Research article

Theoretical analysis and mathematical modeling of a solar cogeneration system in Morocco

  • Received: 12 July 2019 Accepted: 29 October 2019 Published: 14 November 2019
  • This article is part of a theoretical study based on the mathematical analysis of the new technology of solar cogeneration using the parabolic trough concentrator and the photovoltaic cell. Our main objective is to study the thermal performance of the parabolic cylindrical concentrator in the Rabat-Salé-Kénitra region of Morocco. The methodology is based on solving the energy balance equation of the thermal collector whose elements are the absorber, glass and fluid. The performance of these equations is obtained by the Runge Kutta (RK4) method based on experimental data extracted from the PVGIS software. The numerical solution is found by the Matlab code. The validation test is verified on the studied region of Rabat-Salé-Kénitra. The results of the comparison between the numerical solution and the experimental data corresponding to the different temperature of the thermal collector are encouraging. Finally the thermal performance of the collector is satisfied.

    Citation: Saad Eddin Lachhab, A. Bliya, E. Al Ibrahmi, L. Dlimi. Theoretical analysis and mathematical modeling of a solar cogeneration system in Morocco[J]. AIMS Energy, 2019, 7(6): 743-759. doi: 10.3934/energy.2019.6.743

    Related Papers:

    [1] Abdennasser Chekroun, Mohammed Nor Frioui, Toshikazu Kuniya, Tarik Mohammed Touaoula . Global stability of an age-structured epidemic model with general Lyapunov functional. Mathematical Biosciences and Engineering, 2019, 16(3): 1525-1553. doi: 10.3934/mbe.2019073
    [2] C. Connell McCluskey . Global stability of an SIR epidemic model with delay and general nonlinear incidence. Mathematical Biosciences and Engineering, 2010, 7(4): 837-850. doi: 10.3934/mbe.2010.7.837
    [3] Cunjuan Dong, Changcheng Xiang, Wenjin Qin, Yi Yang . Global dynamics for a Filippov system with media effects. Mathematical Biosciences and Engineering, 2022, 19(3): 2835-2852. doi: 10.3934/mbe.2022130
    [4] Hui Cao, Yicang Zhou, Zhien Ma . Bifurcation analysis of a discrete SIS model with bilinear incidence depending on new infection. Mathematical Biosciences and Engineering, 2013, 10(5&6): 1399-1417. doi: 10.3934/mbe.2013.10.1399
    [5] Pan Yang, Jianwen Feng, Xinchu Fu . Cluster collective behaviors via feedback pinning control induced by epidemic spread in a patchy population with dispersal. Mathematical Biosciences and Engineering, 2020, 17(5): 4718-4746. doi: 10.3934/mbe.2020259
    [6] Yoichi Enatsu, Yukihiko Nakata . Stability and bifurcation analysis of epidemic models with saturated incidence rates: An application to a nonmonotone incidence rate. Mathematical Biosciences and Engineering, 2014, 11(4): 785-805. doi: 10.3934/mbe.2014.11.785
    [7] Fang Wang, Juping Zhang, Maoxing Liu . Dynamical analysis of a network-based SIR model with saturated incidence rate and nonlinear recovery rate: an edge-compartmental approach. Mathematical Biosciences and Engineering, 2024, 21(4): 5430-5445. doi: 10.3934/mbe.2024239
    [8] Thomas Torku, Abdul Khaliq, Fathalla Rihan . SEINN: A deep learning algorithm for the stochastic epidemic model. Mathematical Biosciences and Engineering, 2023, 20(9): 16330-16361. doi: 10.3934/mbe.2023729
    [9] Ke Guo, Wanbiao Ma . Global dynamics of an SI epidemic model with nonlinear incidence rate, feedback controls and time delays. Mathematical Biosciences and Engineering, 2021, 18(1): 643-672. doi: 10.3934/mbe.2021035
    [10] Cheng-Cheng Zhu, Jiang Zhu . Spread trend of COVID-19 epidemic outbreak in China: using exponential attractor method in a spatial heterogeneous SEIQR model. Mathematical Biosciences and Engineering, 2020, 17(4): 3062-3087. doi: 10.3934/mbe.2020174
  • This article is part of a theoretical study based on the mathematical analysis of the new technology of solar cogeneration using the parabolic trough concentrator and the photovoltaic cell. Our main objective is to study the thermal performance of the parabolic cylindrical concentrator in the Rabat-Salé-Kénitra region of Morocco. The methodology is based on solving the energy balance equation of the thermal collector whose elements are the absorber, glass and fluid. The performance of these equations is obtained by the Runge Kutta (RK4) method based on experimental data extracted from the PVGIS software. The numerical solution is found by the Matlab code. The validation test is verified on the studied region of Rabat-Salé-Kénitra. The results of the comparison between the numerical solution and the experimental data corresponding to the different temperature of the thermal collector are encouraging. Finally the thermal performance of the collector is satisfied.




    [1] Hoffmann W (2006) PV solar electricity industry: market growth and perspective. Sol Energ Mat Sol C 90: 3285-3311.
    [2] Caluianu IR, Băltăreţu F (2012) Thermal modelling of a photovoltaic module under variable free convection conditions. Appl Therm Eng 33: 86-91.
    [3] Youssef WB, Maatallah T, Menezo C, et al. (2018) Assessment viability of a concentrating photovoltaic/thermal-energy cogeneration system (CPV/T) with storage for a textile industry application. Sol Energ 159: 841-851.
    [4] Sharma KM, Spandana YS, Krishna LN (2015) Generation of hybrid power by wind and solar cogeneration techniques. International Journal of Scientific Research Engineering and Technology (IJSRET) ISSN: 2278-0882 EATHD-2015 Conference Proceeding, Jalandhar, India.
    [5] Nia MH, Nejad AA, Goudarzi AM, et al. (2014) Cogeneration solar system using thermoelectric module and fresnel lens. Energ convers manage 84: 305-310. doi: 10.1016/j.enconman.2014.04.041
    [6] Zhou C, Liang R, Zhang J (2017) Optimization design method and experimental validation of a solar pvt cogeneration system based on building energy demand. Energies 10: 1281. doi: 10.3390/en10091281
    [7] Florschuetz LW (1979) Extension of the Hottel-Whillier model to the analysis of combined photovoltaic/thermal flat plate collectors. Sol Energ 22: 361-366. doi: 10.1016/0038-092X(79)90190-7
    [8] Agarwal RK, Garg HP (1994) Study of a photovoltaic-thermal system-thermosyphonic solar water heater combined with solar cells. Energ Convers Manage 35: 605-620. doi: 10.1016/0196-8904(94)90044-2
    [9] Barkaoui AE, Zarhloule Y, Rimi A, et al. (2015) Proceedings of Geothermal Country Update report of Morocco (2010-2015).
    [10] Jiang S, Hu P, Mo S, et al. (2010) Optical modeling for a two-stage parabolic trough concentrating photovoltaic/thermal system using spectral beam splitting technology. Sol Energ Mat Sol C 94: 1686-1696. doi: 10.1016/j.solmat.2010.05.029
    [11] Isotani S, Pontuschka WM, Isotani S (2012) An algorithm to optimize the calculation of the fourth order Runge-Kutta method applied to the numerical integration of kinetics coupled differential equations. Appl Math 3: 1583. doi: 10.4236/am.2012.311218
    [12] Chaturvedi DK (2017) Modeling and simulation of systems using MATLAB and Simulink, 1 Eds., CRC press.
    [13] Rosell JI, Vallverdu X, Lechon MA, et al. (2005) Design and simulation of a low concentrating photovoltaic/thermal system. Energ Convers Manage 46: 3034-3046. doi: 10.1016/j.enconman.2005.01.012
    [14] Poullikkas A (2009) Economic analysis of power generation from parabolic trough solar thermal plants for the mediterranean region-a case study for the island of Cyprus. Renew sust Energ rev 13: 2474-2484. doi: 10.1016/j.rser.2009.03.014
    [15] García-Valladares O, Velázquez N (2009) Numerical simulation of parabolic trough solar collector: improvement using counter flow concentric circular heat exchangers. Int J Heat Mass Tran 52: 597-609. doi: 10.1016/j.ijheatmasstransfer.2008.08.004
    [16] Cheng ZD, He YL, Cui FQ, et al. (2014) Comparative and sensitive analysis for parabolic trough solar collectors with a detailed Monte Carlo ray-tracing optical model. Appl energ 115: 559-572. doi: 10.1016/j.apenergy.2013.11.001
    [17] Tao YB, He YL (2010) Numerical study on coupled fluid flow and heat transfer process in parabolic trough solar collector tube. Sol energ 84: 1863-1872. doi: 10.1016/j.solener.2010.07.012
    [18] Kakaç S, Pramuanjaroenkij A (2016) Analysis of convective heat transfer enhancement by nanofluids: single-phase and two-phase treatments. J Eng Phys Thermophys 89: 758-793. doi: 10.1007/s10891-016-1437-1
    [19] Dogonchi AS, Ganji DD (2016) Convection-radiation heat transfer study of moving fin with temperature-dependent thermal conductivity, heat transfer coefficient and heat generation. Appl Therm Eng 103: 705-712. doi: 10.1016/j.applthermaleng.2016.04.121
    [20] Verma SK, Tiwari AK (2015) Progress of nanofluid application in solar collectors: a review. Energ Convers Manage 100: 324-346. doi: 10.1016/j.enconman.2015.04.071
    [21] Ganji DD, Ganji SS, Karimpour S, et al. (2010) Numerical study of homotopy-perturbation method applied to Burgers equation in fluid. Numer Meth Part D E: Int J 26: 917-930.
    [22] Ghazouani K, Skouri S, Bouadila S, et al. (2019) Thermal analysis of linear solar concentrator for indirect steam generation. Energ Procedia 162: 136-145. doi: 10.1016/j.egypro.2019.04.015
    [23] Alobaid M, Hughes B, O'Connor D, et al. (2018) Improving thermal and electrical efficiency in photovoltaic thermal systems for sustainable cooling system integration. J Sustain Dev Energ, Water Environ Syst 6: 305-322. doi: 10.13044/j.sdewes.d5.0187
    [24] Belhocine A, Omar W, Zaidi W (2018) Similarity solution and Runge Kutta method to a thermal boundary layer model at the entrance region of a circular tube: the Lévêque Approximation. Sci mag 31: 6-18.
    [25] Colella P, Dorr MR, Wake DD (1999) A conservative finite difference method for the numerical solution of plasma fluid equations. J Comput Phys 149: 168-193. doi: 10.1006/jcph.1998.6136
    [26] Chiad BT, Kasim NK, Mutlak FAH, et al. (2011) Parabolic trough solar collector-design, construction and testing. Baghdad Sci J 8: 658-665. doi: 10.21123/bsj.8.2.658-665
    [27] Suri M, Huld T, Dunlop E, et al. (2006) Online data and tools for estimation of solar electricity in Africa: the PVGIS approach. Proceedings from 21st European Photovoltaic Solar Energy Conference and Exhibition, Dresden, Germany.
    [28] Kale PG, Tarai R (2016) Development of rasterized map using PVGIS for assessment of solar PV energy potential of odisha. Int J Renew Energ Res 6: 61-73.
    [29] Kenny RP, Huld TA, Iglesias S (2006) Energy rating of PV modules based on PVGIS irradiance and temperature database. Proceedings from 21st European Photovoltaic Solar Energy Conference and Exhibition, Dresden, Germany.
    [30] Ghodbane M, Boumeddane B (2016) A numerical analysis of the energy behavior of a parabolic trough concentrator. J Fund Appl Sci 8: 671-691.
    [31] Šúri M, Huld TA, Dunlop ED, et al. (2007) Potential of solar electricity generation in the European Union member states and candidate countries. Sol energ 81: 1295-1305. doi: 10.1016/j.solener.2006.12.007
    [32] Kazemi-Kamyab V, Van Zuijlen AH, Bijl H (2014) Analysis and application of high order implicit Runge-Kutta schemes for unsteady conjugate heat transfer: a strongly-coupled approach. J Comput Phys 272: 471-486. doi: 10.1016/j.jcp.2014.04.016
  • This article has been cited by:

    1. Hai-Feng Huo, Fang-Fang Cui, Hong Xiang, Dynamics of an SAITS alcoholism model on unweighted and weighted networks, 2018, 496, 03784371, 249, 10.1016/j.physa.2018.01.003
    2. Shouying Huang, Fengde Chen, Yanhong Zhang, Global analysis of epidemic spreading with a general feedback mechanism on complex networks, 2019, 2019, 1687-1847, 10.1186/s13662-019-2095-3
    3. Xinxin Cheng, Yi Wang, Gang Huang, Dynamics of a competing two-strain SIS epidemic model with general infection force on complex networks, 2021, 59, 14681218, 103247, 10.1016/j.nonrwa.2020.103247
    4. Hong Xiang, Fang-Fang Cui, Hai-Feng Huo, Analysis of the SAITS alcoholism model on scale-free networks with demographic and nonlinear infectivity, 2019, 13, 1751-3758, 621, 10.1080/17513758.2019.1683629
    5. Yucui Wu, Zhipeng Zhang, Limei Song, Chengyi Xia, Global stability analysis of two strains epidemic model with imperfect vaccination and immunity waning in a complex network, 2024, 179, 09600779, 114414, 10.1016/j.chaos.2023.114414
  • Reader Comments
  • © 2019 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(5768) PDF downloads(855) Cited by(9)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog