Research article Special Issues

Transients outrush current analysis and mitigation: A Case study of Afghanistan North East power system

  • Received: 25 May 2019 Accepted: 04 August 2019 Published: 22 August 2019
  • This study evaluates the inconveniences raised by the installation of Shunt Capacitor Banks (SCB) along the North East Power System (NEPS) in Afghanistan. Besides the numerous advantages, a capacitor bank usually has some drawbacks in terms of transient currents which affect the quality of power supply and exceed the withstand capability of associated equipment. In this study, transient outrush current injects by installed SCB into the nearby faulted point at Pule Khumri and Chimtala substations is investigated. Outrush transient is produced by SCB when the breaker is operating to disconnect the faulted circuit. By applying different methods can mitigate outrush transient and protect the system which Current Limiting Inductance (CLI) is preferred in this study. Integrating CLI in series with SCB is the most relevant method which can limit the amplitude, frequency, and the rate of rise of the outrush transient. The use of inductance could otherwise create some excessive voltage which might exceeds the withstand capability of circuit breakers. Hence sensitivity analysis based on Transient Recovery Voltage (TRV) to confirm the robustness of the proposed approach is carried out. The evaluation is accomplished based on the result derived from the Electromagnetic Transients Program (EMTP), ATP package.

    Citation: Abdul Matin Ibrahimi, K Narayanan, Mohammed Elsayed Lotfy, Mir Sayed Shah Danish, Mikaeel Ahmadi, Tomonobu Senjyu. Transients outrush current analysis and mitigation: A Case study of Afghanistan North East power system[J]. AIMS Energy, 2019, 7(4): 493-506. doi: 10.3934/energy.2019.4.493

    Related Papers:

    [1] Si Li, Wenquan Ye, Fenghuan Li . LU-Net: combining LSTM and U-Net for sinogram synthesis in sparse-view SPECT reconstruction. Mathematical Biosciences and Engineering, 2022, 19(4): 4320-4340. doi: 10.3934/mbe.2022200
    [2] Benxin Zhang, Xiaolong Wang, Yi Li, Zhibin Zhu . A new difference of anisotropic and isotropic total variation regularization method for image restoration. Mathematical Biosciences and Engineering, 2023, 20(8): 14777-14792. doi: 10.3934/mbe.2023661
    [3] Yafei Liu, Linqiang Yang, Hongmei Ma, Shuli Mei . Adaptive filter method in Bendlet domain for biological slice images. Mathematical Biosciences and Engineering, 2023, 20(6): 11116-11138. doi: 10.3934/mbe.2023492
    [4] Hui Yao, Yuhan Wu, Shuo Liu, Yanhao Liu, Hua Xie . A pavement crack synthesis method based on conditional generative adversarial networks. Mathematical Biosciences and Engineering, 2024, 21(1): 903-923. doi: 10.3934/mbe.2024038
    [5] Xiaolei Gu, Wei Xue, Yanhong Sun, Xuan Qi, Xiao Luo, Yongsheng He . Magnetic resonance image restoration via least absolute deviations measure with isotropic total variation constraint. Mathematical Biosciences and Engineering, 2023, 20(6): 10590-10609. doi: 10.3934/mbe.2023468
    [6] Sanjaykumar Kinge, B. Sheela Rani, Mukul Sutaone . Restored texture segmentation using Markov random fields. Mathematical Biosciences and Engineering, 2023, 20(6): 10063-10089. doi: 10.3934/mbe.2023442
    [7] Jiajia Jiao, Xiao Xiao, Zhiyu Li . dm-GAN: Distributed multi-latent code inversion enhanced GAN for fast and accurate breast X-ray image automatic generation. Mathematical Biosciences and Engineering, 2023, 20(11): 19485-19503. doi: 10.3934/mbe.2023863
    [8] Shuaiyu Bu, Yuanyuan Li, Wenting Ren, Guoqiang Liu . ARU-DGAN: A dual generative adversarial network based on attention residual U-Net for magneto-acousto-electrical image denoising. Mathematical Biosciences and Engineering, 2023, 20(11): 19661-19685. doi: 10.3934/mbe.2023871
    [9] Urszula Ledzewicz, Behrooz Amini, Heinz Schättler . Dynamics and control of a mathematical model for metronomic chemotherapy. Mathematical Biosciences and Engineering, 2015, 12(6): 1257-1275. doi: 10.3934/mbe.2015.12.1257
    [10] Mingju Chen, Hongyang Li, Hongming Peng, Xingzhong Xiong, Ning Long . HPCDNet: Hybrid position coding and dual-frquency domain transform network for low-light image enhancement. Mathematical Biosciences and Engineering, 2024, 21(2): 1917-1937. doi: 10.3934/mbe.2024085
  • This study evaluates the inconveniences raised by the installation of Shunt Capacitor Banks (SCB) along the North East Power System (NEPS) in Afghanistan. Besides the numerous advantages, a capacitor bank usually has some drawbacks in terms of transient currents which affect the quality of power supply and exceed the withstand capability of associated equipment. In this study, transient outrush current injects by installed SCB into the nearby faulted point at Pule Khumri and Chimtala substations is investigated. Outrush transient is produced by SCB when the breaker is operating to disconnect the faulted circuit. By applying different methods can mitigate outrush transient and protect the system which Current Limiting Inductance (CLI) is preferred in this study. Integrating CLI in series with SCB is the most relevant method which can limit the amplitude, frequency, and the rate of rise of the outrush transient. The use of inductance could otherwise create some excessive voltage which might exceeds the withstand capability of circuit breakers. Hence sensitivity analysis based on Transient Recovery Voltage (TRV) to confirm the robustness of the proposed approach is carried out. The evaluation is accomplished based on the result derived from the Electromagnetic Transients Program (EMTP), ATP package.


    Environmental degradation and climate change exacerbate the challenges humanity faces. Coping with climate change, controlling environmental pollution and promoting harmonious coexistence between man and nature have become the core issues of sustainable development of the global economy and society. The Sustainable Development Goals and the Paris Agreement on Climate Change indicate a fundamental re-organization of both the financial system and the economy it serves and also imply an intensive study of the current economic and financial development model of every country. Hence, aligning finance with sustainability is subject to much research, experimentation and practice.

    Green Finance (GF) is an international, interdisciplinary Open Access journal devoted to publishing peer-reviewed, high quality original papers in the field of green finance, environment, and sustainability research and practice. Green Finance interprets low-carbon topics from an economic perspective, and conducts quantitative research on green finance through carbon finance, carbon information disclosure and other aspects, so as to achieve win-win between economic value and social value. GF dedicates to providing speedy review to accelerate publication process. GF will focus primarily on original research articles, but will also publish reviews, editorials, letters, and conference reports.

    Green Finance builds a much-needed platform for publishing original contributions and comprehensive technical review articles with a scope that spans all areas of green finance, green economics, and environmental and sustainable issues. A particular emphasis is placed on three aspects: Financial support for sustainable development, green financial products especially energy finance, and finance and R & D innovation.

    Firstly, green finance research is an important means to promote the sustainable development of society, economy and ecology. Green finance is defined as comprising "all forms of investment or lending that consider environmental effect and enhance environmental sustainability" (Volz et al., 2015: 2). Sustainable investment and lending are significant aspects of green finance, considering sustainable standards, and environmental and climate risks. Besides, to align the financial system and policies with sustainable goals are also crucial for achieving a green transformation. Sustainability is without doubt a very important area of research, evidenced by its unprecedented growth in the last decade. In the field of academic research, sustainability-themed papers are becoming more and more prominent with rising awareness of challenges such as global climate change and resources shortage. With the development of the economy, the financial system and mechanism are continuously adjusted to mobilize and allocate financial resources reasonably and effectively and improve financial efficiency, so as to realize the effective operation and steady development of the economy and finance in the long run. The quantitative research of green finance can greatly promote the sustainable development of domestic and global economy and finance. The UNEP Inquiry (2015) identified five areas of emerging practice in embedding sustainable development into the financial system which are all worth studying in the near future: (ⅰ) enhancing market practice: Disclosure, analysis, risk management; (ⅱ) upgrading governance architectures: Internalizing sustainable development into financial decision-making of financial regulators and central bank; (ⅲ) encouraging cultural transformation: capacity building, behaviour, market structure; (ⅳ) harnessing the public balance sheets: Fiscal incentives, public financial institutions and central banks; (ⅴ) directing finance through policy: Requirements and prohibitions, enhanced liability.

