Research article Special Issues

On some Liouville theorems for $ p $-Laplace type operators

  • Received: 13 November 2024 Revised: 11 July 2025 Accepted: 02 September 2025 Published: 03 December 2025
  • 35A01, 35B53, 35D30, 35F25

  • The aim of this note is to examine Liouville-type theorems for $ p $-Laplacian-type operators. Guided by the Laplacian case, analogous results are established for the $ p $-Laplacian and sums of operators of this type.

    Citation: Michel Chipot, Daniel Hauer. On some Liouville theorems for $ p $-Laplace type operators[J]. Communications in Analysis and Mechanics, 2025, 17(4): 955-970. doi: 10.3934/cam.2025039

    Related Papers:

  • The aim of this note is to examine Liouville-type theorems for $ p $-Laplacian-type operators. Guided by the Laplacian case, analogous results are established for the $ p $-Laplacian and sums of operators of this type.



    加载中


    [1] L. C. Evans, Partial Differential Equations, Volume 19 of Graduate Studies in Mathematics, American Math. Society, Providence, 1998.
    [2] M. H. Protter, H. F. Weinberger, Maximum Principles in Differential Equations, Prentice-Hall, Englewood Cliffs, NJ, 1967.
    [3] H. Brezis, M. Chipot, Y. Xie, Some remarks on Liouville type theorems, In World Scientific Edt., editor, Proceedings of the international conference in nonlinear analysis, 43–65, Hsinchu, Taiwan 2006, 2008.
    [4] A. Grigor'yan, Bounded solutions of the Schrödinger equation on non-compact Riemannian manifolds, J. Sov. Math., 51 (1990), 2340–2349. https://doi.org/10.1007/BF01094993 doi: 10.1007/BF01094993
    [5] A. Grigor'yan, W. Hansen, A Liouville property for Schrödinger operators, Math. Ann., 312 (1998), 659–716. https://doi.org/10.1007/s002080050241 doi: 10.1007/s002080050241
    [6] R. G. Pinsky, A probabilistic approach to a Liouville-type problem for Schrödinger operators, Preprint, 2006.
    [7] P. Baroni, M. Colombo, G. Mingione, Regularity for general functionals with double phase, Calc. Var. Partial Differential Equations, 57 (2018), 48. https://doi.org/10.1007/s00526-018-1332-z doi: 10.1007/s00526-018-1332-z
    [8] P. Marcellini, Regularity and existence of solutions of elliptic equations with $p$, $q$-growth conditions, J. Differential Equations, 90 (1991), 1–30.
    [9] V. Zhikov, On variational problems and nonlinear elliptic equations with nonstandard growth conditions, J. Math. Sci., 173 (2011), 463–570. https://doi.org/10.1007/s10958-011-0260-7 doi: 10.1007/s10958-011-0260-7
    [10] B. Brandolini, F. C. Cîrstea, Anisotropic elliptic equations with gradient-dependent lower order terms and $L^1$ data, Math. Eng., 5 (2023), 1–33. https://doi.org/10.3934/mine.2023073 doi: 10.3934/mine.2023073
    [11] E. N. Dancer, D. Daners, D. Hauer, A Liouville theorem for p-harmonic functions on exterior domains, Positivity, 19 (2015), 577–586. https://doi.org/10.1007/s11117-014-0316-2 doi: 10.1007/s11117-014-0316-2
    [12] E. Mitidieri, S. I. Pohozaev, Towards a unified approach to nonexistence of solutions for a class of differential inequalities, Milan J. Math., 72 (2004), 129–162. https://doi.org/10.1007/s00032-004-0032-7 doi: 10.1007/s00032-004-0032-7
    [13] I. Birindelli, F. Demengel, Some Liouville theorems for the $p$-Laplacian, Proceedings of the 2001 Luminy Conference on Quasilinear Elliptic and Parabolic Equations and System, Electron. J. Differ. Equ. Conf., 8 (2002), 35–46.
    [14] M. Chipot, Elliptic Equations: An Introductory Course, Second edition, Birkhäuser, 2024. https://doi.org/10.1007/978-3-031-54123-0
    [15] Y. Du, Order Structure and Topological Methods in Nonlinear Partial Differential Equations, World Scientific, Taipei, 2006.
    [16] A. Farina, C. Mercuri, M. Willem, A Liouville theorem for the $p$-Laplacian and related questions, Calc. Var. Partial Differential Equations, 58 (2019), 13. https://doi.org/10.1007/s00526-019-1596-y doi: 10.1007/s00526-019-1596-y
    [17] M. Meier, Liouville theorem for nonlinear elliptic equations and systems, Manuscripta Math., 29 (1979), 207–228. https://doi.org/10.1007/BF01303628 doi: 10.1007/BF01303628
    [18] P. Pucci, J. Serrin, The Maximum Principle, volume 73 of Progress in Nonlinear Differential Equations and Their Applications, Birkhäuser, 2007.
    [19] P. Quittner, P. Souplet, Superlinear Parabolic Problems, Blow-up, Global Existence and Steady States, Birkhäuser, 2007.
    [20] Y. Pinchover, A. Tertikas, K. Tintarev, A Liouville-type theorem for the p-laplacian with potential terms, Ann. I. H. Poincaré, 25 (2008), 357–368. https://doi.org/10.1016/j.anihpc.2006.12.004 doi: 10.1016/j.anihpc.2006.12.004
    [21] J. Vétois, A priori estimates for solutions of anisotropic elliptic equations, Nonlinear Anal., 71 (2009), 3881–3905. https://doi.org/10.1016/j.na.2009.02.076 doi: 10.1016/j.na.2009.02.076
    [22] J. Vétois, Strong maximum principles for anisotropic elliptic and parabolic equations, Adv. Nonlinear Stud., 12 (2012), 101–114.
    [23] M. Chipot, Elliptic Equations: An Introductory Course, Birkhäuser, 2009. https://doi.org/10.1007/978-3-7643-9982-5
    [24] D. Kinderlehrer, G. Stampacchia, An Introduction to Variational Inequalities and their Applications, volume 31 of Classic Appl. Math. SIAM, Philadelphia, 2000.
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(65) PDF downloads(11) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog