Advanced wireless communication technologies, such as 5G, are faced with significant challenges in accurately estimating the transmitted signal and characterizing the channel. One of the major obstacles is the interference caused by the delay spread, which results from receiving multiple signal copies through different paths. To mitigate this issue, the orthogonal frequency division modulation (OFDM) technique is often employed. Efficient signal detection and optimal channel estimation are crucial for enhancing the performance of multi-carrier wireless communication systems. To this end, this paper proposes a Long Short Term Memory-Projected Layer (LSTM-PL) deep neural network(DNN) based channel estimator to detect received OFDM signal. The results show that the LSTM-PL algorithm outperforms traditional methods such as Least Squares(LS), Minimum Mean Square Error (MMSE) and other LSTM deep learning channel estimation methods like Long Short Term Memory(LSTM)-DNN and Bidirectional-LSTM(Bi-LSTM)-DNN, as evidenced by Symbol-Error Rate (SER) outcomes.
Citation: Sebin J Olickal, Renu Jose. LSTM projected layer neural network-based signal estimation and channel state estimator for OFDM wireless communication systems[J]. AIMS Electronics and Electrical Engineering, 2023, 7(2): 187-195. doi: 10.3934/electreng.2023011
[1] | Yusuf Dogru . η-Ricci-Bourguignon solitons with a semi-symmetric metric and semi-symmetric non-metric connection. AIMS Mathematics, 2023, 8(5): 11943-11952. doi: 10.3934/math.2023603 |
[2] | Shahroud Azami, Mehdi Jafari, Nargis Jamal, Abdul Haseeb . Hyperbolic Ricci solitons on perfect fluid spacetimes. AIMS Mathematics, 2024, 9(7): 18929-18943. doi: 10.3934/math.2024921 |
[3] | Xiaosheng Li . New Einstein-Randers metrics on certain homogeneous manifolds arising from the generalized Wallach spaces. AIMS Mathematics, 2023, 8(10): 23062-23086. doi: 10.3934/math.20231174 |
[4] | Nasser Bin Turki, Sharief Deshmukh, Olga Belova . A note on closed vector fields. AIMS Mathematics, 2024, 9(1): 1509-1522. doi: 10.3934/math.2024074 |
[5] | Sharief Deshmukh, Mohammed Guediri . Some new characterizations of spheres and Euclidean spaces using conformal vector fields. AIMS Mathematics, 2024, 9(10): 28765-28777. doi: 10.3934/math.20241395 |
[6] | Amira Ishan . On concurrent vector fields on Riemannian manifolds. AIMS Mathematics, 2023, 8(10): 25097-25103. doi: 10.3934/math.20231281 |
[7] | Yanlin Li, Aydin Gezer, Erkan Karakaş . Some notes on the tangent bundle with a Ricci quarter-symmetric metric connection. AIMS Mathematics, 2023, 8(8): 17335-17353. doi: 10.3934/math.2023886 |
[8] | Mohd Danish Siddiqi, Fatemah Mofarreh . Schur-type inequality for solitonic hypersurfaces in (k,μ)-contact metric manifolds. AIMS Mathematics, 2024, 9(12): 36069-36081. doi: 10.3934/math.20241711 |
[9] | Tong Wu, Yong Wang . Super warped products with a semi-symmetric non-metric connection. AIMS Mathematics, 2022, 7(6): 10534-10553. doi: 10.3934/math.2022587 |
[10] | Fahad Sikander, Tanveer Fatima, Sharief Deshmukh, Ayman Elsharkawy . Curvature analysis of concircular trajectories in doubly warped product manifolds. AIMS Mathematics, 2024, 9(8): 21940-21951. doi: 10.3934/math.20241066 |
Advanced wireless communication technologies, such as 5G, are faced with significant challenges in accurately estimating the transmitted signal and characterizing the channel. One of the major obstacles is the interference caused by the delay spread, which results from receiving multiple signal copies through different paths. To mitigate this issue, the orthogonal frequency division modulation (OFDM) technique is often employed. Efficient signal detection and optimal channel estimation are crucial for enhancing the performance of multi-carrier wireless communication systems. To this end, this paper proposes a Long Short Term Memory-Projected Layer (LSTM-PL) deep neural network(DNN) based channel estimator to detect received OFDM signal. The results show that the LSTM-PL algorithm outperforms traditional methods such as Least Squares(LS), Minimum Mean Square Error (MMSE) and other LSTM deep learning channel estimation methods like Long Short Term Memory(LSTM)-DNN and Bidirectional-LSTM(Bi-LSTM)-DNN, as evidenced by Symbol-Error Rate (SER) outcomes.
In recent years, a useful extension has been proposed from the classical calculus by permitting derivatives and integrals of arbitrary orders is known as fractional calculus. It emerged from a celebrated logical conversation between Leibniz and L'Hopital in 1695 and was enhanced by different scientists like Laplace, Abel, Euler, Riemann, and Liouville [1]. Fractional calculus has gained popularity on the account of diverse applications in various areas of science and technology [2,3,4]. The concept of this new calculus was applied in several distinguished areas previously with excellent developments in the frame of novel approaches and posted scholarly papers, see [5,6,7,8,9,10,11,12,13,14,15,16,17,18]. Various notable generalized fractional integral operators such as the Riemann-Liouville, Hadamard, Caputo, Marichev-Saigo-Maeda, Riez, the Gaussian hypergeometric operators and so on, their attempts helpful for researchers to recognize the real world phenomena. Therefore, the Caputo and Riemann-Liouville was the most used fractional operators having singular kernels. It is remarkable that all the above mentioned operators are the particular cases of the operators investigated by Jarad et al. [19]. The utilities to weighted generalized fractional operators are undertaking now.
Adopting the excellency of the above work, we introduce a new weighted framework of generalized proportional fractional integral operator with respect to monotone function Ψ. Also, some new characteristics of the aforesaid operator are apprehended to explore new ideas to amplify the fractional operators and acquire fractional integral inequalities via generalized fractional operators (see Remark 2 and 3 below).
Recently, by employing the fractional integral operators, several researchers have established a bulk of fractional integral inequalities and their variant forms with fertile applications. These sorts of speculations have noteworthy applications in fractional differential/difference equations and fractional Schrödinger equations [20,21]. By the use of Riemann-Liouville fractional integral operator, Belarbi and Dahmani [22] contemplated the subsequent integral inequalities as follows:
If f1 and g1 are two synchronous functions on [0,∞), then
Ωα(f1g1)(ϰ)≤Γ(α+1)ϰαΩα(f1)(ϰ)Ωα(g1)(ϰ) | (1.1) |
and
ϰαΓ(α+1)Ωβ(f1g1)(ϰ)+ϰβΓ(β+1)Ωα(f1g1)(ϰ)≤Ωα(f1)(ϰ)Ωβ(g1)(ϰ)+Ωβ(f1)(ϰ)Ωα(g1)(ϰ), | (1.2) |
for all ϰ>0,α,β>0. Butt et al. [23], Rashid et al. [24] and Set et al. [25] established the fractional integral inequalities via generalized fractional integral operator having Raina's function, generalized K-fractional integral and Katugampola fractional integral inequalities similar to the variants (1.1) and (1.2), respectively. Here we should emphasize that, inequalities (1.1) and (1.2) are a remarkable instrument for reconnoitering plentiful scientific regions of investigation encompassing probability theory, statistical analysis, physics, meteorology, chaos and henceforth.
More general version of inequalities (1.1) and (1.2) proposed by Dahmani [26] by employing Riemann-Liouville fractional integral operator.
Let f1 and g1 be two synchronous functions on [0,∞) and let r,s:[0,∞)→[0,∞). Then
ΩαP(ϰ)Ωα(Qf1g1)(ϰ)+ΩαQ(ϰ)Ωα(Pf1g1)(ϰ)≥Ωα(Qf1)(ϰ)Ωα(Pg1)(ϰ)+Ωα(Pf1)(ϰ)Ωα(Qg1)(ϰ) | (1.3) |
and
ΩαP(ϰ)Ωβ(Qf1g1)(ϰ)+ΩβQ(ϰ)Ωα(Pf1g1)(ϰ)≥Ωα(Qf1)(ϰ)Ωβ(Pg1)(ϰ)+Ωβ(Pf1)(ϰ)Ωα(Qg1)(ϰ) | (1.4) |
for all ϰ>0,α,β>0. Chinchane and Pachpatte [27], Brahim and Taf [28] and Shen et al. [29] explored the Hadamard fractional integral inequalities, the fractional version of integral inequalities in two variable quantum deformation and the Riemann-Liouville fractional integral operator on time scale analysis coincide to variants (1.3) and (1.4), respectively.
Let us define the most distinguished Chebyshev functional [30]:
T(f1,g1)=1b1−a1b1∫a1f1(ϰ)g1(ϰ)dϰ−1b1−a1b1∫a1f1(ϰ)dϰ1b1−a1b1∫a1g1(ϰ)dϰ, | (1.5) |
where f1 and g1 are two integrable functions on [a1,b1]. In [31], Grüss proposed the well-known generalization:
|T(f1,g1)|≤14(Φ−ϕ)(Υ−γ), | (1.6) |
where f1 and g1 are two integrable functions on [a1,b1] satisfying the assumptions
ϕ≤f1(ϰ)≤Φ,γ≤g1(ϰ)≤Υ,ϕ,Φ,γ,Υ∈R,ϰ∈[a1,b1]. | (1.7) |
The inequality (1.6) is known to be Grüss inequality. In recent years, the Grüss type integral inequality has been the subject of very active research. Mathematicians and scientists can see them in research papers, monographs, and textbooks devoted to the theory of inequalities [32,33,34,35] such as, Dragomir [36] demonstrated certain variants with the supposition of vectors and continuous mappings of selfadjoint operators in Hilbert space similar to (1.6). In this context, f1 and g1 are holding the assumptions (1.7), Dragomir [37] derived several functionals in two and three variable sense as follows:
|S(f1,g1,P)|≤14(Φ−ϕ)(Υ−γ)(b1∫a1P1(ϰ)dϰ)2, | (1.8) |
where
S(f1,g1,P)=12T(f1,g1,P)=b1∫a1P(ϰ)dϰb1∫a1P(ϰ)f1(ϰ)g1(ϰ)dϰ−b1∫a1P(ϰ)f1(ϰ)dϰb1∫a1P(ϰ)g1(ϰ)dϰ | (1.9) |
and
T(f1,g1,P,Q)=b1∫a1Q(ϰ)dϰb1∫a1P(ϰ)f1(ϰ)g1(ϰ)dϰ+b1∫a1P(ϰ)dϰb1∫a1Q(ϰ)f1(ϰ)g1(ϰ)dϰ−b1∫a1Q(ϰ)f1(ϰ)dϰb1∫a1P(ϰ)g1(ϰ)dϰ−b1∫a1P(ϰ)f1(ϰ)dϰb1∫a1Q(ϰ)g1(ϰ)dϰ. | (1.10) |
In [37], Dragomir established the inequality:
If f′1,g′1∈L∞(a1,b1), then
|S(f1,g1,P)|≤‖f′1‖∞‖g′1‖∞(b1∫a1P(ϰ)dϰb1∫a1ϰ2P(ϰ)dϰ−(b1∫a1ϰP(ϰ)dϰ)2). | (1.11) |
Moreover, author [37] proved numerous variants for Lipschitzian functions as follows:
If f1 is L-g1-Lipschitzian on [a1,b1], that is
|f1(μ)−fν|≤L|g1(μ)−g1(ν)|,L>0,μ,ν∈[a1,b1]. | (1.12) |
and
|S(f1,g1,P)|≤L(b1∫a1P(ϰ)dϰb1∫a1g21(ϰ)P(ϰ)dϰ−(b1∫a1g1(ϰ)P(ϰ)dϰ)2). | (1.13) |
Furthermore, if f1 and g1 are L1 and L2-Lipschitzian functions on [a1,b1], then
|S(f1,g1,P)|≤L1L2(b1∫a1P(ϰ)dϰb1∫a1ϰ2P(ϰ)dϰ−(b1∫a1ϰP(ϰ)dϰ)2). | (1.14) |
Owing to the above tendency, Dhamani et al. [38] proposed the fractional integral inequalities in the Riemann-Liouville parallel to variant (1.6) with the suppositions (1.7). Additionally, Dahamani and Benzidane [39] introduced weighted Grüss type inequality via (α,β)-fractional q-integral inequality resemble to (1.8) under the hypothesis of (1.5). Author [40,41] derived the extended functional of (1.10) by employing Riemann-Liouville integral corresponds to variants (1.11), (1.13) and (1.14), respectively. In this flow, Set et al. [42] contemplated the Grüss type inequalities considering the generalized K-fractional integral. Chen et al. [43] obtained the novel refinements of Hermite-Hadamard type inequalities for n-polynomial p-convex functions within the generalized fractional integral operators. Abdeljawad et al. [44] derived the Simpson's type inequalities for generalized p-convex functions involving fractal set. Jarad et al. [45] investigated the properties of the more general form of generalized proportional fractional operators in Laplace transforms.
The motivation of this paper is twofold. First, we propose a novel framework named weighted generalized proportional fractional integral operator based on characteristics, as well as considering the boundedness and semi-group property and able to be widely applied to many scientific results. Second, the current operator employed to the extended weighted Chebyshev and Grüss type inequalities for exploring the analogous versions of (1.5) and (1.6). Some special cases are pictured with new fractional operators which are not computed yet. Interestingly, particular cases are designed for Riemann-Liouville fractional integral, generalized Riemann-Liouville fractional integral and generalized proportional fractional integral inequalities. It is worth mentioning that these operators have the ability to recapture several generalizations in the literature by considering suitable assumptions of Ψ,ω and ρ.
In this section, we demonstrate the space where the weighted fractional integrals are bounded and also, provide certain specific features of these operators.
Definition 2.1 ([19])Let ω≠0 be a mapping defined on [a1,b1], g1 is a differentiable strictly increasing function on [a1,b1]. The space χpω(a1,b1),1≤p<∞ is the space of all Lebesgue measurable functions f1 defined on [a1,b1] for which ‖f1‖χpω, where
‖f1‖χpω=(b1∫a1|ω(ϰ)f1(ϰ)|pg′1(ϰ)dϰ)1p,1<p<∞ | (2.1) |
and
‖f1‖χpω=esssupa1≤ϰ≤b1|ω(ϰ)f1(ϰ)|<∞. | (2.2) |
Remark 1. Clearly we see that f1∈χpω(a1,b1) ⟹ ω(ϰ)f1(ϰ)(g−11(ϰ))1/p∈Lp(a1,b1) for 1≤p<∞ and f1∈χpω(a1,b1) ⟹ ω(ϰ)f1(ϰ)∈L∞(a1,b1).
Now, we show a novel fractional integral operator which is known as the weighted generalized proportional fractional integral operator with respect to monotone function Ψ.
Definition 2.2. Let f1∈χpω(a1,b1) and ω≠0 be a function on [a1,b1]. Also, assume that Ψ is a continuously differentiable function on [a1,b1] with ψ′>0 on [a1,b1]. Then the left and right-sided weighted generalized proportional fractional integral operator with respect to another function Ψ of order α>0 are described as:
ΨωΩρ;αa1f1(ϰ)=ω−1(ϰ)ραΓ(α)ϰ∫a1exp[ρ−1ρ(Ψ(ϰ)−Ψ(μ))](Ψ(ϰ)−Ψ(μ))1−αf1(μ)ω(μ)Ψ′(μ)dμ,a1<ϰ | (2.3) |
and
ΨωΩρ;αb1f1(ϰ)=ω−1(ϰ)ραΓ(α)b1∫ϰexp[ρ−1ρ(Ψ(μ)−Ψ(ϰ))](Ψ(μ)−Ψ(ϰ))1−αf1(μ)ω(μ)Ψ′(μ)dμ,ϰ<b1, | (2.4) |
where ρ∈(0,1] is the proportionality index, α∈C,ℜ(α)>0 and Γ(ϰ)=∫∞0μϰ−1e−μdμ is the Gamma function.
Remark 2. Some particular fractional operators are the special cases of (2.3) and (2.4).
(1) Setting Ψ(ϰ)=ϰ, in Definition (2.2), then we get the weighted generalized proportional fractional operators stated as follows:
ωΩρ;αa1f1(ϰ)=ω−1(ϰ)ραΓ(α)ϰ∫a1exp[ρ−1ρ(ϰ−μ)](ϰ−μ)1−αf1(μ)ω(μ)dμ,a1<ϰ | (2.5) |
and
ωΩρ;αb1f1(ϰ)=ω−1(ϰ)ραΓ(α)b1∫ϰexp[ρ−1ρ(μ−ϰ)](μ−ϰ)1−αf1(μ)ω(μ)dμ,ϰ<b1. | (2.6) |
(2) Setting Ψ(ϰ)=ϰ and ρ=1 in Definition (2.2), then we get the weighted Riemann-Liouville fractional operators stated as follows:
ωΩαa1f1(ϰ)=ω−1(ϰ)Γ(α)ϰ∫a1f1(μ)ω(μ)dμ(ϰ−μ)1−α,a1<ϰ | (2.7) |
and
ωΩαb1f1(ϰ)=ω−1(ϰ)Γ(α)b1∫ϰf1(μ)ω(μ)dμ(μ−ϰ)1−α,ϰ<b1. | (2.8) |
(3) Setting Ψ(ϰ)=lnϰ and a1>0 in Definition (2.2), we get the weighted generalized proportional Hadamard fractional operators stated as follows:
ωΩρ;αa1f1(ϰ)=ω−1(ϰ)ραΓ(α)ϰ∫a1exp[ρ−1ρ(lnϰμ)](lnϰμ)1−αf1(μ)ω(μ)μdμ,a1<ϰ | (2.9) |
and
ωΩρ;αb1f1(ϰ)=ω−1(ϰ)ραΓ(α)b1∫ϰexp[ρ−1ρ(lnμϰ)](lnμϰ)1−αf1(μ)ω(μ)μdμ,ϰ<b1. | (2.10) |
(4) Setting Ψ(ϰ)=lnϰ and a1>0 along with ρ=1 in Definition (2.2), then we get the weighted Hadamard fractional operators stated as follows:
ωΩαa1f1(ϰ)=ω−1(ϰ)Γ(α)ϰ∫a1f1(μ)ω(μ)dμμ(lnϰμ)1−α,a1<ϰ | (2.11) |
and
ωΩαb1f1(ϰ)=ω−1(ϰ)Γ(α)b1∫ϰf1(μ)ω(μ)dμμ(lnμϰ)1−α,ϰ<b1. | (2.12) |
(5) Setting Ψ(ϰ)=ϰττ(τ>0) in Definition (2.2), then we get the weighted generalized fractional operators in terms of Katugampola stated as follows:
ωΩαa1f1(ϰ)=ω−1(ϰ)Γ(α)ϰ∫a1(ϰτ−μττ)α−1f1(μ)ω(μ)dμμ1−τ,a1<ϰ | (2.13) |
and
ωΩαb1f1(ϰ)=ω−1(ϰ)Γ(α)b1∫ϰ(μτ−ϰττ)α−1f1(μ)ω(μ)dμμ1−τ,ϰ<b1. | (2.14) |
Remark 3. Several existing integral operators can be derived from Definition 2.2 as follows:
(1) Letting ω(ϰ)=1, then we get the Definition 4 proposed by Rashid et al. [46] and Definition 3.2 introduced by Jarad et al. [47], independently.
(2) Letting ω(ϰ)=1,Ψ(ϰ)=ϰ, then we get the Definition 3.4 defined by Jarad et al. [48].
(3) Letting ω(ϰ)=1 and Ψ(ϰ)=lnϰ along with a1>0, then we get the Definition 2.1 defined by Rahman et al. [49].
(4) Letting ω(ϰ)=ρ=1 and Ψ(ϰ)=lnϰ along with a1>0, then we get the operator defined by Kilbas et al. [3] and Smako et al. [5], respectively.
(5) Letting ω(ϰ)=ρ=1 and Ψ(ϰ)=ϰ, then we get the operator defined by Kilbas et al [3].
(6) Letting ω(ϰ)=1 and Ψ(ϰ)=ϰττ,(τ>0), then we get the operator defined by Katugampola et al. [7].
(7) Letting ω(ϰ)=ρ=1 and Ψ(ϰ)=ϰτ+sτ+s,τ∈(0,1],s∈R, then we get the Definition 2 defined by Khan and Khan et al [50].
(8) Letting ω(ϰ)=ρ=1 and Ψ(ϰ)=(ϰ−a1)ττ, and Ψ(ϰ)=−(b1−ϰ)ττ,(τ>0), then we get the operator defined by Jarad et al. [51].
Theorem 2.3. For α>0,ρ∈(0,1],1≤p≤∞ and f1∈χpω(a1,b1). Then ΨωΩρ;αa1 is bounded in χpω(a1,b1) and
‖ΨωΩρ;αa1f1‖χpω≤(Ψ(b1)−Ψ(a1))α‖f1‖χpωραΓ(α+1). |
Proof. For 1≤p≤∞, we have
‖ΨωΩρ;αa1f1‖χpω=1ραΓ(α)(b1∫a1|ϰ∫a1exp[ρ−1ρΨ(ϰ)−Ψ(μ)](Ψ(ϰ)−Ψ(μ))1−αω(μ)f1(μ)Ψ′(μ)dμ|pΨ′(ϰ)dϰ)1/p=1ραΓ(α)(∫Ψ(b1)Ψ(a1)|t2∫Ψ(a1)exp[ρ−1ρ(t2−t1)](t2−t1)1−αω(Ψ−1(t1))f1(Ψ−1(t1))|pdt2)1/p. |
Using the fact that |exp[ρ−1ρ(t2−t1)]|<1. Taking into account the generalized Minkowski inequality [5], we can write
‖ΨωΩρ;αa1f1‖χpω≤1ραΓ(α)∫Ψ(b1)Ψ(a1)(|ω(Ψ−1(t1))f1(Ψ−1(t1))|pΨ(b1)∫t1(t2−t1)p(α−1)dt2)1/pdt1=1ραΓ(α)Ψ(b1)∫Ψ(a1)(|ω(Ψ−1(t1))f1(Ψ−1(t1))|((Ψ(b1)−t1)p(α−1)+1p(α−1)+1)1/pdt1. |
By employing the well-known Hölder inequality satisfying p−1+q−1=1, we obtain
‖ΨωΩρ;αa1f1‖χpω≤1ραΓ(α)(∫Ψ(b1)Ψ(a1)|ω(Ψ−1(t1))f1(Ψ−1(t1))|pdt1)1/p(∫Ψ(b1)Ψ(a1)((Ψ(b1)−t1)p(α−1)+1p(α−1)+1)q/pdt1)1/q≤1ραΓ(α)(∫b1a1|ω(ϰ)f1(ϰ)|pΨ′(ϰ)dϰ)1/p(∫Ψ(b1)Ψ(a1)((Ψ(b1)−t1)p(α−1)+1p(α−1)+1)q/pdt1)1/q≤(Ψ(b1)−Ψ(a1))α‖f1‖χpωραΓ(α+1). |
Now, for p=∞, we have
|ω(ϰ)ΨωΩρ;αa1f1(ϰ)|=1ραΓ(α)ϰ∫a1exp[ρ−1ρ(Ψ(ϰ)−Ψ(μ))](Ψ(ϰ)−Ψ(μ))1−αf1(μ)ω(μ)Ψ′(μ)dμ≤1ραΓ(α)ϰ∫a1exp[ρ−1ρ(Ψ(ϰ)−Ψ(μ))](Ψ(ϰ)−Ψ(μ))1−α|f1(μ)ω(μ)|Ψ′(μ)dμ,Since(|exp[ρ−1ρ(t2−t1)]|<1)≤‖f1‖χ∞ωραΓ(α)ϰ∫a1(Ψ(ϰ)−Ψ(μ))α−1dμ≤(Ψ(ϰ)−Ψ(a1))α‖f1‖χ∞ωραΓ(α+1)=(Ψ(b1)−Ψ(a1))α‖f1‖χ∞ωραΓ(α+1). |
This ends the proof.
Our next result is the semi group property for weighted generalized proportional fractional integral operator with respect to monotone function.
Theorem 2.4. For α,β>0,ρ∈(0,1] with 1≤p≤∞ and let f1∈χpω(a1,b1). Then
(ΨωΩρ;αa1ΨωΩρ;βa1)f1=(ΨωΩρ;α+βa1)f1. | (2.15) |
Proof.
(ΨωΩρ;αa1ΨωΩρ;βa1f1)(ϰ)=ω−1(ϰ)ραΓ(α)ϰ∫a1exp[ρ−1ρ(Ψ(ϰ)−Ψ(μ))](Ψ(ϰ)−Ψ(μ))1−αω(μ)(ΨωΩρ;βa1f1)(μ)Ψ′(μ)dμ=ω−1(ϰ)ρα+βΓ(α)Γ(β)ϰ∫a1μ∫a1exp[ρ−1ρ(Ψ(ϰ)−Ψ(μ))](Ψ(ϰ)−Ψ(μ))1−αexp[ρ−1ρ(Ψ(μ)−Ψ(ν))](Ψ(μ)−Ψ(ν))1−β×ω(ν)f1(ν)Ψ′(ν)Ψ′(μ)dμdν. |
By making change of variable technique θ=Ψ(μ)−Ψ(a1)Ψ(ϰ)−Ψ(a1), we can write
(ΨωΩρ;αa1ΨωΩρ;βa1f1)(ϰ)=ω−1(ϰ)ρα+βΓ(α)Γ(β)1∫0θβ−1(1−θ)α−1dθϰ∫a1exp[ρ−1ρ(Ψ(ϰ)−Ψ(ν))](Ψ(ϰ)−Ψ(ν))1−α−βω(ν)f1(ν)Ψ′(ν)dν=ω−1(ϰ)ρα+βΓ(α)Γ(β)Γ(α)Γ(β)Γ(α+β)ϰ∫a1exp[ρ−1ρ(Ψ(ϰ)−Ψ(ν))](Ψ(ϰ)−Ψ(ν))1−α−βω(ν)f1(ν)Ψ′(ν)dν=(ΨωΩρ;α+βa1f1)(ϰ), |
where B(α,β)=Γ(α)Γ(β)Γ(α+β)=1∫0θβ−1(1−θ)α−1dθ is known to be Euler Beta function.
This section contains some significant generalizations for weighted integral inequalities by employing weighted generalized proportional fractional integral operator, for the consequences relating to (1.1) and (1.2), it is suppose that all mappings are integrable in the Riemann sense.
Throughout this investigation, we use the following assumptions:
I. Let f1 and g1 be two synchronous functions on [0,∞).
II. Let Ψ:[0,∞)→(0,∞) is an increasing function with continuous derivative Ψ′ on the interval (0,∞).
Lemma 3.1. If the supposition \boldsymbol{I} and \boldsymbol{II} are satisfied and let \mathcal{Q} and \mathcal{P} be two non-negative continuous mappings on [0, \infty). Then the inequality
\begin{eqnarray} &&\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\alpha}\big(\mathcal{P}\big)(\varkappa) \, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\alpha}\big(\mathcal{Q}f_{1}g_{1}\big)(\varkappa)+\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\alpha}\big(\mathcal{P}f_{1}g_{1}\big)(\varkappa)\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\alpha}\big(\mathcal{Q}\big)(\varkappa)\\&&\geq \, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\alpha}\big(\mathcal{P}g_{1}\big)(\varkappa)\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\alpha}\big(\mathcal{Q}f_{1}\big)(\varkappa)+\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\alpha}\big(\mathcal{P}f_{1}\big)(\varkappa)\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\alpha}\big(\mathcal{Q}g_{1}\big)(\varkappa), \end{eqnarray} | (3.1) |
holds for all \rho\in(0, 1], \alpha\in\mathcal{C} with \Re(\alpha) > 0.
Proof. Since f_{1} and g_{1} are two synchronous functions on [0, \infty) , then for all \mu > 0 and \nu > 0, we have
\begin{eqnarray} \big(f_{1}(\mu)-f_{1}(\nu)\big)\big(g_{1}(\mu)-g_{1}(\nu)\big)\geq0. \end{eqnarray} | (3.2) |
By (3.2), we write
\begin{eqnarray} f_{1}(\mu)g_{1}(\mu)+ f_{1}(\nu)g_{1}(\nu)\geq g_{1}(\mu)f_{1}(\nu)+g_{1}(\nu)f_{1}(\mu). \end{eqnarray} | (3.3) |
If we multiply both sides of (3.3) by \frac{\exp[\frac{\rho-1}{\rho}(\Psi(\varkappa)-\Psi(\mu))]\mathcal{Q}(\mu)\omega(\mu)\Psi^{\prime}(\mu)}{\rho^{\alpha}\Gamma(\alpha)(\Psi(\varkappa)-\Psi(\mu))^{1-\alpha}} and integrating the resulting inequality with respect to \mu from 0 to \varkappa, we get
\begin{eqnarray} &&\frac{1}{\rho^{\alpha}\Gamma(\alpha)}\int\limits_{0}^{\varkappa}\frac{\exp[\frac{\rho-1}{\rho}(\Psi(\varkappa)-\Psi(\mu))]\mathcal{Q}(\mu)\omega(\mu)\Psi^{\prime}(\mu)}{\rho^{\alpha}\Gamma(\alpha)(\Psi(\varkappa)-\Psi(\mu))^{1-\alpha}}f_{1}(\mu)g_{1}(\mu)d\mu\\&&\quad+ \frac{f_{1}(\nu)g_{1}(\nu)}{\rho^{\alpha}\Gamma(\alpha)}\int\limits_{0}^{\varkappa}\frac{\exp[\frac{\rho-1}{\rho}(\Psi(\varkappa)-\Psi(\mu))]\mathcal{Q}(\mu)\omega(\mu)\Psi^{\prime}(\mu)}{\rho^{\alpha}\Gamma(\alpha)(\Psi(\varkappa)-\Psi(\mu))^{1-\alpha}}d\mu\\&&\geq \frac{f_{1}(\nu)}{\rho^{\alpha}\Gamma(\alpha)}\int\limits_{0}^{\varkappa}\frac{\exp[\frac{\rho-1}{\rho}(\Psi(\varkappa)-\Psi(\mu))]\mathcal{Q}(\mu)\omega(\mu)\Psi^{\prime}(\mu)}{\rho^{\alpha}\Gamma(\alpha)(\Psi(\varkappa)-\Psi(\mu))^{1-\alpha}}g_{1}(\nu)d\nu\\&&\quad+\frac{g_{1}(\nu)}{\rho^{\alpha}\Gamma(\alpha)}\int\limits_{0}^{\varkappa}\frac{\exp[\frac{\rho-1}{\rho}(\Psi(\varkappa)-\Psi(\mu))]\mathcal{Q}(\mu)\omega(\mu)\Psi^{\prime}(\mu)}{\rho^{\alpha}\Gamma(\alpha)(\Psi(\varkappa)-\Psi(\mu))^{1-\alpha}}f_{1}(\mu)d\mu. \end{eqnarray} | (3.4) |
Taking product both sides of the above equation by \omega^{-1}(\varkappa) and in view of Definition (2.2), we have
\begin{eqnarray} \, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\alpha}\big(\mathcal{Q}f_{1}g_{1}\big)(\varkappa)+f_{1}(\nu)g_{1}(\nu)\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\alpha}\big(\mathcal{Q}\big)(\varkappa)\geq g_{1}(\nu)\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\alpha}\big(\mathcal{Q}f_{1}\big)(\varkappa)+f_{1}(\nu)\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\alpha}\big(\mathcal{Q}g_{1}\big)(\varkappa). \end{eqnarray} | (3.5) |
Further, if we multiply both sides of (3.5) by \frac{\exp[\frac{\rho-1}{\rho}(\Psi(\varkappa)-\Psi(\nu))]\mathcal{P}(\nu)\omega(\nu)\Psi^{\prime}(\nu)}{\rho^{\alpha}\Gamma(\alpha)(\Psi(\varkappa)-\Psi(\nu))^{1-\alpha}} and integrating the resulting inequality with respect to \nu from 0 to \varkappa. Then, multiplying by \omega^{-1}(\varkappa) and in view of Definition 2.2, we obtain
\begin{eqnarray} &&\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\alpha}\big(\mathcal{P}\big)(\varkappa) \, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\alpha}\big(\mathcal{Q}f_{1}g_{1}\big)(\varkappa)+\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\alpha}\big(\mathcal{P}f_{1}g_{1}\big)(\varkappa)\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\alpha}\big(\mathcal{Q}\big)(\varkappa)\\&&\geq \, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\alpha}\big(\mathcal{P}g_{1}\big)(\varkappa)\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\alpha}\big(\mathcal{Q}f_{1}\big)(\varkappa)+\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\alpha}\big(\mathcal{P}f_{1}\big)(\varkappa)\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\alpha}\big(\mathcal{Q}g_{1}\big)(\varkappa), \end{eqnarray} | (3.6) |
which implies (3.1).
Theorem 3.2. Under the assumption of \boldsymbol{I}, \boldsymbol{II} and let r, s and t be three non-negative continuous functions on [0, \infty). Then the inequality
\begin{eqnarray} &&2\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\alpha}r(\varkappa)\Big(\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\alpha}s(\varkappa) \, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\alpha}\big(t f_{1}g_{1}\big)(\varkappa)+\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\alpha}\big(s f_{1}g_{1}\big)(\varkappa)\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\alpha}t(\varkappa)\Big)\\&&\quad+2\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\alpha}(rf_{1}g_{1})(\varkappa)\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\alpha}s(\varkappa)\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\alpha}t(\varkappa)\\&&\geq\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\alpha}r(\varkappa)\Big(\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\alpha}\big(s g_{1}\big)(\varkappa)\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\alpha}\big(t f_{1}\big)(\varkappa)+\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\alpha}\big(sf_{1}\big)(\varkappa)\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\alpha}\big(t g_{1}\big)(\varkappa)\Big) \\&&\quad+\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\alpha}s(\varkappa)\Big(\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\alpha}\big(r g_{1}\big)(\varkappa)\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\alpha}\big(t f_{1}\big)(\varkappa)+\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\alpha}\big(rf_{1}\big)(\varkappa)\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\alpha}\big(t g_{1}\big)(\varkappa)\Big)\\&&\quad+\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\alpha}s(\varkappa)\Big(\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\alpha}\big(s g_{1}\big)(\varkappa)\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\alpha}\big(r f_{1}\big)(\varkappa)+\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\alpha}\big(sf_{1}\big)(\varkappa)\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\alpha}\big(r g_{1}\big)(\varkappa)\Big) \end{eqnarray} | (3.7) |
holds for all \rho\in(0, 1], \alpha\in\mathcal{C} with \Re(\alpha) > 0.
Proof. By means of Lemma 3.1 and setting \mathcal{P} = r, \, \mathcal{Q} = s, we can write
\begin{eqnarray} &&\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\alpha}s(\varkappa) \, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\alpha}\big(t f_{1}g_{1}\big)(\varkappa)+\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\alpha}\big(s f_{1}g_{1}\big)(\varkappa)\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\alpha}t(\varkappa)\\&&\geq \, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\alpha}\big(s g_{1}\big)(\varkappa)\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\alpha}\big(t f_{1}\big)(\varkappa)+\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\alpha}\big(sf_{1}\big)(\varkappa)\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\alpha}\big(t g_{1}\big)(\varkappa). \end{eqnarray} | (3.8) |
Conducting product both sides of (3.8) by \, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho; \alpha}r(\varkappa), we obtain
\begin{eqnarray} &&\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\alpha}r(\varkappa)\Big(\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\alpha}s(\varkappa) \, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\alpha}\big(t f_{1}g_{1}\big)(\varkappa)+\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\alpha}\big(s f_{1}g_{1}\big)(\varkappa)\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\alpha}t(\varkappa)\Big)\\&&\geq \, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\alpha}r(\varkappa)\Big(\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\alpha}\big(s g_{1}\big)(\varkappa)\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\alpha}\big(t f_{1}\big)(\varkappa)+\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\alpha}\big(sf_{1}\big)(\varkappa)\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\alpha}\big(t g_{1}\big)(\varkappa)\Big). \end{eqnarray} | (3.9) |
By means of Lemma 3.1 and setting \mathcal{P} = r, \, \mathcal{Q} = t, we can write
\begin{eqnarray} &&\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\alpha}r(\varkappa) \, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\alpha}\big(t f_{1}g_{1}\big)(\varkappa)+\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\alpha}\big(r f_{1}g_{1}\big)(\varkappa)\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\alpha}t(\varkappa)\\&&\geq \, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\alpha}\big(r g_{1}\big)(\varkappa)\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\alpha}\big(t f_{1}\big)(\varkappa)+\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\alpha}\big(rf_{1}\big)(\varkappa)\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\alpha}\big(t g_{1}\big)(\varkappa). \end{eqnarray} | (3.10) |
Conducting product of (3.10) by \, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho; \alpha}s(\varkappa), we obtain
\begin{eqnarray} &&\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\alpha}s(\varkappa)\Big(\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\alpha}r(\varkappa) \, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\alpha}\big(t f_{1}g_{1}\big)(\varkappa)+\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\alpha}\big(r f_{1}g_{1}\big)(\varkappa)\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\alpha}t(\varkappa)\Big)\\&&\geq \, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\alpha}s(\varkappa)\Big(\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\alpha}\big(r g_{1}\big)(\varkappa)\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\alpha}\big(t f_{1}\big)(\varkappa)+\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\alpha}\big(rf_{1}\big)(\varkappa)\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\alpha}\big(t g_{1}\big)(\varkappa)\Big). \end{eqnarray} | (3.11) |
By similar argument as we did before, yields
\begin{eqnarray} &&\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\alpha}t(\varkappa)\Big(\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\alpha}r(\varkappa) \, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\alpha}\big(s f_{1}g_{1}\big)(\varkappa)+\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\alpha}\big(r f_{1}g_{1}\big)(\varkappa)\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\alpha}t(\varkappa)\Big)\\&&\geq \, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\alpha}s(\varkappa)\Big(\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\alpha}\big(s g_{1}\big)(\varkappa)\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\alpha}\big(r f_{1}\big)(\varkappa)+\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\alpha}\big(sf_{1}\big)(\varkappa)\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\alpha}\big(r g_{1}\big)(\varkappa)\Big). \end{eqnarray} | (3.12) |
Adding (3.9), (3.11) and (3.12), we get the desired inequality (3.8).
Lemma 3.3. Under the assumption of \boldsymbol{I}, \boldsymbol{II} and let \mathcal{Q} and \mathcal{P} be two non-negative continuous functions on [0, \infty). Then the inequality
\begin{eqnarray*} &&\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\alpha}(\mathcal{P}f_{1}g_{1})(\varkappa)\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\beta}\mathcal{Q}(\varkappa)+\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\alpha}\mathcal{P}(\varkappa)\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\beta}(\mathcal{Q}f_{1}g_{1})(\varkappa)\nonumber\\&&\geq \, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\alpha}(\mathcal{P}f_{1})(\varkappa)\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\beta}(\mathcal{Q}g_{1})(\varkappa)+\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\alpha}(\mathcal{P}g_{1})(\varkappa)\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\beta}(\mathcal{Q}f_{1})(\varkappa), \end{eqnarray*} |
holds for all \rho\in(0, 1], \alpha, \beta\in\mathcal{C} with \Re(\alpha), \Re(\beta) > 0.
Proof. If we multiply both sides of (3.2) by \frac{\exp[\frac{\rho-1}{\rho}(\Psi(\varkappa)-\Psi(\nu))]\mathcal{Q}(\nu)\omega(\nu)\Psi^{\prime}(\nu)}{\rho^{\beta}\Gamma(\beta)(\Psi(\varkappa)-\Psi(\nu))^{1-\beta}} and integrating the resulting inequality with respect to \nu from 0 to \varkappa, we have
\begin{eqnarray} &&\frac{f_{1}(\mu)g_{1}(\mu)}{\rho^{\beta}\Gamma(\beta)}\int\limits_{0}^{\varkappa}\frac{\exp[\frac{\rho-1}{\rho}(\Psi(\varkappa)-\Psi(\nu))]\mathcal{Q}(\nu)\omega(\nu)\Psi^{\prime}(\nu)}{(\Psi(\varkappa)-\Psi(\nu))^{1-\beta}}d\nu\\&&\quad+ \frac{f_{1}(\nu)g_{1}(\nu)}{\rho^{\beta}\Gamma(\beta)}\int\limits_{0}^{\varkappa}\frac{\exp[\frac{\rho-1}{\rho}(\Psi(\varkappa)-\Psi(\nu))]\mathcal{Q}(\nu)\omega(\nu)\Psi^{\prime}(\nu)}{(\Psi(\varkappa)-\Psi(\nu))^{1-\beta}}d\nu\\&&\geq \frac{g_{1}(\mu)}{\rho^{\beta}\Gamma(\beta)}\int\limits_{0}^{\varkappa}\frac{\exp[\frac{\rho-1}{\rho}(\Psi(\varkappa)-\Psi(\nu))]\mathcal{Q}(\nu)\omega(\nu)\Psi^{\prime}(\nu)}{(\Psi(\varkappa)-\Psi(\nu))^{1-\beta}}f_{1}(\nu)d\nu\\&&\quad+\frac{f_{1}(\mu)}{\rho^{\beta}\Gamma(\beta)}\int\limits_{0}^{\varkappa}\frac{\exp[\frac{\rho-1}{\rho}(\Psi(\varkappa)-\Psi(\nu))]\mathcal{Q}(\nu)\omega(\nu)\Psi^{\prime}(\nu)}{(\Psi(\varkappa)-\Psi(\nu))^{1-\beta}}g_{1}(\nu)d\nu.\\ \end{eqnarray} | (3.13) |
Taking product both sides of the above equation by \omega^{-1}(\varkappa) and in view of Definition (2.2), we have
\begin{eqnarray} f_{1}(\mu)g_{1}(\mu)\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\beta}\mathcal{Q}(\varkappa)+\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\beta}(\mathcal{Q}f_{1}g_{1})(\varkappa)\geq f_{1}(\mu)\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\beta}(\mathcal{Q}g_{1})(\varkappa)+g_{1}(\mu)\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\beta}(\mathcal{Q}f_{1})(\varkappa). \end{eqnarray} | (3.14) |
Again, multiplying both sides of (3.14) by \frac{\exp[\frac{\rho-1}{\rho}(\Psi(\varkappa)-\Psi(\mu))]\mathcal{P}(\mu)\omega(\mu)\Psi^{\prime}(\mu)}{\rho^{\alpha}\Gamma(\alpha)(\Psi(\varkappa)-\Psi(\mu))^{1-\alpha}} and integrating the resulting inequality with respect to \nu from 0 to \varkappa, we have
\begin{eqnarray} &&\frac{\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\beta}\mathcal{Q}(\varkappa)}{\rho^{\alpha}\Gamma(\alpha)}\int\limits_{0}^{\varkappa}\frac{\exp[\frac{\rho-1}{\rho}(\Psi(\varkappa)-\Psi(\mu))]\mathcal{P}(\mu)\omega(\mu)\Psi^{\prime}(\mu)}{(\Psi(\varkappa)-\Psi(\mu))^{1-\alpha}}f_{1}(\mu)g_{1}(\mu)d\mu\\&&\quad+\frac{\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\beta}(\mathcal{Q}f_{1}g_{1})(\varkappa)}{\rho^{\alpha}\Gamma(\alpha)}\int\limits_{0}^{\varkappa}\frac{\exp[\frac{\rho-1}{\rho}(\Psi(\varkappa)-\Psi(\mu))]\mathcal{P}(\mu)\omega(\mu)\Psi^{\prime}(\mu)}{(\Psi(\varkappa)-\Psi(\mu))^{1-\alpha}}d\mu\\&&\geq \frac{\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\beta}(\mathcal{Q}g_{1})(\varkappa)}{\rho^{\alpha}\Gamma(\alpha)}\int\limits_{0}^{\varkappa}\frac{\exp[\frac{\rho-1}{\rho}(\Psi(\varkappa)-\Psi(\mu))]\mathcal{P}(\mu)\omega(\mu)\Psi^{\prime}(\mu)}{(\Psi(\varkappa)-\Psi(\mu))^{1-\alpha}}f_{1}(\mu)d\mu\\&&\quad+\frac{\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\beta}(\mathcal{Q}f_{1})(\varkappa)}{\rho^{\alpha}\Gamma(\alpha)}\int\limits_{0}^{\varkappa}\frac{\exp[\frac{\rho-1}{\rho}(\Psi(\varkappa)-\Psi(\mu))]\mathcal{P}(\mu)\omega(\mu)\Psi^{\prime}(\mu)}{(\Psi(\varkappa)-\Psi(\mu))^{1-\alpha}}g_{1}(\mu)d\mu. \end{eqnarray} | (3.15) |
Taking product both sides of the above equation by \omega^{-1}(\varkappa) and in view of Definition (2.2), we obtain
\begin{eqnarray*} &&\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\alpha}(\mathcal{P}f_{1}g_{1})(\varkappa)\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\beta}\mathcal{Q}(\varkappa)+\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\alpha}\mathcal{P}(\varkappa)\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\beta}(\mathcal{Q}f_{1}g_{1})(\varkappa)\nonumber\\&&\geq \, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\alpha}(\mathcal{P}f_{1})(\varkappa)\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\beta}(\mathcal{Q}g_{1})(\varkappa)+\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\alpha}(\mathcal{P}g_{1})(\varkappa)\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\beta}(\mathcal{Q}f_{1})(\varkappa), \end{eqnarray*} |
which implies (3.13).
Theorem 3.4. Under the assumptions \boldsymbol{I}, \boldsymbol{II} and let r, s and t be three non-negative continuous functions on [0, \infty). Then the inequality
\begin{eqnarray} &&\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\alpha}r(\varkappa)\Big(\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\alpha}(sf_{1}g_{1})(\varkappa)\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\beta}t(\varkappa)+2\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\alpha}s(\varkappa)\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\beta}(tf_{1}g_{1})(\varkappa)+\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\beta}t(\varkappa)\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\alpha}(sf_{1}g_{1})(\varkappa)\Big)\\&&\quad+\Big(\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\beta}t(\varkappa)\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\alpha}s(\varkappa)+\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\alpha}t(\varkappa)\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\beta}s(\varkappa)\Big)\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\alpha}(rf_{1}g_{1})(\varkappa)\\&&\geq \, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\alpha}r(\varkappa)\Big(\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\alpha}(sf_{1})(\varkappa)\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\beta}(tg_{1})(\varkappa)+\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\alpha}(sg_{1})(\varkappa)\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\beta}(tf_{1})(\varkappa)\Big)\\&&\quad+\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\alpha}s(\varkappa)\Big(\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\alpha}(rf_{1})(\varkappa)\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\beta}(tg_{1})(\varkappa)+\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\alpha}(rg_{1})(\varkappa)\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\beta}(tf_{1})(\varkappa)\Big)\\&&\quad+\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\alpha}t(\varkappa)\Big(\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\alpha}(rf_{1})(\varkappa)\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\beta}(sg_{1})(\varkappa)+\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\alpha}(rg_{1})(\varkappa)\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\beta}(sf_{1})(\varkappa)\Big) \end{eqnarray} | (3.16) |
holds for all \rho\in(0, 1], \alpha, \beta\in\mathcal{C} with \Re(\alpha), \Re(\beta) > 0.
Proof. By means of Lemma 3.3 and setting \mathcal{P} = s, \mathcal{Q} = t, we can write
\begin{eqnarray} &&\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\alpha}(sf_{1}g_{1})(\varkappa)\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\beta}t(\varkappa)+\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\alpha}s(\varkappa)\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\beta}(tf_{1}g_{1})(\varkappa)\\&&\geq \, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\alpha}(sf_{1})(\varkappa)\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\beta}(tg_{1})(\varkappa)+\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\alpha}(sg_{1})(\varkappa)\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\beta}(tf_{1})(\varkappa). \end{eqnarray} | (3.17) |
Conducting product both sides of (3.17) by \, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho; \alpha}r(\varkappa), we obtain
\begin{eqnarray} &&\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\alpha}r(\varkappa)\Big(\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\alpha}(sf_{1}g_{1})(\varkappa)\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\beta}t(\varkappa)+\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\alpha}s(\varkappa)\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\beta}(tf_{1}g_{1})(\varkappa)\Big)\\&&\geq \, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\alpha}r(\varkappa)\Big(\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\alpha}(sf_{1})(\varkappa)\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\beta}(tg_{1})(\varkappa)+\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\alpha}(sg_{1})(\varkappa)\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\beta}(tf_{1})(\varkappa)\Big). \end{eqnarray} | (3.18) |
Again, by means of Lemma 3.3 and setting \mathcal{P} = r, \mathcal{Q} = t, we can write
\begin{eqnarray} &&\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\alpha}(rf_{1}g_{1})(\varkappa)\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\beta}t(\varkappa)+\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\alpha}r(\varkappa)\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\beta}(tf_{1}g_{1})(\varkappa)\\&&\geq \, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\alpha}(rf_{1})(\varkappa)\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\beta}(tg_{1})(\varkappa)+\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\alpha}(rg_{1})(\varkappa)\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\beta}(tf_{1})(\varkappa). \end{eqnarray} | (3.19) |
Conducting product both sides of (3.19) by \, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho; \alpha}s(\varkappa), we obtain
\begin{eqnarray} &&\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\alpha}s(\varkappa)\Big(\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\alpha}(rf_{1}g_{1})(\varkappa)\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\beta}t(\varkappa)+\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\alpha}r(\varkappa)\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\beta}(tf_{1}g_{1})(\varkappa)\Big)\\&&\geq \, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\alpha}s(\varkappa)\Big(\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\alpha}(rf_{1})(\varkappa)\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\beta}(tg_{1})(\varkappa)+\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\alpha}(rg_{1})(\varkappa)\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\beta}(tf_{1})(\varkappa)\Big). \end{eqnarray} | (3.20) |
By similar arguments as we did before, yields
\begin{eqnarray} &&\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\alpha}t(\varkappa)\Big(\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\alpha}(sf_{1}g_{1})(\varkappa)\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\beta}r(\varkappa)+\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\alpha}s(\varkappa)\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\beta}(rf_{1}g_{1})(\varkappa)\Big)\\&&\geq \, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\alpha}t(\varkappa)\Big(\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\alpha}(rf_{1})(\varkappa)\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\beta}(sg_{1})(\varkappa)+\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\alpha}(rg_{1})(\varkappa)\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\beta}(sf_{1})(\varkappa)\Big). \end{eqnarray} | (3.21) |
Adding (3.18), (3.20) and (3.21), we get the desired inequality (3.16).
Remark 4. Theorem 3.2 and Theorem 3.4 lead to the following conclusions:
(1) Let f_{1} and g_{1} are the asynchronous functions on [0, \infty), then (3.8) and (3.16) are reversed.
(2) Let r, \, s and t are negative on [0, \infty), then (3.8) and (3.16) are reversed.
(3) Let r, \, s are positive t is negative on [0, \infty), then (3.8) and (3.16) are reversed.
In the next, we derive certain novel Grüss-type integral inequalities via weighted generalized proportional fractional integral operators.
Lemma 3.5. Suppose an integrable function f_{1} defined on [0, \infty) satisfying the assertions \boldsymbol{I}, \boldsymbol{II} and (1.7) on [0, \infty) and let a continuous function r defined on [0, \infty) . Then the inequality
\begin{eqnarray} &&\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\alpha}r(\varkappa)\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\alpha}(rf_{1}^{2})(\varkappa)-\Big(\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\alpha}(rf_{1})(\varkappa)\Big)^{2}\\&&\leq\Big(\Phi\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\alpha}x(\varkappa)-\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\alpha}(rf_{1})(\varkappa)\Big)\Big(\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\alpha}(rf_{1})(\varkappa)-\phi\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\alpha}r(\varkappa)\Big)\\&&\quad-\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\alpha}r(\varkappa)\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\alpha}\Big(r(\varkappa)\big(\Phi-f_{1}(\varkappa)\big)\big(f_{1}(\varkappa)-\phi\big)\Big) \end{eqnarray} | (3.22) |
holds for all \rho\in(0, 1], \alpha\in\mathcal{C} with \Re(\alpha) > 0.
Proof. By the given hypothesis and utilizing (1.7). For any \mu, \nu\in[0, \infty), we have
\begin{eqnarray} &&\big(\Phi-f_{1}(\nu)\big)\big(f_{1}(\mu)-\phi\big)+\big(\Phi-f_{1}(\mu)\big)\big(f_{1}(\nu)-\phi\big)-\big(\Phi-f_{1}(\mu)\big)\big(f_{1}(\mu)-\phi\big)-\big(\Phi-f_{1}(\nu)\big)\big(f_{1}(\nu)-\phi\big)\\&&\leq f_{1}^{2}(\mu)+f_{1}^{2}(\nu)-2f_{1}(\mu)f_{1}(\nu). \end{eqnarray} | (3.23) |
Multiplying both sides of (3.23) by \frac{\exp[\frac{\rho-1}{\rho}(\Psi(\varkappa)-\Psi(\nu))]r(\nu)\omega(\nu)\Psi^{\prime}(\nu)}{\rho^{\alpha}\Gamma(\alpha)(\Psi(\varkappa)-\Psi(\nu))^{1-\alpha}} and integrating the resulting inequality with respect to \nu from 0 to \varkappa, we have
\begin{eqnarray} &&\frac{\big(f_{1}(\mu)-\phi\big)}{\rho^{\alpha}\Gamma(\alpha)}\int\limits_{0}^{\varkappa}\frac{\exp[\frac{\rho-1}{\rho}(\Psi(\varkappa)-\Psi(\nu))]r(\nu)\omega(\nu)\Psi^{\prime}(\nu)}{(\Psi(\varkappa)-\Psi(\nu))^{1-\alpha}}\big(\Phi-f_{1}(\nu)\big)d\nu\\&&\quad+\frac{\big(\Phi-f_{1}(\mu)\big)}{\rho^{\alpha}\Gamma(\alpha)}\int\limits_{0}^{\varkappa}\frac{\exp[\frac{\rho-1}{\rho}(\Psi(\varkappa)-\Psi(\nu))]r(\nu)\omega(\nu)\Psi^{\prime}(\nu)}{(\Psi(\varkappa)-\Psi(\nu))^{1-\alpha}}\big(f_{1}(\nu)-\phi\big)d\nu\\&&\quad-\frac{\big(\Phi-f_{1}(\mu)\big)\big(f_{1}(\mu)-\phi\big)}{\rho^{\alpha}\Gamma(\alpha)}\int\limits_{0}^{\varkappa}\frac{\exp[\frac{\rho-1}{\rho}(\Psi(\varkappa)-\Psi(\nu))]r(\nu)\omega(\nu)\Psi^{\prime}(\nu)}{(\Psi(\varkappa)-\Psi(\nu))^{1-\alpha}}d\nu\\&&\quad-\frac{1}{\rho^{\alpha}\Gamma(\alpha)}\int\limits_{0}^{\varkappa}\frac{\exp[\frac{\rho-1}{\rho}(\Psi(\varkappa)-\Psi(\nu))]r(\nu)\omega(\nu)\Psi^{\prime}(\nu)}{(\Psi(\varkappa)-\Psi(\nu))^{1-\alpha}}\big(\Phi-f_{1}(\nu)\big)\big(f_{1}(\nu)-\phi\big)d\nu\\&&\leq\frac{f_{1}^{2}(\mu)}{\rho^{\alpha}\Gamma(\alpha)}\int\limits_{0}^{\varkappa}\frac{\exp[\frac{\rho-1}{\rho}(\Psi(\varkappa)-\Psi(\nu))]r(\nu)\omega(\nu)\Psi^{\prime}(\nu)}{(\Psi(\varkappa)-\Psi(\nu))^{1-\alpha}}d\nu\\&&\quad+\frac{1}{\rho^{\alpha}\Gamma(\alpha)}\int\limits_{0}^{\varkappa}\frac{\exp[\frac{\rho-1}{\rho}(\Psi(\varkappa)-\Psi(\nu))]r(\nu)\omega(\nu)\Psi^{\prime}(\nu)}{(\Psi(\varkappa)-\Psi(\nu))^{1-\alpha}}f_{1}^{2}(\nu)d\nu\\&&\quad-2\frac{f_{1}(\mu)}{\rho^{\alpha}\Gamma(\alpha)}\int\limits_{0}^{\varkappa}\frac{\exp[\frac{\rho-1}{\rho}(\Psi(\varkappa)-\Psi(\nu))]r(\nu)\omega(\nu)\Psi^{\prime}(\nu)}{(\Psi(\varkappa)-\Psi(\nu))^{1-\alpha}}f_{1}(\nu)d\nu. \end{eqnarray} | (3.24) |
Taking product both sides of the above equation by \omega^{-1}(\varkappa) and in view of Definition (2.2), we obtain
\begin{eqnarray} &&\big(\Phi\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\alpha}r(\varkappa)-\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\alpha}(rf_{1})(\varkappa)\big)\big(f_{1}(\mu)-\phi\big)+\big(\Phi-f_{1}(\mu)\big)\big(\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\alpha}(rf_{1})(\varkappa)-\phi\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\alpha}r(\varkappa)\big)\\&&\quad-\big(\Phi-f_{1}(\mu)\big)\big(f_{1}(\mu)-\phi\big)\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\alpha}r(\varkappa)-\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\alpha}\big(r(\varkappa)(\Phi-f_{1}(\varkappa)\big)\big(f_{1}(\varkappa)-\phi\big)\big)\\&&\leq f_{1}^{2}(\mu)\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\alpha}r(\varkappa)+\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\alpha}(rf_{1}^{2})(\varkappa)-2f_{1}(\mu)\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\alpha}(rf_{1})(\varkappa). \end{eqnarray} | (3.25) |
Multiplying both sides of (3.25) by \frac{\exp[\frac{\rho-1}{\rho}(\Psi(\varkappa)-\Psi(\mu))]r(\mu)\omega(\mu)\Psi^{\prime}(\mu)}{\rho^{\alpha}\Gamma(\alpha)(\Psi(\varkappa)-\Psi(\mu))^{1-\alpha}} and integrating the resulting inequality with respect to \mu from 0 to \varkappa, we have
\begin{eqnarray} &&\big(\Phi\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\alpha}r(\varkappa)-\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\alpha}(rf_{1})(\nu)\big)\frac{1}{\rho^{\alpha}\Gamma(\alpha)}\int\limits_{0}^{\varkappa}\frac{\exp[\frac{\rho-1}{\rho}(\Psi(\varkappa)-\Psi(\mu))]r(\mu)\omega(\mu)\Psi^{\prime}(\mu)}{(\Psi(\varkappa)-\Psi(\mu))^{1-\alpha}}\big(f_{1}(\mu)-\phi\big)d\mu\\&&\quad+\big(\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\alpha}(rf_{1})(\varkappa)-\phi\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\alpha}r(\varkappa)\big)\frac{1}{\rho^{\alpha}\Gamma(\alpha)}\int\limits_{0}^{\varkappa}\frac{\exp[\frac{\rho-1}{\rho}(\Psi(\varkappa)-\Psi(\mu))]r(\mu)\omega(\mu)\Psi^{\prime}(\mu)}{(\Psi(\varkappa)-\Psi(\mu))^{1-\alpha}}\big(\Phi-f_{1}(\mu)\big)d\mu\\&&\quad-\bigg(\frac{1}{\rho^{\alpha}\Gamma(\alpha)}\int\limits_{0}^{\varkappa}\frac{\exp[\frac{\rho-1}{\rho}(\Psi(\varkappa)-\Psi(\mu))]r(\mu)\omega(\mu)\Psi^{\prime}(\mu)}{(\Psi(\varkappa)-\Psi(\mu))^{1-\alpha}}\big(\Phi-f_{1}(\mu)\big)\big(f_{1}(\mu)-\phi\big)d\mu\bigg)\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\alpha}r(\varkappa)\\&&\quad-\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\alpha}\big(r(\varkappa)(\Phi-f_{1}(\nu)\big)\big(f_{1}(\nu)-\phi\big)\frac{1}{\rho^{\alpha}\Gamma(\alpha)}\int\limits_{0}^{\varkappa}\frac{\exp[\frac{\rho-1}{\rho}(\Psi(\varkappa)-\Psi(\mu))]r(\mu)\omega(\mu)\Psi^{\prime}(\mu)}{(\Psi(\varkappa)-\Psi(\mu))^{1-\alpha}}d\nu\\&&\leq\bigg(\frac{1}{\rho^{\alpha}\Gamma(\alpha)}\int\limits_{0}^{\varkappa}\frac{\exp[\frac{\rho-1}{\rho}(\Psi(\varkappa)-\Psi(\mu))]r(\mu)\omega(\mu)\Psi^{\prime}(\mu)}{(\Psi(\varkappa)-\Psi(\mu))^{1-\alpha}}f_{1}^{2}(\mu)d\mu\bigg)\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\alpha}r(\varkappa)\\&&\quad+\bigg(\frac{1}{\rho^{\alpha}\Gamma(\alpha)}\int\limits_{0}^{\varkappa}\frac{\exp[\frac{\rho-1}{\rho}(\Psi(\varkappa)-\Psi(\mu))]r(\mu)\omega(\mu)\Psi^{\prime}(\mu)}{(\Psi(\varkappa)-\Psi(\mu))^{1-\alpha}}d\mu\bigg)\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\alpha}(rf_{1}^{2})(\varkappa)\\&&\quad-2\bigg(\frac{1}{\rho^{\alpha}\Gamma(\alpha)}\int\limits_{0}^{\varkappa}\frac{\exp[\frac{\rho-1}{\rho}(\Psi(\varkappa)-\Psi(\mu))]r(\mu)\omega(\mu)\Psi^{\prime}(\mu)}{(\Psi(\varkappa)-\Psi(\mu))^{1-\alpha}}f_{1}(\mu)d\mu\bigg)\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\alpha}(rf_{1})(\varkappa). \end{eqnarray} | (3.26) |
Taking product both sides of the above equation by \omega^{-1}(\varkappa) and in view of Definition (2.2), we obtain
\begin{eqnarray} &&\big(\Phi\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\alpha}r(\varkappa)-\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\alpha}(rf_{1})(\varkappa)\big)\big(\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\alpha}(rf_{1})(\varkappa)-\phi\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\alpha}r(\varkappa)\big)\\&&\quad+\big(\Phi\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\alpha}r(\varkappa)-\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\alpha}(rf_{1})(\varkappa)\big)\big(\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\alpha}(rf_{1})(\varkappa)-\phi\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\alpha}r(\varkappa)\big)\\&&\quad-\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\alpha}\big(r(\varkappa)(\Phi-f_{1}(\varkappa)\big)\big(f_{1}(\varkappa)-\phi\big)\big)\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\alpha}r(\varkappa)\\&&\quad-\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\alpha}r(\varkappa)\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\alpha}\Big(r(\varkappa)\big(\Phi-f_{1}(\varkappa)\big)(f_{1}(\varkappa)-\phi)\Big)\\&&\leq\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\alpha}(rf_{1}^{2})(\varkappa)\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\alpha}r(\varkappa)+\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\alpha}r(\varkappa)\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\alpha}(rf_{1}^{2})(\varkappa)\\&&\quad-2\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\alpha}(rf_{1})(\varkappa)\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\alpha}(rf_{1})(\varkappa), \end{eqnarray} | (3.27) |
which gives (3.22) and proves the lemma.
Theorem 3.6. Suppose two integrable functions f_{1} and g_{1} defined on [0, \infty) satisfying the assertions \boldsymbol{I}, \boldsymbol{II} and (1.7) on [0, \infty) and let a continuous function r defined on [0, \infty) . Then the inequality
\begin{eqnarray} \Big\vert\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\alpha}r(\varkappa)\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\alpha}(rf_{1}g_{1})(\varkappa)-\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\alpha}(rf_{1})(\varkappa)\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\alpha}(rg_{1})(\varkappa)\Big\vert\leq\frac{(\Phi-\phi)(\Upsilon-\gamma)}{4}\Big(\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\alpha}r(\varkappa)\Big)^{2} \end{eqnarray} | (3.28) |
holds for all \rho\in(0, 1], \alpha\in\mathcal{C} with \Re(\alpha) > 0.
Proof. By the given hypothesis stated in Theorem 3.6. Also, assume that \mathfrak{\mu, \nu} be defined by
\begin{eqnarray} \mathfrak{T}(\mu, \nu) = \big(f_{1}(\mu)-f_{1}(\nu)\big)\big(g_{1}(\mu)-g_{1}(\nu)\big), \quad\mu, \nu\in[0, \varkappa], \quad\varkappa > 0. \end{eqnarray} | (3.29) |
Multiplying both sides of (3.30) by \frac{\exp[\frac{\rho-1}{\rho}(\Psi(\varkappa)-\Psi(\mu))]r(\mu)\omega(\mu)\Psi^{\prime}(\mu)}{\rho^{\alpha}\Gamma(\alpha)(\Psi(\varkappa)-\Psi(\mu))^{1-\alpha}}\frac{\exp[\frac{\rho-1}{\rho}(\Psi(\varkappa)-\Psi(\nu))]r(\nu)\omega(\nu)\Psi^{\prime}(\nu)}{\rho^{\alpha}\Gamma(\alpha)(\Psi(\varkappa)-\Psi(\nu))^{1-\alpha}} and integrating the resulting inequality with respect to \mu and \nu from 0 to \varkappa, we can state that
\begin{eqnarray} &&\frac{1}{\rho^{2\alpha}\Gamma^{2}(\alpha)} \int\limits_{0}^{\varkappa}\int\limits_{0}^{\varkappa}\frac{\exp[\frac{\rho-1}{\rho}(\Psi(\varkappa)-\Psi(\mu))]r(\mu)\omega(\mu)\Psi^{\prime}(\mu)}{(\Psi(\varkappa)-\Psi(\mu))^{1-\alpha}}\\&&\quad\times\frac{\exp[\frac{\rho-1}{\rho}(\Psi(\varkappa)-\Psi(\nu))]r(\nu)\omega(\nu)\Psi^{\prime}(\nu)}{(\Psi(\varkappa)-\Psi(\nu))^{1-\alpha}} \mathfrak{T}(\mu, \nu)d\mu d\nu\\&& = \frac{1}{\rho^{2\alpha}\Gamma^{2}(\alpha)} \int\limits_{0}^{\varkappa}\int\limits_{0}^{\varkappa}\frac{\exp[\frac{\rho-1}{\rho}(\Psi(\varkappa)-\Psi(\mu))]r(\mu)\omega(\mu)\Psi^{\prime}(\mu)}{(\Psi(\varkappa)-\Psi(\mu))^{1-\alpha}}\\&&\quad\times\frac{\exp[\frac{\rho-1}{\rho}(\Psi(\varkappa)-\Psi(\nu))]r(\nu)\omega(\nu)\Psi^{\prime}(\nu)}{(\Psi(\varkappa)-\Psi(\nu))^{1-\alpha}}\\&&\quad\times\big(f_{1}(\mu)-f_{1}(\nu)\big)\big(g_{1}(\mu)-g_{1}(\nu)\big)d\mu d\nu. \end{eqnarray} | (3.30) |
Taking product both sides of the above equation by \omega^{-1}(\varkappa) and in view of Definition (2.2), we obtain
\begin{eqnarray} &&\frac{\omega^{-2}(\varkappa)}{\rho^{2\alpha}\Gamma^{2}(\alpha)} \int\limits_{0}^{\varkappa}\int\limits_{0}^{\varkappa}\frac{\exp[\frac{\rho-1}{\rho}(\Psi(\varkappa)-\Psi(\mu))]r(\mu)\omega(\mu)\Psi^{\prime}(\mu)}{(\Psi(\varkappa)-\Psi(\mu))^{1-\alpha}}\\&&\quad\times\frac{\exp[\frac{\rho-1}{\rho}(\Psi(\varkappa)-\Psi(\nu))]r(\nu)\omega(\nu)\Psi^{\prime}(\nu)}{(\Psi(\varkappa)-\Psi(\nu))^{1-\alpha}} \mathfrak{T}(\mu, \nu)d\mu d\nu\\&& = 2\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\alpha}r(\varkappa)\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\alpha}(rf_{1}g_{1})(\varkappa)-2\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\alpha}(rf_{1})(\varkappa)\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\alpha}(rg_{1})(\varkappa). \end{eqnarray} | (3.31) |
Thanks to the weighted Cauchy-Schwartz integral inequality for double integrals, we can write that
\begin{eqnarray} &&\Bigg(\frac{\omega^{-2}(\varkappa)}{\rho^{2\alpha}\Gamma^{2}(\alpha)} \int\limits_{0}^{\varkappa}\int\limits_{0}^{\varkappa}\frac{\exp[\frac{\rho-1}{\rho}(\Psi(\varkappa)-\Psi(\mu))]r(\mu)\omega(\mu)\Psi^{\prime}(\mu)}{(\Psi(\varkappa)-\Psi(\mu))^{1-\alpha}}\\&&\quad\times\frac{\exp[\frac{\rho-1}{\rho}(\Psi(\varkappa)-\Psi(\nu))]r(\nu)\omega(\nu)\Psi^{\prime}(\nu)}{(\Psi(\varkappa)-\Psi(\nu))^{1-\alpha}} \mathfrak{T}(\mu, \nu)d\mu d\nu\Bigg)^{2}\\&&\leq \bigg(\frac{\omega^{-2}(\varkappa)}{\rho^{2\alpha}\Gamma^{2}(\alpha)} \int\limits_{0}^{\varkappa}\int\limits_{0}^{\varkappa}\frac{\exp[\frac{\rho-1}{\rho}(\Psi(\varkappa)-\Psi(\mu))]r(\mu)\omega(\mu)\Psi^{\prime}(\mu)}{(\Psi(\varkappa)-\Psi(\mu))^{1-\alpha}}\\&&\quad\times\frac{\exp[\frac{\rho-1}{\rho}(\Psi(\varkappa)-\Psi(\nu))]r(\nu)\omega(\nu)\Psi^{\prime}(\nu)}{(\Psi(\varkappa)-\Psi(\nu))^{1-\alpha}} \big(f_{1}(\mu)-f_{1}(\nu)\big)d\mu d\nu\bigg)\\&&\quad\bigg(\frac{\omega^{-2}(\varkappa)}{\rho^{2\alpha}\Gamma^{2}(\alpha)}\int\limits_{0}^{\varkappa}\int\limits_{0}^{\varkappa}\frac{\exp[\frac{\rho-1}{\rho}(\Psi(\varkappa)-\Psi(\mu))]r(\mu)\omega(\mu)\Psi^{\prime}(\mu)}{(\Psi(\varkappa)-\Psi(\mu))^{1-\alpha}}\\&&\quad\times\frac{\exp[\frac{\rho-1}{\rho}(\Psi(\varkappa)-\Psi(\nu))]r(\nu)\omega(\nu)\Psi^{\prime}(\nu)}{(\Psi(\varkappa)-\Psi(\nu))^{1-\alpha}} \big(g_{1}(\mu)-g_{1}(\nu)\big)d\mu d\nu\bigg)\\&& = 4\bigg(\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\alpha}r(\varkappa)\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\alpha}(rf_{1}^{2})(\varkappa)-\Big(\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\alpha}(rf_{1})(\varkappa)\Big)^{2}\bigg)\\&&\quad\times\bigg(\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\alpha}r(\varkappa)\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\alpha}(rg_{1}^{2})(\varkappa)-\Big(\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\alpha}(rg_{1})(\varkappa)\Big)^{2}\bigg). \end{eqnarray} | (3.32) |
Since \big(\Phi-f_{1}(\mu)\big)\big(f_{1}(\mu)-\phi\big)\geq0 and \big(\Upsilon-g_{1}(\mu)\big)\big(g_{1}(\mu)-\gamma\big)\geq0, we have
\begin{eqnarray} \, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\alpha}r(\varkappa)\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\alpha}\Big(r(\varkappa)\big(\Phi-f_{1}(\mu)\big)\big(f_{1}(\mu)-\phi\big)\Big)\geq0, \end{eqnarray} | (3.33) |
and
\begin{eqnarray} \, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\alpha}r(\varkappa)\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\alpha}\Big(r(\varkappa)\big(\Upsilon-g_{1}(\mu)\big)\big(g_{1}(\mu)-\gamma\big)\Big)\geq0. \end{eqnarray} | (3.34) |
Therefore, from (3.33), (3.34) and Lemma 3.5, we get
\begin{eqnarray} &&\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\alpha}r(\varkappa)\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\alpha}(rf_{1}^{2})(\varkappa)-\Big(\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\alpha}(rf_{1})(\varkappa)\Big)^{2}\\&&\leq\Big(\Phi\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\alpha}r(\varkappa)-\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\alpha}(rf_{1})(\varkappa)\Big)\Big(\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\alpha}(rf_{1})(\varkappa)-\phi\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\alpha}r(\varkappa)\Big) \end{eqnarray} | (3.35) |
and
\begin{eqnarray} &&\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\alpha}r(\varkappa)\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\alpha}(rg_{1}^{2})(\varkappa)-\Big(\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\alpha}(rg_{1})(\varkappa)\Big)^{2}\\&&\leq\Big(\Upsilon\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\alpha}r(\varkappa)-\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\alpha}(rg_{1})(\varkappa)\Big)\Big(\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\alpha}(rg_{1})(\varkappa)-\gamma\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\alpha}r(\varkappa)\Big). \end{eqnarray} | (3.36) |
Combining (3.30), (3.31), (3.35) and (3.36), we deduce that
\begin{eqnarray} &&\Big(\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\alpha}r(\varkappa)\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\alpha}(xf_{1}g_{1})(\varkappa)-\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\alpha}(rf_{1})(\varkappa)\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\alpha}(rg_{1})(\varkappa)\Big)^{2}\\&&\leq\Big(\Phi\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\alpha}r(\varkappa)-\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\alpha}(rf_{1})(\varkappa)\Big)\Big(\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\alpha}(rf)(\varkappa)-\phi\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\alpha}r(\varkappa)\Big)\\&&\quad\times\Big(\Upsilon\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\alpha}r(\varkappa)-\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\alpha}(rg_{1})(\varkappa)\Big)\Big(\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\alpha}(rg_{1})(\varkappa)-\gamma\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\alpha}r(\varkappa)\Big). \end{eqnarray} | (3.37) |
Taking into consideration the elementary inequality 4a_{1}a_{2}\leq(a_{1}+a_{2})^{2}, \, a_{1}, a_{2}\in\mathbb{R}, we can state that
\begin{eqnarray} 4\Big(\Phi\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\alpha}r(\varkappa)-\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\alpha}(rf_{1})(\varkappa)\Big)\Big(\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\alpha}(rf_{1})(\varkappa)-\phi\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\alpha}r(\varkappa)\Big)\leq\Big(\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\alpha}r(\varkappa)(\Phi-\phi)\Big)^{2} \end{eqnarray} | (3.38) |
and
\begin{eqnarray} 4\Big(\Upsilon\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\alpha}r(\varkappa)-\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\alpha}(rg_{1})(\varkappa)\Big)\Big(\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\alpha}(rg_{1})(\varkappa)-\gamma\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\alpha}r(\varkappa)\Big)\leq\Big(\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\alpha}r(\varkappa)(\Upsilon-\gamma)\Big)^{2}. \end{eqnarray} | (3.39) |
From (3.37)-(3.39), we obtain (3.28). This completes the proof of Theorem 3.6.
Lemma 3.7. Suppose two integrable functions f_{1} and g_{1} defined on [0, \infty) satisfying the assertions \boldsymbol{I}, \boldsymbol{II} and (1.7) on [0, \infty) and let two continuous function r and s defined on [0, \infty) . Then the inequality
\begin{eqnarray} && \Big(\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\alpha}r(\varkappa)\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\beta}(sf_{1}g_{1})(\varkappa)+\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\beta}s(\varkappa)\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\alpha}(rf_{1}g_{1})(\varkappa)\\&&\quad-\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\alpha}(rf_{1})(\varkappa)\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\beta}(sg_{1})(\varkappa)-\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\alpha}(sf_{1})(\varkappa)\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\alpha}(rg_{1})(\varkappa)\Big)^{2}\\&&\leq\Big(\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\alpha}r(\varkappa)\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\beta}(sf_{1}^{2})(\varkappa)+\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\beta}s(\varkappa)\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\alpha}(rf_{1}^{2})(\varkappa)\\&&\quad-2\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\alpha}(rf_{1})(\varkappa)\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\beta}(sf_{1})(\varkappa)\Big)\\&&\quad\times\Big(\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\alpha}r(\varkappa)\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\beta}(sg_{1}^{2})(\varkappa)+\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\beta}s(\varkappa)\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\alpha}(rg_{1}^{2})(\varkappa)\\&&\quad-2\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\alpha}(rg_{1})(\varkappa)\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\beta}(sg_{1})(\varkappa)\Big)\\ \end{eqnarray} | (3.40) |
holds for all \rho\in(0, 1], \alpha, \beta\in\mathcal{C} with \Re(\alpha), \Re(\beta) > 0.
Proof. Taking product (3.30) by \frac{\exp[\frac{\rho-1}{\rho}(\Psi(\varkappa)-\Psi(\mu))]r(\mu)\omega(\mu)\Psi^{\prime}(\mu)}{\rho^{\alpha}\Gamma(\alpha)(\Psi(\varkappa)-\Psi(\mu))^{1-\alpha}}\frac{\exp[\frac{\rho-1}{\rho}(\Psi(\varkappa)-\Psi(\nu))]s(\nu)\omega(\nu)\Psi^{\prime}(\nu)}{\rho^{\beta}\Gamma(\beta)(\Psi(\varkappa)-\Psi(\nu))^{1-\beta}} and integrating the resulting inequality with respect to \mu and \nu from 0 to \varkappa, we can state that
\begin{eqnarray} &&\frac{1}{\rho^{\alpha}\Gamma(\alpha)\rho^{\beta}\Gamma(\beta)}\int\limits_{0}^{\varkappa}\int\limits_{0}^{\varkappa}\frac{\exp[\frac{\rho-1}{\rho}(\Psi(\varkappa)-\Psi(\mu))]r(\mu)\omega(\mu)\Psi^{\prime}(\mu)}{(\Psi(\varkappa)-\Psi(\mu))^{1-\alpha}}\\&&\quad\times\frac{\exp[\frac{\rho-1}{\rho}(\Psi(\varkappa)-\Psi(\nu))]s(\nu)\omega(\nu)\Psi^{\prime}(\nu)}{(\Psi(\varkappa)-\Psi(\nu))^{1-\beta}}\mathfrak{T}(\mu, \nu)d\mu d\nu\\&& = \frac{1}{\rho^{\alpha}\Gamma(\alpha)\rho^{\beta}\Gamma(\beta)}\int\limits_{0}^{\varkappa}\int\limits_{0}^{\varkappa}\frac{\exp[\frac{\rho-1}{\rho}(\Psi(\varkappa)-\Psi(\mu))]r(\mu)\omega(\mu)\Psi^{\prime}(\mu)}{(\Psi(\varkappa)-\Psi(\mu))^{1-\alpha}}\\&&\quad\times\frac{\exp[\frac{\rho-1}{\rho}(\Psi(\varkappa)-\Psi(\nu))]s(\nu)\omega(\nu)\Psi^{\prime}(\nu)}{(\Psi(\varkappa)-\Psi(\nu))^{1-\beta}}\\&&\quad\times\big(f_{1}(\mu)-f_{1}(\nu)\big)\big(g_{1}(\mu)-g_{1}(\nu)\big)d\mu d\nu. \end{eqnarray} | (3.41) |
Taking product both sides of the above equation by \omega^{-2}(\varkappa) and utilizing Definition (2.2), we have
\begin{eqnarray} &&\frac{\omega^{-2}(\varkappa)}{\rho^{\alpha}\Gamma(\alpha)\rho^{\beta}\Gamma(\beta)}\int\limits_{0}^{\varkappa}\int\limits_{0}^{\varkappa}\frac{\exp[\frac{\rho-1}{\rho}(\Psi(\varkappa)-\Psi(\mu))]r(\mu)\omega(\mu)\Psi^{\prime}(\mu)}{(\Psi(\varkappa)-\Psi(\mu))^{1-\alpha}}\\&&\quad\times\frac{\exp[\frac{\rho-1}{\rho}(\Psi(\varkappa)-\Psi(\nu))]s(\nu)\omega(\nu)\Psi^{\prime}(\nu)}{(\Psi(\varkappa)-\Psi(\nu))^{1-\beta}}\mathfrak{T}(\mu, \nu)d\mu d\nu\\&& = \, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\alpha}r(\varkappa)\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\beta}(sf_{1}g_{1})(\varkappa)+\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\beta}s(\varkappa)\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\alpha}(rf_{1}g_{1})(\varkappa)\\&&\quad-\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\alpha}(rf_{1})(\varkappa)\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\beta}(sg_{1})(\varkappa)-\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\alpha}(sf_{1})(\varkappa)\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\alpha}(rg_{1})(\varkappa). \end{eqnarray} | (3.42) |
Then, thanks to the weighted Cauchy-Schwartz integral inequality for double integrals, we conclude (3.40).
Lemma 3.8. Suppose an integrable function f_{1} defined on [0, \infty) satisfying the assertions \boldsymbol{I} and \boldsymbol{II} on [0, \infty) and let two continuous function r and s defined on [0, \infty) . Then the inequality
\begin{eqnarray} && \, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\beta}(sf_{1}^{2})(\varkappa)\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\alpha}r(\varkappa)+\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\alpha}(rf_{1}^{2})(\varkappa)\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\beta}s(\varkappa)-2\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\beta}(sf_{1})(\varkappa)\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\alpha}(rf_{1})(\varkappa)\\&&\leq\big(\Phi\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\alpha}r(\varkappa)-\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\alpha}(rf_{1})(\varkappa)\big)\big(\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\beta}(sf_{1})(\varkappa)-\phi\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\beta}s(\varkappa)\big)\\&&\quad+\big(\Phi\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\beta}s(\varkappa)-\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\beta}(sf_{1})(\varkappa)\big)\big(\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\alpha}(rf_{1})(\varkappa)-\phi\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\alpha}r(\varkappa)\big)\\&&\quad-\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\beta}\Big(s(\varkappa)\big(\Phi-f_{1}(\varkappa)\big)\big(f_{1}(\varkappa)-\phi\big)\Big)\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\alpha}r(\varkappa)\\&&\quad-\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\beta}s(\varkappa)\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\alpha}\Big(r(\varkappa)(\Phi-f_{1}(\varkappa))\big(f_{1}(\varkappa)-\phi\big)\Big) \end{eqnarray} | (3.43) |
holds for all \rho\in(0, 1], \alpha, \beta\in\mathcal{C} with \Re(\alpha), \Re(\beta) > 0.
Proof. Multiplying both sides of (3.25) by \frac{\exp[\frac{\rho-1}{\rho}(\Psi(\varkappa)-\Psi(\mu))]r(\mu)\omega(\mu)\Psi^{\prime}(\mu)}{\rho^{\beta}\Gamma(\beta)(\Psi(\varkappa)-\Psi(\mu))^{1-\beta}} and integrating the resulting inequality with respect to \mu from 0 to \varkappa. Then, by multiplying with \omega^{-1}(\varkappa) and in view of Definition 2.2, concludes
\begin{eqnarray} &&\big(\Phi\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\alpha}r(\varkappa)-\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\alpha}(rf_{1})(\varkappa)\big)\big(\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\beta}(sf_{1})(\varkappa)-\phi\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\beta}s(\varkappa)\big)\\&&\quad+\big(\Phi\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\beta}s(\varkappa)-\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\beta}(sf_{1})(\varkappa)\big)\big(\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\alpha}(rf_{1})(\varkappa)-\phi\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\alpha}r(\varkappa)\big)\\&&\quad-\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\beta}\Big(s(\varkappa)\big(\Phi-f_{1}(\varkappa)\big)\big(f_{1}(\varkappa)-\phi\big)\Big)\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\alpha}r(\varkappa)\\&&\quad-\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\beta}s(\varkappa)\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\alpha}\Big(r(\varkappa)(\Phi-f_{1}(\varkappa))\big(f_{1}(\varkappa)-\phi\big)\Big)\\&&\leq\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\beta}(sf_{1}^{2})(\varkappa)\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\alpha}r(\varkappa)+\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\alpha}(rf_{1}^{2})(\varkappa)\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\beta}s(\varkappa)\\&&\quad-2\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\beta}(sf_{1})(\varkappa)\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\alpha}(rf_{1})(\varkappa), \end{eqnarray} | (3.44) |
which gives (3.43) and proves the lemma.
Theorem 3.9. Suppose two integrable functions f_{1} and g_{1} defined on [0, \infty) satisfying the assertions \boldsymbol{I}, \boldsymbol{II} and (1.7) on [0, \infty) and let two continuous function r and s defined on [0, \infty) . Then the inequality
\begin{eqnarray} && \Big(\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\alpha}r(\varkappa)\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\beta}(sf_{1}g_{1})(\varkappa)+\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\beta}s(\varkappa)\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\alpha}(rf_{1}g_{1})(\varkappa)\\&&\quad-\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\alpha}(rf_{1})(\varkappa)\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\beta}(sg_{1})(\varkappa)-\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\alpha}(sf_{1})(\varkappa)\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\alpha}(rg_{1})(\varkappa)\Big)^{2}\\&&\leq\Big\{\big(\Phi\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\alpha}r(\varkappa)-\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\alpha}(rf_{1})(\varkappa)\big)\big(\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\beta}(sf_{1})(\varkappa)-\phi\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\beta}s(\varkappa)\big)\\&&\quad+\big(\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\alpha}(rf_{1})(\varkappa)-\phi\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\alpha}r(\varkappa)\big)\big(\Phi\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\beta}s(\varkappa)-\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\beta}(sf_{1})(\varkappa)\big)\Big\}\\&&\quad\times\Big\{\big(\Upsilon\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\alpha}r(\varkappa)-\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\alpha}(rg_{1})(\varkappa)\big)\big(\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\beta}(sg_{1})(\varkappa)-\gamma\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\beta}s(\varkappa)\big)\\&&\quad+\big(\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\alpha}(rg_{1})(\varkappa)-\gamma\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\alpha}r(\varkappa)\big)\big(\Upsilon\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\beta}s(\varkappa)-\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\beta}(sg_{1})(\varkappa)\big)\Big\} \end{eqnarray} | (3.45) |
holds for all \rho\in(0, 1], \alpha, \beta\in\mathcal{C} with \Re(\alpha), \Re(\beta) > 0.
Proof. Since (\Phi-f_{1}(\mu))(f_{1}(\mu)-\phi)\geq0 and (\Upsilon-g_{1}(\mu))(g_{1}(\mu)-\gamma)\geq0, we have
\begin{eqnarray} -\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\alpha}r(\varkappa)\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\beta}\Big(s(\varkappa)(\Phi-f_{1}(\varkappa))(f_{1}(\varkappa)-\phi)\Big)- \, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\beta}s(\varkappa)\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\alpha}\Big(r(\varkappa)(\Phi-f_{1}(\varkappa))(f_{1}(\varkappa)-\phi)\Big)\leq0 \end{eqnarray} | (3.46) |
and
\begin{eqnarray} -\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\alpha}r(\varkappa)\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\beta}\Big(s(\varkappa)(\Upsilon-g_{1}(\varkappa))(g_{1}(\varkappa)-\gamma)\Big)- \, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\beta}s(\varkappa)\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\alpha}\Big(r(\varkappa)(\Upsilon-g_{1}(\varkappa))(g_{1}(\varkappa)-\gamma)\Big)\leq0. \end{eqnarray} | (3.47) |
Utilizing Lemma 3.8 to f_{1} and g_{1}, and utilizing Lemma 3.7 and the inequalities (3.46) and (3.47), yields (3.45).
Theorem 3.10. Suppose two integrable functions f_{1} and g_{1} defined on [0, \infty) satisfying the assertions \boldsymbol{I}, \boldsymbol{II} and (1.7) on [0, \infty) and let two continuous function r and s defined on [0, \infty) . Then the inequality
\begin{eqnarray} &&\Big\vert\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\alpha}r(\varkappa)\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\beta}(sf_{1}g_{1})(\varkappa)+\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\beta}s(\varkappa)\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\alpha}(rf_{1}g_{1})(\varkappa)\\&&\quad-\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\alpha}(rf_{1})(\varkappa)\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\beta}(sg_{1})(\varkappa)-\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\alpha}(sf_{1})(\varkappa)\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\alpha}(rg_{1})(\varkappa)\Big\vert\\&&\leq\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\alpha}r(\varkappa)\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\beta}s(\varkappa)(\Phi-\phi)(\Upsilon-\gamma) \end{eqnarray} | (3.48) |
holds for all \rho\in(0, 1], \alpha, \beta\in\mathcal{C} with \Re(\alpha), \Re(\beta) > 0.
Proof. Taking into consideration the assumption (1.7), we have
\begin{eqnarray} \Big\vert f_{1}(\mu)-f_{1}(\nu) \Big\vert\leq \Phi-\phi, \quad\quad \Big\vert g_{1}(\mu)-g_{1}(\nu) \Big\vert\leq \Upsilon-\gamma, \quad\mu, \nu\in[0, \infty), \end{eqnarray} | (3.49) |
which implies that
\begin{eqnarray} \big\vert\mathfrak{T}(\mu, \nu)\big\vert = \Big\vert f_{1}(\mu)-f_{1}(\nu) \Big\vert\Big\vert g_{1}(\mu)-g_{1}(\nu) \Big\vert\leq (\Phi-\phi)(\Upsilon-\gamma). \end{eqnarray} | (3.50) |
From (3.42) and (3.50), we obtain that
\begin{eqnarray} &&\Big\vert\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\alpha}r(\varkappa)\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\beta}(sf_{1}g_{1})(\varkappa)+\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\beta}s(\varkappa)\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\alpha}(rf_{1}g_{1})(\varkappa)\\&&\quad-\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\alpha}(rf_{1})(\varkappa)\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\beta}(sg_{1})(\varkappa)-\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\alpha}(sf_{1})(\varkappa)\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\alpha}(rg_{1})(\varkappa)\Big\vert\\&&\leq \frac{\omega^{-2}(\varkappa)}{\rho^{\alpha}\Gamma(\alpha)\rho^{\beta}\Gamma(\beta)}\int\limits_{0}^{\varkappa}\int\limits_{0}^{\varkappa}\frac{\exp[\frac{\rho-1}{\rho}(\Psi(\varkappa)-\Psi(\mu))]r(\mu)\omega(\mu)\Psi^{\prime}(\mu)}{(\Psi(\varkappa)-\Psi(\mu))^{1-\alpha}}\\&&\quad\times\frac{\exp[\frac{\rho-1}{\rho}(\Psi(\varkappa)-\Psi(\nu))]s(\nu)\omega(\nu)\Psi^{\prime}(\nu)}{(\Psi(\varkappa)-\Psi(\nu))^{1-\beta}}\mathfrak{T}(\mu, \nu)d\mu d\nu\\&&\leq\frac{\omega^{-2}(\varkappa)}{\rho^{\alpha}\Gamma(\alpha)\rho^{\beta}\Gamma(\beta)}\int\limits_{0}^{\varkappa}\int\limits_{0}^{\varkappa}\frac{\exp[\frac{\rho-1}{\rho}(\Psi(\varkappa)-\Psi(\mu))]r(\mu)\omega(\mu)\Psi^{\prime}(\mu)}{(\Psi(\varkappa)-\Psi(\mu))^{1-\alpha}}\\&&\quad\times\frac{\exp[\frac{\rho-1}{\rho}(\Psi(\varkappa)-\Psi(\nu))]s(\nu)\omega(\nu)\Psi^{\prime}(\nu)}{(\Psi(\varkappa)-\Psi(\nu))^{1-\beta}}\Big((\Phi-\phi)(\Upsilon-\gamma)\Big)d\mu d\nu\\&& = \, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\alpha}r(\varkappa)\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\beta}s(\varkappa)(\Phi-\phi)(\Upsilon-\gamma). \end{eqnarray} | (3.51) |
This ends the proof.
Theorem 3.11. Suppose two integrable functions f_{1} and g_{1} defined on [0, \infty) satisfying the assertions \boldsymbol{I}, \boldsymbol{II} and (1.7) on [0, \infty) and let two continuous function r and s defined on [0, \infty) . Then the inequality
\begin{eqnarray} &&\Big\vert\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\alpha}r(\varkappa)\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\beta}(sf_{1}g_{1})(\varkappa)+\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\beta}s(\varkappa)\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\alpha}(rf_{1}g_{1})(\varkappa)\\&&\quad-\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\alpha}(rf_{1})(\varkappa)\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\beta}(sg_{1})(\varkappa)-\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\alpha}(sf_{1})(\varkappa)\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\alpha}(rg_{1})(\varkappa)\Big\vert\\&&\leq L\Big(\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\alpha}r(\varkappa)\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\beta}(sg_{1}^{2})(\varkappa)+\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\beta}s(\varkappa)\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\alpha}(rg_{1}^{2})(\varkappa)\\&&\quad-2\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\alpha}(rg_{1})(\varkappa)\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\beta}(sg_{1})(\varkappa)\Big)\\ \end{eqnarray} | (3.52) |
holds for all \rho\in(0, 1], \alpha, \beta\in\mathcal{C} with \Re(\alpha), \Re(\beta) > 0.
Proof. Taking into consideration the assumption (1.12), we have
\begin{eqnarray} \Big\vert f_{1}(\mu)-f_{1}(\nu) \Big\vert\leq L\Big\vert g_{1}(\mu)-g_{1}(\nu) \Big\vert\quad\mu, \nu\in[0, \infty), \end{eqnarray} | (3.53) |
which implies that
\begin{eqnarray} \big\vert\mathfrak{T}(\mu, \nu)\big\vert = \Big\vert f_{1}(\mu)-f_{1}(\nu) \Big\vert\Big\vert g_{1}(\mu)-g_{1}(\nu) \Big\vert\leq L\big( g_{1}(\mu)-g_{1}(\nu)\big)^{2}. \end{eqnarray} | (3.54) |
From (3.42) and (3.54), we obtain that
\begin{eqnarray} &&\Big\vert\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\alpha}r(\varkappa)\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\beta}(sf_{1}g_{1})(\varkappa)+\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\beta}s(\varkappa)\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\alpha}(rf_{1}g_{1})(\varkappa)\\&&\quad-\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\alpha}(rf_{1})(\varkappa)\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\beta}(sg_{1})(\varkappa)-\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\alpha}(sf_{1})(\varkappa)\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\alpha}(rg_{1})(\varkappa)\Big\vert\\&&\leq \frac{\omega^{-2}(\varkappa)}{\rho^{\alpha}\Gamma(\alpha)\rho^{\beta}\Gamma(\beta)}\int\limits_{0}^{\varkappa}\int\limits_{0}^{\varkappa}\frac{\exp[\frac{\rho-1}{\rho}(\Psi(\varkappa)-\Psi(\mu))]r(\mu)\omega(\mu)\Psi^{\prime}(\mu)}{(\Psi(\varkappa)-\Psi(\mu))^{1-\alpha}}\\&&\quad\times\frac{\exp[\frac{\rho-1}{\rho}(\Psi(\varkappa)-\Psi(\nu))]s(\nu)\omega(\nu)\Psi^{\prime}(\nu)}{(\Psi(\varkappa)-\Psi(\nu))^{1-\beta}}\mathfrak{T}(\mu, \nu)d\mu d\nu\\&&\leq L\frac{\omega^{-2}(\varkappa)}{\rho^{\alpha}\Gamma(\alpha)\rho^{\beta}\Gamma(\beta)}\int\limits_{0}^{\varkappa}\int\limits_{0}^{\varkappa}\frac{\exp[\frac{\rho-1}{\rho}(\Psi(\varkappa)-\Psi(\mu))]r(\mu)\omega(\mu)\Psi^{\prime}(\mu)}{(\Psi(\varkappa)-\Psi(\mu))^{1-\alpha}}\\&&\quad\times\frac{\exp[\frac{\rho-1}{\rho}(\Psi(\varkappa)-\Psi(\nu))]s(\nu)\omega(\nu)\Psi^{\prime}(\nu)}{(\Psi(\varkappa)-\Psi(\nu))^{1-\beta}}\big( g_{1}(\mu)-g_{1}(\nu)\big)^{2}d\mu d\nu\\&& = L\Big(\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\alpha}r(\varkappa)\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\beta}(sg_{1}^{2})(\varkappa)+\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\beta}s(\varkappa)\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\alpha}(rg_{1}^{2})(\varkappa)\\&&\quad-2\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\alpha}(rg_{1})(\varkappa)\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\beta}(sg_{1})(\varkappa)\Big). \end{eqnarray} | (3.55) |
This ends the proof.
Theorem 3.12. Suppose two integrable functions f_{1} and g_{1} defined on [0, \infty) satisfying the assertions \boldsymbol{I}, \boldsymbol{II} and the lipschitzian condition with the constants \mathcal{M}_{1} and \mathcal{M}_{2} and let two continuous function r and s defined on [0, \infty) . Then the inequality
\begin{eqnarray} &&\Big\vert\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\alpha}r(\varkappa)\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\beta}(sf_{1}g_{1})(\varkappa)+\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\beta}s(\varkappa)\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\alpha}(rf_{1}g_{1})(\varkappa)\\&&\quad-\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\alpha}(rf_{1})(\varkappa)\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\beta}(sg_{1})(\varkappa)-\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\alpha}(sf_{1})(\varkappa)\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\alpha}(rg_{1})(\varkappa)\Big\vert\\&&\leq \mathcal{M}_{1}\mathcal{M}_{2}\Big(\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\alpha}r(\varkappa)\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\beta}(\varkappa^{2}s(\varkappa))+\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\beta}s(\varkappa)\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\alpha}(\varkappa^{2} r(\varkappa))\\&&\quad-2\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\alpha}(\varkappa r(\varkappa))\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\beta}(\varkappa s(\varkappa))\Big)\\ \end{eqnarray} | (3.56) |
holds for all \rho\in(0, 1], \alpha, \beta\in\mathcal{C} with \Re(\alpha), \Re(\beta) > 0.
Proof. By the given hypothesis, we have
\begin{eqnarray} \Big\vert f_{1}(\mu)-f_{1}(\nu) \Big\vert\leq \mathcal{M}_{1}\big\vert \mu-\nu \big\vert\quad \Big\vert g_{1}(\mu)-g_{1}(\nu) \Big\vert\leq \mathcal{M}_{2}\big\vert \mu-\nu \big\vert\quad\mu, \nu\in[0, \infty), \end{eqnarray} | (3.57) |
which implies that
\begin{eqnarray} \big\vert\mathfrak{T}(\mu, \nu)\big\vert = \Big\vert f_{1}(\mu)-f_{1}(\nu) \Big\vert\Big\vert g_{1}(\mu)-g_{1}(\nu) \Big\vert\leq \mathcal{M}_{1}\mathcal{M}_{2}\big( \mu-\nu\big)^{2}. \end{eqnarray} | (3.58) |
From (3.42) and (3.58), we obtain that
\begin{eqnarray} &&\Big\vert\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\alpha}r(\varkappa)\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\beta}(sf_{1}g_{1})(\varkappa)+\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\beta}s(\varkappa)\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\alpha}(rf_{1}g_{1})(\varkappa)\\&&\quad-\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\alpha}(rf_{1})(\varkappa)\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\beta}(sg_{1})(\varkappa)-\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\alpha}(sf_{1})(\varkappa)\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\alpha}(rg_{1})(\varkappa)\Big\vert\\&&\leq \frac{\omega^{-2}(\varkappa)}{\rho^{\alpha}\Gamma(\alpha)\rho^{\beta}\Gamma(\beta)}\int\limits_{0}^{\varkappa}\int\limits_{0}^{\varkappa}\frac{\exp[\frac{\rho-1}{\rho}(\Psi(\varkappa)-\Psi(\mu))]r(\mu)\omega(\mu)\Psi^{\prime}(\mu)}{(\Psi(\varkappa)-\Psi(\mu))^{1-\alpha}}\\&&\quad\times\frac{\exp[\frac{\rho-1}{\rho}(\Psi(\varkappa)-\Psi(\nu))]s(\nu)\omega(\nu)\Psi^{\prime}(\nu)}{(\Psi(\varkappa)-\Psi(\nu))^{1-\beta}}\mathfrak{T}(\mu, \nu)d\mu d\nu\\&&\leq L\frac{\omega^{-2}(\varkappa)}{\rho^{\alpha}\Gamma(\alpha)\rho^{\beta}\Gamma(\beta)}\int\limits_{0}^{\varkappa}\int\limits_{0}^{\varkappa}\frac{\exp[\frac{\rho-1}{\rho}(\Psi(\varkappa)-\Psi(\mu))]r(\mu)\omega(\mu)\Psi^{\prime}(\mu)}{(\Psi(\varkappa)-\Psi(\mu))^{1-\alpha}}\\&&\quad\times\frac{\exp[\frac{\rho-1}{\rho}(\Psi(\varkappa)-\Psi(\nu))]s(\nu)\omega(\nu)\Psi^{\prime}(\nu)}{(\Psi(\varkappa)-\Psi(\nu))^{1-\beta}}(\mu-\nu)^{2}d\mu d\nu\\&& = \mathcal{M}_{1}\mathcal{M}_{2}\Big(\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\alpha}r(\varkappa)\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\beta}(\varkappa^{2}s(\varkappa))+\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\beta}s(\varkappa)\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\alpha}(\varkappa^{2} r(\varkappa))\\&&\quad-2\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\alpha}(\varkappa r(\varkappa))\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\beta}(\varkappa s(\varkappa))\Big). \end{eqnarray} | (3.59) |
This ends the proof.
Corollary 1. Let f_{1} and g_{1} be two differentiable functions on [0, \infty) and let r and s be two non-negative continuous functions on [0, \infty). Then the inequality
\begin{eqnarray} &&\Big\vert\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\alpha}r(\varkappa)\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\beta}(sf_{1}g_{1})(\varkappa)+\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\beta}s(\varkappa)\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\alpha}(rf_{1}g_{1})(\varkappa)\\&&\quad-\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\alpha}(rf_{1})(\varkappa)\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\beta}(sg_{1})(\varkappa)-\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\alpha}(sf_{1})(\varkappa)\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\alpha}(rg_{1})(\varkappa)\Big\vert\\&&\leq \|f_{1}^{\prime}\|_{\infty}\|g_{1}^{\prime}\|_{\infty}\Big(\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\alpha}r(\varkappa)\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\beta}(\varkappa^{2}s(\varkappa))+\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\beta}s(\varkappa)\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\alpha}(\varkappa^{2} r(\varkappa))\\&&\quad-2\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\alpha}(\varkappa r(\varkappa))\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\beta}(\varkappa s(\varkappa))\Big)\\ \end{eqnarray} | (3.60) |
holds for all \rho\in(0, 1], \alpha, \beta\in\mathcal{C} with \Re(\alpha), \Re(\beta) > 0.
Proof. We have f_{1}(\mu)-f_{1}(\nu) = \int\limits_{\nu}^{\mu}f_{1}^{\prime}(\varkappa)d\varkappa and g_{1}(\mu)-g_{1}(\nu) = \int\limits_{\nu}^{\mu}g_{1}^{\prime}(\varkappa)d\varkappa. That is, \big\vert f_{1}(\mu)-f_{1}(\nu)\big\vert\leq\|f_{1}^{\prime}\|_{\infty}\big\vert \mu-\nu \big\vert, \big\vert g_{1}(\mu)-g_{1}(\nu)\big\vert\leq\|g_{1}^{\prime}\|_{\infty}\big\vert \mu-\nu \big\vert, \mu, \nu\in[0, \infty), and the immediate consequence follows from Theorem 3.12. This completes the proof.
Example 3.13. Let \rho, \, \alpha > 0, \, \, q_{1}, q_{2} > 1 with q_{1}^{-1}+q_{2}^{-1} = 1, and \omega\neq0 be a function on [0, \infty). Let f_{1} be an integrable function defined on [0, \infty) and \, _{\omega}^{\Psi}\Omega_{a_{1}^{+}}^{\rho; \alpha}f_{1} be the weighted generalized proportional fractional integral operator satisfying assumption \bf{II}. Then we have
\begin{eqnarray*} \Big\vert\Big(\, _{\omega}^{\Psi}\Omega_{a_{1}^{+}}^{\rho;\alpha}f_{1}\Big)(\varkappa)\Big\vert\leq\Theta\|(f_{1}\circ\omega)(\mu)\|_{L_{1}(a_{1}, \varkappa)}, \end{eqnarray*} |
where
\begin{eqnarray*} \Theta = \frac{\omega^{-1}(\varkappa)(-1)^{\alpha-1}}{\Gamma(\alpha)}\Big\{\Big(\frac{\rho}{q_{1}(\rho-1)}\Big)^{\alpha-1+{1/q_{1}}}\Big\}^{1/q_{1}}\Phi^{1/q_{1}}\Big(q_{1}(\alpha-1)+1, \frac{q_{1}(\rho-1)}{\rho}\big(\Psi(\varkappa)-\Psi(a_{1})\big)\Big) \end{eqnarray*} |
and
\Phi(\alpha, \varkappa) = \int\limits_{0}^{\varkappa}e^{-v}v^{\alpha-1}dv |
is the incomplete gamma function [52,53].
Proof. It follows from Definition 2.2 and the modulus property that
\begin{eqnarray*} \Big\vert\Big(\, _{\omega}^{\Psi}\Omega_{a_{1}^{+}}^{\rho;\alpha}f_{1}\Big)(\varkappa)\Big\vert\leq\frac{\omega^{-1}(\varkappa)}{\rho^{\alpha}\Gamma(\rho)}\int\limits_{a_{1}}^{\varkappa}\frac{\exp[\frac{\rho-1}{\rho}(\Psi(\varkappa)-\Psi(\mu))]}{\big(\Psi(\varkappa)-\Psi(\mu)\big)^{1-\alpha}}\Psi^{\prime}(\mu)\big\vert f_{1}(\mu)\omega(\mu)\big\vert d\mu \end{eqnarray*} |
for \varkappa > a_{1}.
Making use of the well-known Hölder inequality, we obtain
\begin{eqnarray*} \Big\vert\Big(\, _{\omega}^{\Psi}\Omega_{a_{1}^{+}}^{\rho;\alpha}f_{1}\Big)(\varkappa)\Big\vert\leq\frac{\omega^{-1}(\varkappa)}{\rho^{\alpha}\Gamma(\rho)}\Bigg(\int\limits_{a_{1}}^{\varkappa}\frac{q_{1}\exp[\frac{\rho-1}{\rho}(\Psi(\varkappa)-\Psi(\mu))]}{\big(\Psi(\varkappa)-\Psi(\mu)\big)^{q_{1}(1-\alpha)}}\Psi^{\prime}(\mu)d\mu\Bigg)^{1/q_{1}}\| f_{1}\circ\omega(\mu)\|_{L_{1}(a_{1}, \varkappa)}. \end{eqnarray*} |
Let \theta = \Psi(\varkappa)-\Psi(\mu). Then elaborated computations lead to
\begin{eqnarray*} \Big\vert\Big(\, _{\omega}^{\Psi}\Omega_{a_{1}^{+}}^{\rho;\alpha}f_{1}\Big)(\varkappa)\Big\vert&&\leq\frac{(-1)^{\alpha-1}\omega^{-1}(\varkappa)}{\rho^{\alpha}\Gamma(\alpha)}\Big\{\Big(\frac{\rho}{q_{1}(\rho-1)}\Big)^{\alpha-1+{1/q_{1}}}\Big\}^{1/q_{1}}\nonumber\\&&\quad\times\Phi^{1/q_{1}}\Big(q_{1}(\alpha-1)+1, \frac{q_{1}(\rho-1)}{\rho}\big(\Psi(\varkappa)-\Psi(a_{1})\big)\Big)\| f_{1}\circ\omega(\mu)\|_{L_{1}(a_{1}, \varkappa)}. \end{eqnarray*} |
Here, we aim at present some new generalizations via weighted generalized proportional fractional, weighted generalized Riemann-Liouville and weighted Riemann-Liouville fractional integral operators, which are the new estimates of the main consequences.
Lemma 4.1. Let f_{1} and g_{1} be two synchronous functions on [0, \infty). Assume that \mathcal{Q} and \mathcal{P} be two non-negative continuous mappings on [0, \infty). Then the inequality
\begin{eqnarray*} &&\, _{\omega}\Omega_{0^{+}}^{\rho;\alpha}\big(\mathcal{P}\big)(\varkappa) \, _{\omega}\Omega_{0^{+}}^{\rho;\alpha}\big(\mathcal{Q}f_{1}g_{1}\big)(\varkappa)+\, _{\omega}\Omega\Omega_{0^{+}}^{\rho;\alpha}\big(\mathcal{P}f_{1}g_{1}\big)(\varkappa)\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\alpha}\big(\mathcal{Q}\big)(\varkappa)\nonumber\\&&\geq \, _{\omega}\Omega_{0^{+}}^{\rho;\alpha}\big(\mathcal{P}g_{1}\big)(\varkappa)\, _{\omega}\Omega_{0^{+}}^{\rho;\alpha}\big(\mathcal{Q}f_{1}\big)(\varkappa)+\, _{\omega}\Omega_{0^{+}}^{\rho;\alpha}\big(\mathcal{P}f_{1}\big)(\varkappa)\, _{\omega}\Omega_{0^{+}}^{\rho;\alpha}\big(\mathcal{Q}g_{1}\big)(\varkappa), \end{eqnarray*} |
holds for all \rho\in(0, 1], \alpha\in\mathcal{C} with \Re(\alpha) > 0.
Proof. Letting \Psi(\varkappa) = \varkappa and Lemma 3.1 yields the proof of Lemma 4.1.
Lemma 4.2. Let f_{1} and g_{1} be two synchronous functions on [0, \infty). Assume that \mathcal{Q} and \mathcal{P} be two non-negative continuous mappings on [0, \infty). Then the inequality
\begin{eqnarray*} &&\, _{\omega}\Omega_{0^{+}}^{\rho;\alpha}\big(\mathcal{P}\big)(\varkappa) \, _{\omega}\Omega_{0^{+}}^{\rho;\alpha}\big(\mathcal{Q}f_{1}g_{1}\big)(\varkappa)+\, _{\omega}\Omega\Omega_{0^{+}}^{\rho;\alpha}\big(\mathcal{P}f_{1}g_{1}\big)(\varkappa)\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\alpha}\big(\mathcal{Q}\big)(\varkappa)\nonumber\\&&\geq \, _{\omega}\Omega_{0^{+}}^{\rho;\alpha}\big(\mathcal{P}g_{1}\big)(\varkappa)\, _{\omega}\Omega_{0^{+}}^{\rho;\alpha}\big(\mathcal{Q}f_{1}\big)(\varkappa)+\, _{\omega}\Omega_{0^{+}}^{\rho;\alpha}\big(\mathcal{P}f_{1}\big)(\varkappa)\, _{\omega}\Omega_{0^{+}}^{\rho;\alpha}\big(\mathcal{Q}g_{1}\big)(\varkappa), \end{eqnarray*} |
holds for all \rho\in(0, 1], \alpha\in\mathcal{C} with \Re(\alpha) > 0.
Proof. Letting \Psi(\varkappa) = \varkappa and Lemma 3.1 yields the proof of Lemma 4.2.
Lemma 4.3. Under the assumption of Lemma 3.1, then the inequality
\begin{eqnarray*} &&\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\alpha}\big(\mathcal{P}\big)(\varkappa) \, _{\omega}^{\Psi}\Omega_{0^{+}}^{\alpha}\big(\mathcal{Q}f_{1}g_{1}\big)(\varkappa)+\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\alpha}\big(\mathcal{P}f_{1}g_{1}\big)(\varkappa)\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\alpha}\big(\mathcal{Q}\big)(\varkappa)\nonumber\\&&\geq \, _{\omega}^{\Psi}\Omega_{0^{+}}^{\alpha}\big(\mathcal{P}g_{1}\big)(\varkappa)\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\alpha}\big(\mathcal{Q}f_{1}\big)(\varkappa)+\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\rho;\alpha}\big(\mathcal{P}f_{1}\big)(\varkappa)\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\alpha}\big(\mathcal{Q}g_{1}\big)(\varkappa), \end{eqnarray*} |
holds for all \alpha\in\mathcal{C} with \Re(\alpha) > 0.
Proof. Letting \rho = 1 and Lemma 3.1 yields the proof of Lemma 4.3.
Lemma 4.4. Under the assumption of Lemma 4.2, then the inequality
\begin{eqnarray*} &&\, _{\omega}\Omega_{0^{+}}^{\alpha}\big(\mathcal{P}\big)(\varkappa) \, _{\omega}\Omega_{0^{+}}^{\alpha}\big(\mathcal{Q}f_{1}g_{1}\big)(\varkappa)+\, _{\omega}\Omega_{0^{+}}^{\alpha}\big(\mathcal{P}f_{1}g_{1}\big)(\varkappa)\, _{\omega}\Omega_{0^{+}}^{\rho;\alpha}\big(\mathcal{Q}\big)(\varkappa)\nonumber\\&&\geq \, _{\omega}\Omega_{0^{+}}^{\alpha}\big(\mathcal{P}g_{1}\big)(\varkappa)\, _{\omega}\Omega_{0^{+}}^{\alpha}\big(\mathcal{Q}f_{1}\big)(\varkappa)+\, _{\omega}\Omega_{0^{+}}^{\rho;\alpha}\big(\mathcal{P}f_{1}\big)(\varkappa)\, _{\omega}\Omega_{0^{+}}^{\alpha}\big(\mathcal{Q}g_{1}\big)(\varkappa), \end{eqnarray*} |
holds for all \alpha\in\mathcal{C} with \Re(\alpha) > 0.
Proof. Letting \rho = 1, \, \Psi(\varkappa) = \varkappa and Lemma 3.1 yields the proof of Lemma 4.4.
Theorem 4.5. Let f_{1} and g_{1} be two synchronous functions on [0, \infty). Assume that r, s and t be three non-negative continuous functions on [0, \infty). Then the inequality
\begin{eqnarray*} &&2\, _{\omega}\Omega_{0^{+}}^{\rho;\alpha}r(\varkappa)\Big(\, _{\omega}\Omega_{0^{+}}^{\rho;\alpha}s(\varkappa) \, _{\omega}\Omega_{0^{+}}^{\rho;\alpha}\big(t f_{1}g_{1}\big)(\varkappa)+\, _{\omega}\Omega_{0^{+}}^{\rho;\alpha}\big(s f_{1}g_{1}\big)(\varkappa)\, _{\omega}\Omega_{0^{+}}^{\rho;\alpha}t(\varkappa)\Big)\nonumber\\&&\quad+2\, _{\omega}\Omega_{0^{+}}^{\rho;\alpha}(rf_{1}g_{1})(\varkappa)\, _{\omega}\Omega_{0^{+}}^{\rho;\alpha}s(\varkappa)\, _{\omega}\Omega_{0^{+}}^{\rho;\alpha}t(\varkappa)\nonumber\\&&\geq\, _{\omega}\Omega_{0^{+}}^{\rho;\alpha}r(\varkappa)\Big(\, _{\omega}\Omega_{0^{+}}^{\rho;\alpha}\big(s g_{1}\big)(\varkappa)\, _{\omega}\Omega_{0^{+}}^{\rho;\alpha}\big(t f_{1}\big)(\varkappa)+\, _{\omega}\Omega_{0^{+}}^{\rho;\alpha}\big(sf_{1}\big)(\varkappa)\, _{\omega}\Omega_{0^{+}}^{\rho;\alpha}\big(t g_{1}\big)(\varkappa)\Big) \nonumber\\&&\quad+\, _{\omega}\Omega_{0^{+}}^{\rho;\alpha}s(\varkappa)\Big(\, _{\omega}\Omega_{0^{+}}^{\rho;\alpha}\big(r g_{1}\big)(\varkappa)\, _{\omega}\Omega_{0^{+}}^{\rho;\alpha}\big(t f_{1}\big)(\varkappa)+\, _{\omega}\Omega_{0^{+}}^{\rho;\alpha}\big(rf_{1}\big)(\varkappa)\, _{\omega}\Omega_{0^{+}}^{\rho;\alpha}\big(t g_{1}\big)(\varkappa)\Big)\nonumber\\&&\quad+\, _{\omega}\Omega_{0^{+}}^{\rho;\alpha}s(\varkappa)\Big(\, _{\omega}\Omega_{0^{+}}^{\rho;\alpha}\big(s g_{1}\big)(\varkappa)\, _{\omega}\Omega_{0^{+}}^{\rho;\alpha}\big(r f_{1}\big)(\varkappa)+\, _{\omega}\Omega_{0^{+}}^{\rho;\alpha}\big(sf_{1}\big)(\varkappa)\, _{\omega}\Omega_{0^{+}}^{\rho;\alpha}\big(r g_{1}\big)(\varkappa)\Big) \end{eqnarray*} |
holds for all \rho\in(0, 1], \alpha\in\mathcal{C} with \Re(\alpha) > 0.
Proof. Letting \Psi(\varkappa) = \varkappa and Theorem 3.2 yields the proof of Theorem 4.5.
Theorem 4.6. Under the assumption of \boldsymbol{I}, \boldsymbol{II} and let r, s and t be three non-negative continuous functions on [0, \infty). Then the inequality
\begin{eqnarray*} &&2\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\alpha}r(\varkappa)\Big(\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\alpha}s(\varkappa) \, _{\omega}^{\Psi}\Omega_{0^{+}}^{\alpha}\big(t f_{1}g_{1}\big)(\varkappa)+\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\alpha}\big(s f_{1}g_{1}\big)(\varkappa)\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\alpha}t(\varkappa)\Big)\nonumber\\&&\quad+2\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\alpha}(rf_{1}g_{1})(\varkappa)\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\alpha}s(\varkappa)\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\alpha}t(\varkappa)\nonumber\\&&\geq\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\alpha}r(\varkappa)\Big(\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\alpha}\big(s g_{1}\big)(\varkappa)\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\alpha}\big(t f_{1}\big)(\varkappa)+\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\alpha}\big(sf_{1}\big)(\varkappa)\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\alpha}\big(t g_{1}\big)(\varkappa)\Big) \nonumber\\&&\quad+\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\alpha}s(\varkappa)\Big(\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\alpha}\big(r g_{1}\big)(\varkappa)\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\alpha}\big(t f_{1}\big)(\varkappa)+\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\alpha}\big(rf_{1}\big)(\varkappa)\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\alpha}\big(t g_{1}\big)(\varkappa)\Big)\nonumber\\&&\quad+\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\alpha}s(\varkappa)\Big(\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\alpha}\big(s g_{1}\big)(\varkappa)\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\alpha}\big(r f_{1}\big)(\varkappa)+\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\alpha}\big(sf_{1}\big)(\varkappa)\, _{\omega}^{\Psi}\Omega_{0^{+}}^{\alpha}\big(r g_{1}\big)(\varkappa)\Big) \end{eqnarray*} |
holds for all \alpha\in\mathcal{C} with \Re(\alpha) > 0.
Proof. Letting \rho = 1 and Theorem 3.2 yields the proof of Theorem 4.6.
Theorem 4.7. Under the assumption of Theorem 4.5, then the inequality
\begin{eqnarray*} &&2\, _{\omega}\Omega_{0^{+}}^{\alpha}r(\varkappa)\Big(\, _{\omega}\Omega_{0^{+}}^{\alpha}s(\varkappa) \, _{\omega}\Omega_{0^{+}}^{\alpha}\big(t f_{1}g_{1}\big)(\varkappa)+\, _{\omega}\Omega_{0^{+}}^{\alpha}\big(s f_{1}g_{1}\big)(\varkappa)\, _{\omega}\Omega_{0^{+}}^{\alpha}t(\varkappa)\Big)\nonumber\\&&\quad+2\, _{\omega}\Omega_{0^{+}}^{\alpha}(rf_{1}g_{1})(\varkappa)\, _{\omega}\Omega_{0^{+}}^{\alpha}s(\varkappa)\, _{\omega}\Omega_{0^{+}}^{\alpha}t(\varkappa)\nonumber\\&&\geq\, _{\omega}\Omega_{0^{+}}^{\alpha}r(\varkappa)\Big(\, _{\omega}\Omega_{0^{+}}^{\alpha}\big(s g_{1}\big)(\varkappa)\, _{\omega}\Omega_{0^{+}}^{\alpha}\big(t f_{1}\big)(\varkappa)+\, _{\omega}\Omega_{0^{+}}^{\alpha}\big(sf_{1}\big)(\varkappa)\, _{\omega}\Omega_{0^{+}}^{\alpha}\big(t g_{1}\big)(\varkappa)\Big) \nonumber\\&&\quad+\, _{\omega}\Omega_{0^{+}}^{\alpha}s(\varkappa)\Big(\, _{\omega}\Omega_{0^{+}}^{\alpha}\big(r g_{1}\big)(\varkappa)\, _{\omega}\Omega_{0^{+}}^{\alpha}\big(t f_{1}\big)(\varkappa)+\, _{\omega}\Omega_{0^{+}}^{\alpha}\big(rf_{1}\big)(\varkappa)\, _{\omega}\Omega_{0^{+}}^{\alpha}\big(t g_{1}\big)(\varkappa)\Big)\nonumber\\&&\quad+\, _{\omega}\Omega_{0^{+}}^{\alpha}s(\varkappa)\Big(\, _{\omega}\Omega_{0^{+}}^{\alpha}\big(s g_{1}\big)(\varkappa)\, _{\omega}\Omega_{0^{+}}^{\alpha}\big(r f_{1}\big)(\varkappa)+\, _{\omega}\Omega_{0^{+}}^{\alpha}\big(sf_{1}\big)(\varkappa)\, _{\omega}\Omega_{0^{+}}^{\alpha}\big(r g_{1}\big)(\varkappa)\Big) \end{eqnarray*} |
holds for all \alpha\in\mathcal{C} with \Re(\alpha) > 0.
Proof. Letting \rho = 1, \, \, \Psi(\varkappa) = \varkappa and Theorem 3.2 yields the proof of Theorem 4.7.
Remark 5. The computed results lead to the following conclusion:
(1) Setting \rho = 1, \Psi(\varkappa) = \varkappa and r(\varkappa) = s(\varkappa) = 1, and using the relation (2.7), (2.8) and the assumption \omega(\varkappa) = 1 , then Theorem 3.6 and Theorem 3.9 reduces to the known results due to Dahmani et al. [38].
(2) Setting \rho = 1, \Psi(\varkappa) = \varkappa and using the relation (2.7), (2.8) and the assumption \omega(\varkappa) = 1 , then Theorem 3.10–3.12, and Corollary 1 reduces to the known results due to Dahmani et al. [38] and Dahmani [40], respectively.
A new generalized fractional integral operator is proposed in this paper. The novel investigation is used to generate novel weighted fractional operators in the Riemann-Liouville, generalized Riemann-Liouville, Hadamard, Katugampola, Generalized proportional fractional, generalized Hadamard proportional fractional and henceforth, which effectively alleviates the adverse effect of another function \Psi and proportionality index \rho. Utilizing the weighted generalized proportional fractional operator technique, we derived the analogous versions of the extended Chebyshev and Grüss type inequalities that improve the accuracy and efficiency of the proposed technique. Contemplating the Remark 2 and 3, several existing results can be identified in the literature. Some innovative particular cases constructed by this method are tested and analyzed for statistical theory, fractional Schrödinger equation [20,21]. The results show that the method proposed in this paper can stably and efficiently generate integral inequalities for convexity with better operators performance, thus providing a reliable guarantee for its application in control theory [54].
The authors declare that they have no competing interests.
The authors would like to express their sincere thanks to referees for improving the article and also thanks to Natural Science Foundation of China (Grant Nos. 61673169) for providing financial assistance to support this research. The authors would like to express their sincere thanks to the support of Taif University Researchers Supporting Project Number (TURSP-2020/217), Taif University, Taif, Saudi Arabia.
[1] |
Agiwal M, Roy A, Saxena N (2016) Next Generation 5G Wireless Networks: A Comprehensive Survey. IEEE Commun Surv Tut 18: 1617–1655. https://doi.org/10.1109/COMST.2016.2532458 doi: 10.1109/COMST.2016.2532458
![]() |
[2] |
Li Y, Cimini LJ, Sollenberger NR (1998) Robust channel estimation for ofdm systems with rapid dispersive fading channels. IEEE T Commun 46: 902–915. https://doi.org/10.1109/26.701317 doi: 10.1109/26.701317
![]() |
[3] | Wang F (2011) Pilot-based channel estimation in OFDM system. Doctoral dissertation, University of Toledo. |
[4] |
Ye H, Li GY, Juang BH (2018) Power of Deep Learning for Channel Estimation and Signal Detection in OFDM Systems. IEEE Wirel Commun Lett 7: 114–117. https://doi.org/10.1109/LWC.2017.2757490 doi: 10.1109/LWC.2017.2757490
![]() |
[5] |
Wang T, Wen CK, Wang H, Gao F, Jiang T, Jin S (2017) Deep learning for wireless physical layer: Opportunities and challenges. China Commun 14: 92–111. https://doi.org/10.1109/CC.2017.8068760 doi: 10.1109/CC.2017.8068760
![]() |
[6] |
Wang T, Wen CK, Jin S, Li GY (2019) Deep learning-based CSI feedback approach for time-varying massive MIMO channels. IEEE Wirel Commun Lett 8: 416–419. https://doi.org/10.1109/LWC.2018.2874264 doi: 10.1109/LWC.2018.2874264
![]() |
[7] | Liao Y, Hua Y, Dai X, Yao H, Yang X (2019) ChanEstNet: A deep learning based channel estimation for high-speed scenarios. Proceedings of the IEEE international conference on communications (ICC), 1–6. https://doi.org/10.1109/ICC.2019.8761312 |
[8] |
Mohammed ASM, Taman AIA, Hassan AM, Zekry A (2022) Deep Learning Channel Estimation for OFDM 5G Systems with Different Channel Models. Wireless Pers Commun 128: 2891–2912. https://doi.org/10.1007/s11277-022-10077-6 doi: 10.1007/s11277-022-10077-6
![]() |
[9] |
Ratnam DV, Rao KN (2021) Bi-LSTM based deep learning method for 5G signal detection and channel estimation. AIMS Electronics and Electrical Engineering 5: 334–341. https://doi.org/10.3934/electreng.2021017 doi: 10.3934/electreng.2021017
![]() |
[10] | Tseng SH, Tran KD (2023) Predicting maintenance through an attention long short-term memory projected model. J Intell Manuf, 1–18. https://doi.org/10.1007/s10845-023-02077-5 |
[11] |
Ali MHE, Rabeh ML, Hekal S, Abbas AN (2022) Deep Learning Gated Recurrent Neural Network-Based Channel State Estimator for OFDM Wireless Communication Systems. IEEE Access 10: 69312–69322. https://doi.org/10.1109/ACCESS.2022.3186323 doi: 10.1109/ACCESS.2022.3186323
![]() |
[12] |
Jia YK, Wu Z, Xu Y, Ke D, Su K (2017) Long Short-Term Memory Projection Recurrent Neural Network Architectures for Piano's Continuous Note Recognition. Journal of Robotics 2017: 2061827. https://doi.org/10.1155/2017/2061827 doi: 10.1155/2017/2061827
![]() |
[13] | Gizzini AK, Chafii M, Nimr A, Fettweis G (2020) Deep learning based channel estimation schemes for IEEE 802.11p standard. IEEE Access 8: 113751–113765. https://doi.org/10.1109/ACCESS.2020.3003286 |
[14] |
Yang Y, Gao F, Ma X, Zhang S (2019) Deep Learning-Based Channel Estimation for Doubly Selective Fading Channels. IEEE Access 7: 36579–36589. https://doi.org/10.1109/ACCESS.2019.2901066 doi: 10.1109/ACCESS.2019.2901066
![]() |
[15] |
Chang MX, Su YT (2002) Model-based channel estimation for OFDM signals in Rayleigh fading. IEEE T Commun 50: 540–544. https://doi.org/10.1109/26.996066 doi: 10.1109/26.996066
![]() |
[16] |
Renu Jose, K.V.S. Hari(2018) Bounds and joint estimators for channel, phase noise, and timing error in communication systems using statistical framework. Computers and Electrical Engg 72: 431-442. https://doi.org/10.1016/j.compeleceng.2018.10.007 doi: 10.1016/j.compeleceng.2018.10.007
![]() |
[17] |
Renu Jose, K.V.S. Hari(2017) Joint statistical framework for the estimation of channel and SFO in OFDM systems. IET Signal Processing 11: 780-787 https://doi.org/10.1049/iet-spr.2016.0580 doi: 10.1049/iet-spr.2016.0580
![]() |
1. | Mohammed Shehu Shagari, Qiu-Hong Shi, Saima Rashid, Usamot Idayat Foluke, Khadijah M. Abualnaja, Fixed points of nonlinear contractions with applications, 2021, 6, 2473-6988, 9378, 10.3934/math.2021545 | |
2. | Farhat Safdar, Muhammad Attique, Some new generalizations for exponentially (s, m)-preinvex functions considering generalized fractional integral operators, 2021, 1016-2526, 861, 10.52280/pujm.2021.531203 | |
3. | Shuang-Shuang Zhou, Saima Rashid, Erhan Set, Abdulaziz Garba Ahmad, Y. S. Hamed, On more general inequalities for weighted generalized proportional Hadamard fractional integral operator with applications, 2021, 6, 2473-6988, 9154, 10.3934/math.2021532 | |
4. | Saima Rashid, Aasma Khalid, Omar Bazighifan, Georgia Irina Oros, New Modifications of Integral Inequalities via ℘-Convexity Pertaining to Fractional Calculus and Their Applications, 2021, 9, 2227-7390, 1753, 10.3390/math9151753 | |
5. | Saima Rashid, Fahd Jarad, Khadijah M. Abualnaja, On fuzzy Volterra-Fredholm integrodifferential equation associated with Hilfer-generalized proportional fractional derivative, 2021, 6, 2473-6988, 10920, 10.3934/math.2021635 | |
6. | SAIMA RASHID, ELBAZ I. ABOUELMAGD, AASMA KHALID, FOZIA BASHIR FAROOQ, YU-MING CHU, SOME RECENT DEVELOPMENTS ON DYNAMICAL ℏ-DISCRETE FRACTIONAL TYPE INEQUALITIES IN THE FRAME OF NONSINGULAR AND NONLOCAL KERNELS, 2022, 30, 0218-348X, 10.1142/S0218348X22401107 | |
7. | Wengui Yang, Certain New Chebyshev and Grüss-Type Inequalities for Unified Fractional Integral Operators via an Extended Generalized Mittag-Leffler Function, 2022, 6, 2504-3110, 182, 10.3390/fractalfract6040182 | |
8. | Shuang-Shuang Zhou, Saima Rashid, Asia Rauf, Khadija Tul Kubra, Abdullah M. Alsharif, Initial boundary value problems for a multi-term time fractional diffusion equation with generalized fractional derivatives in time, 2021, 6, 2473-6988, 12114, 10.3934/math.2021703 | |
9. | Songkran Pleumpreedaporn, Chanidaporn Pleumpreedaporn, Weerawat Sudsutad, Jutarat Kongson, Chatthai Thaiprayoon, Jehad Alzabut, On a novel impulsive boundary value pantograph problem under Caputo proportional fractional derivative operator with respect to another function, 2022, 7, 2473-6988, 7817, 10.3934/math.2022438 | |
10. | SAIMA RASHID, AASMA KHALID, YELIZ KARACA, YU-MING CHU, REVISITING FEJÉR–HERMITE–HADAMARD TYPE INEQUALITIES IN FRACTAL DOMAIN AND APPLICATIONS, 2022, 30, 0218-348X, 10.1142/S0218348X22401338 | |
11. | Bounmy Khaminsou, Weerawat Sudsutad, Jutarat Kongson, Somsiri Nontasawatsri, Adirek Vajrapatkul, Chatthai Thaiprayoon, Investigation of Caputo proportional fractional integro-differential equation with mixed nonlocal conditions with respect to another function, 2022, 7, 2473-6988, 9549, 10.3934/math.2022531 | |
12. | Fuxiang Liu, Jielan Li, Analytical Properties and Hermite–Hadamard Type Inequalities Derived from Multiplicative Generalized Proportional σ-Riemann–Liouville Fractional Integrals, 2025, 17, 2073-8994, 702, 10.3390/sym17050702 |