    Secondly, the GF tries to carry out a mission to identify, explore and promote the development and adoption of best environment-friendly and sustainable products and services at all levels of financial institution operations. Specifically, GF places unique emphasis on channeling finance to activities that promote energy efficiency. Nowadays, there are many energy efficiency financing opportunities in markets worth the attention of not only clients and institutions but also the researchers. A large number of studies focus on issues such as the relationship between energy price shocks and financial markets, financing and investment decisions made by energy firms, and carbon finance. These studies can be generalized into a common research theme—energy finance, which is also a subject of interest of this journal. The GF determines to publish innovative articles on the following five broad themes based on a brief review of the energy finance relevant literature: (ⅰ) Energy and financial markets; (ⅱ) Energy corporate finance; (ⅲ) Energy products pricing mechanism; (ⅳ) Energy derivative markets; (ⅴ) Energy risk management.

    Thirdly, the GF also feels responsible to promote R & D and innovation finance. Nowadays, investments in R & D and innovation are at the heart of enterprises' competitiveness and on the top of countries' development strategies, so it is crucial and urgent to have a better understanding of the current and emerging drivers and barriers for R & D and innovation financing. Research on finance and R & D innovation has grown enormously in recent decades, producing a great number of results, and shedding new lights on many unresolved issues as well. It is well known that financial constraints and information asymmetries are important obstacles to R & D and innovation, but the great heterogeneity of companies calls for much more systematic and comprehensive empirical evidence based on proper indicators. The related issue of the gap between the external and internal costs of R & D investments also requires further research. What's more, the following topics are also in need of closer look and additional insights. (ⅰ) The dynamic relationship between financial behavior and enterprises' R & D innovation; (ⅱ) The magnitude and relative importance of the various external barriers to innovative activities; (ⅲ) Measurement of the squeezing effect of enterprise R & D innovation financing; (ⅳ) Accurately designed direct and indirect policy measures to ease access to investment in R & D innovation; (ⅴ) Comparative analyses on more countries or clusters of homogenous regions on R & D financing related issues.

    The editors of GF hope that the journal will be educational, provocative and practically useful to all sustainable research professionals and institutions. The editorial team and AIMS press are determined to see the journal become a leading platform for the exchange of scientific communication in sustainability, green economics and finance, and related areas. With an outstanding Editorial Board, we are determined to make the journal among the best in the field. We look forward to receiving your submissions, general feedback as to how the journal is progressing and suggestions for how it can be improved.

    We, on behalf of the Editorial Board, extend an invitation to sustainable research professionals for contributions and continued patronage to the journal of Green Finance.



    [1] Muromba N, Pudney D (2011) Shunt capacitor banks increase capacity of distribution networks. Energize 3: 30–33.
    [2] Iyambo PK, Tzoneva R (2007) Transient stability analysis of the IEEE 14-bus electric power system. AFRICON 2007 1–9.
    [3] Badrzadeh B (2013) Transient recovery voltages caused by capacitor switching in wind power plants. IEEE Trans Ind Appl 49: 2810–2819. doi: 10.1109/TIA.2013.2263491
    [4] Gopakumar G, Yan H, Mork BA, et al. (1999) Shunt capacitor bank switching transients: A tutorial and case study. Minnesota Power Systems Conference (No. 2–4).
    [5] Haginomori E (2003) Applied ATP-EMTP to highly-sophisticated electric power systems. Tokyou Institute of Technology and Kyushu Institute of Technology.
    [6] Jahangiri M, Haghani A, Mostafaeipour A, et al. (2019) Assessment of solar-wind power plants in Afghanistan: A review. Renewable Sustainable Energy Rev 99: 169–190. doi: 10.1016/j.rser.2018.10.003
    [7] Ibrahimi AM, Howlader HOR, Danish MSS, et al. (2019) Optimal Unit Commitment with Concentrated Solar Power and Thermal Energy Storage in Afghanistan Electrical System. Int J Emerging Electr Power Syst 20: 1–16.
    [8] Sediqi MM, Howlader HOR, Ibrahimi AM, et al. (2017) Development of renewable energy resources in Afghanistan for economically optimized cross-border electricity trading. AIMS Energy 85: 691–717.
    [9] Ibrahimi AM, Sediqi MM, Howlader HOR, et al. (2019) Generation expansion planning considering renewable energy integration and optimal unit commitment: A case study of Afghanistan. AIMS Energy 7: 441–464. doi: 10.3934/energy.2019.4.441
    [10] ICE Afghanistan 2019. Available from: https://sites.google.com/site/iceafghanistan/electricity-supply.
    [11] Irving J, Meier P (2012) Afghanistan resource corridor development: Power sector analysis. Australian AID.
    [12] April (2013) Power Sector Master Plan. Islamic Republic of Afghanistan, Ministry of Energy and Water.
    [13] Afghanistan Energy Information Center 2019. Available from: http://aeic.af/en/gismap/62.
    [14] Brunello G, Kasztenny B, Wester C (2003) Shunt capacitor bank fundamentals and protection. Conference for Protective Relay Engineers 1–17.
    [15] Issouribehere PE, Issouribehere F, Barbera GA, et al. (2007) Measurements and studies of harmonics and switching, transients in large HV shunt capacitor banks. Power Engineering Society General Meeting 1–8.
    [16] Hamouda A, Zehar K (2007) Improvement of the power transmission of distribution feeders by fixed capacitor banks. Acta Polytech Hung 4: 47–62.
    [17] Ali SA (2011) Capacitor banks switching transients in power systems. Energy Sci Technol 2: 62–73.
    [18] Samineni S, Labuschagne C, Pope J (2010) Principles of shunt capacitor bank application and protection. Protective Relay Engineers, 63rd Annual Conference 1–14.
    [19] Saied MM (2004) Capacitor switching transients: analysis and proposed technique for identifying capacitor size and location. IEEE Trans Power Delivery 19: 759–765. doi: 10.1109/TPWRD.2003.822953
    [20] Grebe TE (1996) Application of distribution system capacitor banks and their impact on power quality. IEEE Trans Ind Appl 32: 714–719. doi: 10.1109/28.502186
    [21] Blooming TM, Carnovale DJ (2007) Capacitor application issues. Conference Record of 2007 Annual Pulp and Paper Industry Technical Conference 178–190.
    [22] NEPSI 2019. Available from: https://www.scribd.com/document/347247617/Peak-Capacito-Bank-Out-Rush-Current-Calculation-xlsx.
    [23] Paul W, Chen M, Lakner M, et al. (2001) Fault current limiter based on high temperature superconductors different concepts, test results, simulations, applications. Phys C: Supercond 354: 27–33. doi: 10.1016/S0921-4534(01)00018-1
    [24] De Metz-Noblat B, Dumas F, Poulain C (2005) Cahier Technique no. 158: Calculation of Short-Circuit Currents. Schneider Electric, updated.
    [25] Boutsika TN, Papathanassiou SA (2008) Short-circuit calculations in networks with distributed generation. Electr Power Syst Res 78: 1181–1191. doi: 10.1016/j.epsr.2007.10.003
    [26] Akinrinde AO, Swanson A, Tiako R (2016) Transient analysis and mitigation of capacitor bank switching on a standalone wind farm. World Acad Sci, Eng Technol, Int J Electr, Comput, Energ, Electron Commun Eng 10: 535–544.
    [27] Stankovic AM, Aydin T (2000) Analysis of asymmetrical faults in power systems using dynamic phasors. IEEE Trans Power Syst 15: 1062–1068. doi: 10.1109/59.871734
    [28] Meyer C, Schroder S, De Doncker RW (2004) Solid-state circuit breakers and current limiters for medium-voltage systems having distributed power systems. IEEE Trans Power Electron 19: 1333–1340. doi: 10.1109/TPEL.2004.833454
    [29] Liu H, Wang Z, Yang J, et al. (2018) Circuit breaker Rate-of-Rise recovery voltage in Ultra-High voltage lines with hybrid reactive power compensation. Energies 11: 100. doi: 10.3390/en11010100
    [30] Bellei TA, Camm EH, Ransom G (2001) Current-limiting inductors used in capacitor bank applications and their impact on fault current interruption. 2001 IEEE/PES Transmission and Distribution Conference and Exposition 1: 603–607. doi: 10.1109/TDC.2001.971302
    [31] Harlow JH (2007) Electric Power Transformer Engineering.
  • This article has been cited by:

    1. Vitor Miguel Ribeiro, Pioneering paradigms: unraveling niche opportunities in green finance through bibliometric analysis of nation brands and brand culture, 2024, 6, 2643-1092, 287, 10.3934/GF.2024012
  • Reader Comments
  • © 2019 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(5644) PDF downloads(945) Cited by(0)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog