+\mu(t+\nu)\right)^2}. \end{align*} |
To estimate (6.25) clearly, we will show that
\begin{align*} I_5-I_6 = &I_5-\left(\frac{1}{2}(\|u(t)\|^2_{\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})}-\|u_0\|^2_{\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})})+\mu(t+\nu)\right)^2\\ = &I_5-\left(\frac{1}{2}\int^t_0\frac{d}{d\tau}\|u(\tau)\|^2_{\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})}{\rm d}\tau+\mu(t+\nu)\right)^2\\ = &I_5-\left(\int^t_0(u,u_t)_{\mathbb{B}}{\rm d}\tau+\mu(t+\nu)\right)^2\\ \ge& I_5-\left(\int^t_0\|u(\tau)\|_{\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})}\|u_t(\tau)\|_{\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})}{\rm d}\tau+\mu(t+\nu)\right)^2, \end{align*} |
then by the Cauchy-Schwartz inequality we get
\begin{align*} I_5-I_6 \ge& I_5-\left(\int^t_0\|u(\tau)\|_{\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})}{\rm d}\tau\int^t_0\|u_t(\tau)\|_{\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})}{\rm d}\tau+\mu(t+\nu)\right)^2\\ = & I_5-\left(k_1(t)k_2(t)+\mu(t+\nu)\right)^2\\ = &\left((k_1(t))^2+\mu(t+\nu)^2\right)\left((k_2(t))^2+\mu\right) -\left(k_1(t)k_2(t)+\mu(t+\nu)\right)^2\\ = &\left(\sqrt{\mu}k_1(t)\right)^2-2\sqrt{\mu}k_1(t)\sqrt{\mu}(t+\nu)k_2(t) +\left(\sqrt{\mu}(t+\nu)k_2(t)\right)^2\\ = &\left(\sqrt{\mu}k_1(t)-\sqrt{\mu}(t+\nu)k_2(t)\right)^2\\ \ge&0, \end{align*} |
where
\begin{align} -(\psi'(t))^2\ge&-4\left(\psi(t)-(T-t)\|u_0\|^2_{\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})}\right)\left(\int^t_0\|u_t\|^2_{\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})}{\rm d}\tau+\mu\right)\\ \ge&-4\psi(t)\left(\int^t_0\|u_t\|^2_{\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})}{\rm d}\tau+\mu\right). \end{align} | (6.26) |
Then by (6.22), (6.24) and (6.26), we achieve
\begin{align} &\psi(t)\psi''(t)-\frac{p+1}{2}(\psi'(t))^2\\ \ge&\psi(t)\left(\psi''(t)-2(p+1)\left(\int^t_0\|u_t\|^2_{\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})}{\rm d}\tau+\mu\right)\right)\\ \ge&2(p+1)\psi(t)\left(\frac{p-1}{2(c^2+1)(p+1)}\|u_0\|^2_{\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})}-J(u_0)-\mu\right). \end{align} | (6.27) |
Let
\begin{align} \frac{p-1}{2(c^2+1)(p+1)}\|u_0\|^2_{\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})}-J(u_0)-\mu\ge0, \end{align} | (6.28) |
hence for
\begin{align*} \psi(t)\psi''(t)-\frac{p+1}{2}(\psi'(t))^2\ge0. \end{align*} |
It is easy to verify that
\begin{align} T\le\frac{2\psi(0)}{(p-1)\psi'(0)} \le\frac{\|u_0\|^2_{\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})}}{(p-1)\mu\nu}T+\frac{\nu}{p-1}. \end{align} | (6.29) |
Let
\begin{align} \nu\in\left(\frac{\|u_0\|^2_{\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})}}{(p-1)\mu},+\infty\right), \end{align} | (6.30) |
then it follows from (6.29) that
\begin{align} T\le\frac{\mu\nu^2}{(p-1)\mu\nu-\|u_0\|^2_{\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})}}. \end{align} | (6.31) |
Note that
\begin{align*} \mathfrak{M}: = \left\{(\nu,\mu)\ \Bigg|\ \nu\in\left(\frac{\|u_0\|^2_{\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})}}{(p-1)\sigma},+\infty\right), \mu\in \left(\frac{\|u_0\|^2_{\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})}}{(p-1)\nu},\sigma\right]\right\}. \end{align*} |
From the above discussions, we get
\begin{align} T\le\inf\limits_{(\mu,\nu)\in\mathfrak{M}}\frac{\mu\nu^2}{(p-1)\mu\nu-\|u_0\|^2_{\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})}}. \end{align} | (6.32) |
Next we define
\begin{align*} f(\mu,\nu): = \frac{\mu\nu^2}{(p-1)\mu\nu-\|u_0\|^2_{\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})}}, \end{align*} |
where
\begin{align*} \frac{\partial}{\partial\mu}f(\mu,\nu) = \frac{-\nu^{2}\|u_0\|^2_{\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})}}{\left((p-1) \mu \nu-\|u_0\|^2_{\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})}\right)^{2}} < 0, \end{align*} |
which means that
\begin{align*} \inf\limits_{(\mu,\nu)\in\mathfrak{M}}f(\mu,\nu) = \inf\limits_{\nu}f(\sigma,\nu), \end{align*} |
where
\begin{align*} \nu_{\min} = \frac{2\|u_0\|^2_{\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})}}{(p-1) \sigma}, \end{align*} |
thus we have
\begin{align*} \inf\limits_{(\mu,\nu)\in\mathfrak{M}}f(\mu,\nu) = f(\sigma,\nu_{\min}) = \frac{4\|u_0\|^2_{\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})}}{(p-1)\sigma}, \end{align*} |
which means also
\begin{align*} T\le\frac{4\|u_0\|^2_{\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})}}{(p-1)\sigma}. \end{align*} |
In the first version [37] finished in 2016, XP Liu obtained the threshold conditions of the global existence and nonexistence for solutions together with the asymptotic behavior at both subcritical and critical initial energy levels. But this version [37] did not consider the local existence nor the dynamic behavior at the sup-critical initial energy level. Then, the authors realized that the framework of a family of potential wells brought some problems by unnecessary technical complexities without receiving the benefits expected. After XP Liu left HEU in 2016, YT Wang and YX Chen continued to reconsider problem (1.1)-(1.3) and reconstructed the conclusions again in the framework of a single potential well to replace the family version, and finally completed this second version in 2020. This new version of the present paper not only gives the same results with those in the first version [37] by a single potential well, but also proves the local existence and the finite time blow up at sup-critical initial energy level with the estimation of the blowup time at all initial energy levels.
The authors are grateful to Professor Hua Chen in Wuhan University, who strongly encouraged this work when he visited Harbin Engineering University in 2017 and 2018.
[1] | Korakianitis N, Vokas GA, Ioannides G (2019) Review of wireless power transfer (WPT) on electric vehicles (EVs) charging. AIP Conf Proc, 020072. https://doi.org/10.1063/1.5138558 |
[2] |
Panchal C, Stegen S, Lu J (2018) Review of static and dynamic wireless electric vehicle charging system. Eng Sci Technol, Int J 21: 922–937. https://doi.org/10.1016/j.jestch.2018.06.015 doi: 10.1016/j.jestch.2018.06.015
![]() |
[3] |
Zhang W, Mi CC (2015) Compensation topologies of high-power wireless power transfer systems. IEEE Trans Veh Technol 65: 4768–4778. https://doi.org/10.1109/TVT.2015.2454292 doi: 10.1109/TVT.2015.2454292
![]() |
[4] |
Wu J, Kong W, Gao P, et al. (2021) Design considerations of bidirectional wireless power transfer and full-duplex communication system via a shared inductive channel. Energies 14: 4918. https://doi.org/10.3390/en14164918 doi: 10.3390/en14164918
![]() |
[5] |
Budhia M, Covic GA, Boys JT (2011) Design and optimization of circular magnetic structures for lumped inductive power transfer systems. IEEE Trans Power Electron 26: 3096–3108. https://doi.org/10.1109/TPEL.2011.2143730 doi: 10.1109/TPEL.2011.2143730
![]() |
[6] |
Buja G, Rim CT, Mi CC (2016) Dynamic charging of electric vehicles by wireless power transfer. IEEE Trans Ind Electron 63: 6530–6532. https://doi.org/10.1109/TIE.2016.2596238 doi: 10.1109/TIE.2016.2596238
![]() |
[7] |
Laporte S, Coquery G, Deniau V, et al. (2019) Dynamic wireless power transfer charging infrastructure for future EVs: From experimental track to real circulated roads demonstrations. World Electr Veh J 10: 84. https://doi.org/10.3390/wevj10040084 doi: 10.3390/wevj10040084
![]() |
[8] |
Li W, Zhao H, Deng J, et al. (2016) Comparison study on SS and double-sided LCC compensation topologies for EV/PHEV wireless chargers. IEEE Trans Veh Technol 65: 4429–4439. https://doi.org/10.1109/TVT.2015.2479938 doi: 10.1109/TVT.2015.2479938
![]() |
[9] |
Lu J, Zhu G, Wang H, et al. (2019) Sensitivity analysis of inductive power transfer systems with voltage-fed compensation topologies. IEEE Trans Veh Technol 68: 4502–4513. https://doi.org/10.1109/TVT.2019.2903565 doi: 10.1109/TVT.2019.2903565
![]() |
[10] | Zhao J, Cai T, Duan S, et al. (2016) A general design method of primary compensation network for dynamic WPT system maintaining stable transmission power. IEEE Trans Power Electron 31: 8343–8358. |
[11] | Yang J, Zhang X, Zhang K, et al. (2020) Design of LCC-S compensation topology and optimization of misalignment tolerance for inductive power transfer. IEEE Access 8: 191309–191318. |
[12] | Qi J (2020) Analysis, design, and optimisation of an LCC/S compensated WPT system featured with wide operation range. IET Power Electron 13: 1687–1924. |
[13] | Wang Y, Wang Z, Xu Z (2024) Analysis and comparison of the compensation topologies of magnetic coupled resonant wireless charging for electric vehicles. Highlights Sci Eng Technol 119: 394–405. |
[14] |
Zhu Q, Wang L, Guo Y, et al. (2016) Applying LCC compensation network to dynamic wireless EV charging system. IEEE Trans Ind Electron 63: 6557–6567. https://doi.org/10.1109/TIE.2016.2529561 doi: 10.1109/TIE.2016.2529561
![]() |
[15] | Chen Y, Yang N, Li Q, et al. (2019) New parameter tuning method for LCC/LCC compensated IPT system with constant voltage output based on LC resonance principles. IET Power Electron 12: 2433–2712. https://doi.org /10.1049/iet-pel.2018.6129 |
[16] |
Feng H, Cai T, Duan S, et al. (2016) An LCC-compensated resonant converter optimized for robust reaction to large coupling variation in dynamic wireless power transfer. IEEE Trans Ind Electron 63: 6591–6601. https://doi.org/10.1109/TIE.2016.2589922 doi: 10.1109/TIE.2016.2589922
![]() |
[17] |
Li S, Li W, Deng J, et al. (2015) A double-sided LCC compensation network and its tuning method for wireless power transfer. IEEE Trans Veh Technol 64: 2261–2273. https://doi.org/10.1109/TVT.2014.2347006 doi: 10.1109/TVT.2014.2347006
![]() |
[18] | Korakianitis N, Theodorakis A, Vokas GA, et al. (2023) A simulation comparison and evaluation of wireless power transfer methods and topologies applicable on static and dynamic wireless electric vehicles charging systems. AIP Conf Proc, 2769. |
[19] | Kurs A, Karalis A, Moffatt R, et al. (2007) Wireless power transfer via strongly coupled magnetic resonances. Science 317: 83–86. |
[20] | Hekal S, Allam A, Abdel‐Rahman A, et al. (2019) Compact size wireless power transfer using defected ground structures. Energy Syst Electr Eng. https://doi.org/10.1007/978-981-13-8047-1 |
[21] | Ko YD, Jang YJ (2013) The optimal system design of the online electric vehicle utilizing wireless power transmission technology. IEEE Trans Intell Transp Syst 14: 1255–1265. |
[22] |
Mi CC, Buja G, Choi SY, et al. (2016) Modern advances in wireless power transfer systems for roadway powered electric vehicles. IEEE Trans Ind Electron 63: 6533–6545. https://doi.org/10.1109/TIE.2016.2574993 doi: 10.1109/TIE.2016.2574993
![]() |
[23] | KAIST (2025) KAIST OLEV (On-Line Electric Vehicle) to begin operation! Available from: https://www.kaist.ac.kr/newsen/html/news/?mode=V&mng_no=3960. |
[24] | Kavitha M, Mohan Reddy D, Kalyan Chakravarthy NS (2022) Electrical vehicles (EVs)—An application of wireless power transfer (WPT) system. AI Enabled IoT Electrification Connected Transp, 165–189. https://doi.org/10.1007/978-981-19-2184-1_8 |
[25] | Guidi G, Suul JA (2018) Transient control of dynamic inductive EV charging and impact on energy efficiency when passing a roadside coil section. IEEE PELS Workshop Emerg Technol Wireless Power Transfer. https://doi.org/10.1109/WOW.2018.8450893 |
[26] |
Fisher TM, Farley KB, Gao Y, et al. (2014) Electric vehicle wireless charging technology: A state-of-the-art review of magnetic coupling systems. Wireless Power Transfer 1: 87–96. https://doi.org/10.1017/wpt.2014.8 doi: 10.1017/wpt.2014.8
![]() |
[27] |
Sagar A, Kashyap A, Nasab MA, et al. (2023) A comprehensive review of the recent development of wireless power transfer technologies for electric vehicle charging systems. IEEE Access 11: 83703–83751. https://doi.org/10.1109/ACCESS.2023.3300475 doi: 10.1109/ACCESS.2023.3300475
![]() |
[28] | Electreon (2025) Building the infrastructure to support mass EV adoption. Available from: https://electreon.com/projects. |
[29] |
Si P, Hu AP, Malpas S, et al. (2008) A frequency control method for regulating wireless power to implantable devices. IEEE Trans Biomed Circuits Syst 2: 22–29. https://doi.org/10.1109/TBCAS.2008.918284 doi: 10.1109/TBCAS.2008.918284
![]() |
[30] |
Liu H, He L, Cheng B (2024) Powerless fractional-order tuning wireless power transfer system with zero phase angle input. IEEE Trans Circuits Syst I 72: 433–442. https://doi.org/10.1109/TCSI.2024.3404647 doi: 10.1109/TCSI.2024.3404647
![]() |
[31] |
Liu H, He L, Cheng B (2024) A powerless fractional-order WPT system with extended zero voltage switching region. IEEE Trans Ind Electron 72: 3525–3533. https://doi.org/10.1109/TIE.2024.3447733 doi: 10.1109/TIE.2024.3447733
![]() |
[32] |
He L, Huang X, Cheng B (2023) Robust class E2 wireless power transfer system based on parity-time symmetry. IEEE Trans Power Electron 38: 4279–4288. https://doi.org/10.1109/TPEL.2022.3230852 doi: 10.1109/TPEL.2022.3230852
![]() |
[33] | Assawaworrarit S (2020) Robust dynamic wireless power transfer based on parity-time symmetry. Available from: https://purl.stanford.edu/sd395gx8779. |
[34] |
Zhang H, Zhu K, Guo Z, et al. (2023) Robustness of wireless power transfer systems with parity-time symmetry and asymmetry. Energies 16: 4605. https://doi.org/10.3390/en16124605 doi: 10.3390/en16124605
![]() |
[35] | Huang X, He LZ (2021) Stable and efficient class E2 wireless power transfer system based on parity-time symmetry. IEEE PELS Workshop Emerg Technol Wireless Power Transfer. https://doi.org/10.1109/WOW51332.2021.9462866 |
[36] |
Houran MA, Yang X, Chen W (2018) Magnetically coupled resonance WPT: review of compensation topologies, resonator structures with misalignment, and EMI diagnostics. Electronics 7: 296. https://doi.org/10.3390/electronics7110296 doi: 10.3390/electronics7110296
![]() |
[37] |
Villa JL, Sallán J, Sanz Osorio JF, et al. (2012) High-misalignment tolerant compensation topology for ICPT systems. IEEE Trans Ind Electron 59: 945–951. https://doi.org/10.1109/TIE.2011.2161055 doi: 10.1109/TIE.2011.2161055
![]() |
[38] |
Zhao L, Thrimawithana DJ, Madawala UK (2017) Hybrid bidirectional wireless EV charging system tolerant to pad misalignment. IEEE Trans Ind Electron 64: 7079–7086. https://doi.org/10.1109/TIE.2017.2686301 doi: 10.1109/TIE.2017.2686301
![]() |
[39] |
Ramezani A, Narimani M (2020) Optimized electric vehicle wireless chargers with reduced output voltage sensitivity to misalignment. IEEE J Emerg Sel Top Power Electron 8: 3569–3581. https://doi.org/10.1109/JESTPE.2019.2958932 doi: 10.1109/JESTPE.2019.2958932
![]() |
[40] |
Dehui W, Qisheng S, Xiaohong W, et al. (2018) Analytical model of mutual coupling between rectangular spiral coils with lateral misalignment for wireless power applications. IET Power Electron 11: 781–960. https://doi.org/10.1049/iet-pel.2017.0470 doi: 10.1049/iet-pel.2017.0470
![]() |
[41] |
Chen Y, He S, Yang B, et al. (2023) Reconfigurable rectifier-based detuned series-series compensated IPT system for anti-misalignment and efficiency improvement. IEEE Trans Power Electron 38: 2720–2729. https://doi.org/10.1109/TPEL.2022.3204592 doi: 10.1109/TPEL.2022.3204592
![]() |
[42] |
Lopez-Alcolea FJ, Del Real JV, Roncero-Sanchez P, et al. (2020) Modeling of a magnetic coupler based on single- and double-layered rectangular planar coils with in-plane misalignment for wireless power transfer. IEEE Trans Power Electron 35: 5102–5121. https://doi.org/10.1109/TPEL.2019.2944194 doi: 10.1109/TPEL.2019.2944194
![]() |
[43] |
Rahulkumar J, Narayanamoorthi R, Vishnuram P, et al. (2023) An empirical survey on wireless inductive power pad and resonant magnetic field coupling for in-motion EV charging system. IEEE Access 11: 4660–4693. https://doi.org/10.1109/ACCESS.2022.3232852 doi: 10.1109/ACCESS.2022.3232852
![]() |
[44] | ICNIRP (1998) Guidelines for limiting exposure to time-varying electric, magnetic, and electromagnetic fields (up to 300 GHz). Available from: https://www.icnirp.org/cms/upload/publications/ICNIRPemfgdl.pdf. |
[45] |
Ziegelberger G (2009) ICNIRP statement on the guidelines for limiting exposure to time-varying electric, magnetic, and electromagnetic fields (up to 300 GHz). Health Phys 97: 257–258. https://doi.org/10.1097/HP.0b013e3181aff9db doi: 10.1097/HP.0b013e3181aff9db
![]() |
[46] |
ICNIRP (2010) Guidelines for limiting exposure to time-varying electric and magnetic fields (1 Hz to 100 kHz). Health Phys 99: 818–836. https://doi.org/10.1097/HP.0b013e3181f06c86 doi: 10.1097/HP.0b013e3181f06c86
![]() |
[47] | ICNIRP (2020) Guidelines for limiting exposure to electromagnetic fields (100 kHz to 300 GHz). Health Phys 118: 483–524. |
[48] | IEEE (2019) IEEE standard for safety levels with respect to human exposure to electric, magnetic, and electromagnetic fields, 0 Hz to 300 GHz. IEEE. https://doi.org/10.1109/IEEESTD.2019.8859679 |
[49] |
Xiao C, Cheng D, Wei K (2018) An LCC-C compensated wireless charging system for implantable cardiac pacemakers: theory, experiment, and safety evaluation. IEEE Trans Power Electron 33: 4894–4905. https://doi.org/10.1109/TPEL.2017.2735441 doi: 10.1109/TPEL.2017.2735441
![]() |
[50] | Jiang H, Brazis P, Tabaddor M, et al. (2012) Safety considerations of wireless charger for electric vehicles—a review paper. IEEE Symp Prod Compliance Eng Proc: 51–56. https://doi.org/10.1109/ISPCE.2012.6398288 |
[51] |
Tan L, Li G, Xie Q, et al. (2023) Study on the safety assessment and protection design of human exposure to low-frequency magnetic fields in electric vehicles. Radiat Prot Dosimetry 200: 60–74. https://doi.org/10.1093/rpd/ncad269 doi: 10.1093/rpd/ncad269
![]() |
[52] |
Zhao J, Wu ZJ, Li NL, et al. (2020) Study on safe distance between human body and wireless charging system of electric vehicles with different power and frequencies. Electr Eng 102: 2281–2293. https://doi.org/10.1007/s00202-020-01026-2 doi: 10.1007/s00202-020-01026-2
![]() |
[53] | Baikova EN, Romba L, Valtchev S, et al. (2019) Electromagnetic influence of wpt on human's health. Adv Wireless Technol Telecommun, 141–161. https://doi.org/10.4018/978-1-5225-5870-5.ch006 |
[54] |
Baikova EN, Valtchev SS, Melicio R, et al. (2016) Study of the electromagnetic interference generated by wireless power transfer systems. Int Rev Electr Eng (IREE) 11: 526. https://doi.org/10.15866/iree.v11i5.9773 doi: 10.15866/iree.v11i5.9773
![]() |
[55] | Zhang Y, Yuan J, Li L, et al. (2019) Design and application of early warning model for electric vehicle charging safety. J Phys Conf Ser 1873: 012052. |
[56] |
Li S, Mi CC (2015) Wireless power transfer for electric vehicle applications. IEEE J Emerg Sel Top Power Electron 3: 4–17. https://doi.org/10.1109/JESTPE.2014.2319453 doi: 10.1109/JESTPE.2014.2319453
![]() |
[57] | Rim CT, Mi C (2017) Wireless power transfer for electric vehicles and mobile devices. Wireless Power Transfer, John Wiley & Sons, Ltd. https://doi.org/10.1002/9781119329084 |
[58] |
Zhang W, Mi CC (2016) Compensation topologies of high-power wireless power transfer systems. IEEE Trans Veh Technol 65: 4768–4778. https://doi.org/10.1109/TVT.2015.2454292 doi: 10.1109/TVT.2015.2454292
![]() |
[59] |
Covic GA, Boys JT (2013) Modern trends in inductive power transfer for transportation applications. IEEE J Emerg Sel Top Power Electron 1: 28–41. https://doi.org/10.1109/JESTPE.2013.2264473 doi: 10.1109/JESTPE.2013.2264473
![]() |
[60] |
Hui SYR, Zhong W, Lee CK (2014) A critical review of recent progress in mid-range wireless power transfer. IEEE Trans Power Electron 29: 4500–4511. https://doi.org/10.1109/TPEL.2013.2249670 doi: 10.1109/TPEL.2013.2249670
![]() |
1. | Ngo Tran Vu, Dao Bao Dung, Huynh Thi Hoang Dung, General decay and blow-up results for a class of nonlinear pseudo-parabolic equations with viscoelastic term, 2022, 516, 0022247X, 126557, 10.1016/j.jmaa.2022.126557 |