The aim of this note is to examine Liouville-type theorems for $ p $-Laplacian-type operators. Guided by the Laplacian case, analogous results are established for the $ p $-Laplacian and sums of operators of this type.
Citation: Michel Chipot, Daniel Hauer. On some Liouville theorems for $ p $-Laplace type operators[J]. Communications in Analysis and Mechanics, 2025, 17(4): 955-970. doi: 10.3934/cam.2025039
The aim of this note is to examine Liouville-type theorems for $ p $-Laplacian-type operators. Guided by the Laplacian case, analogous results are established for the $ p $-Laplacian and sums of operators of this type.
| [1] | L. C. Evans, Partial Differential Equations, Volume 19 of Graduate Studies in Mathematics, American Math. Society, Providence, 1998. |
| [2] | M. H. Protter, H. F. Weinberger, Maximum Principles in Differential Equations, Prentice-Hall, Englewood Cliffs, NJ, 1967. |
| [3] | H. Brezis, M. Chipot, Y. Xie, Some remarks on Liouville type theorems, In World Scientific Edt., editor, Proceedings of the international conference in nonlinear analysis, 43–65, Hsinchu, Taiwan 2006, 2008. |
| [4] |
A. Grigor'yan, Bounded solutions of the Schrödinger equation on non-compact Riemannian manifolds, J. Sov. Math., 51 (1990), 2340–2349. https://doi.org/10.1007/BF01094993 doi: 10.1007/BF01094993
|
| [5] |
A. Grigor'yan, W. Hansen, A Liouville property for Schrödinger operators, Math. Ann., 312 (1998), 659–716. https://doi.org/10.1007/s002080050241 doi: 10.1007/s002080050241
|
| [6] | R. G. Pinsky, A probabilistic approach to a Liouville-type problem for Schrödinger operators, Preprint, 2006. |
| [7] |
P. Baroni, M. Colombo, G. Mingione, Regularity for general functionals with double phase, Calc. Var. Partial Differential Equations, 57 (2018), 48. https://doi.org/10.1007/s00526-018-1332-z doi: 10.1007/s00526-018-1332-z
|
| [8] | P. Marcellini, Regularity and existence of solutions of elliptic equations with $p$, $q$-growth conditions, J. Differential Equations, 90 (1991), 1–30. |
| [9] |
V. Zhikov, On variational problems and nonlinear elliptic equations with nonstandard growth conditions, J. Math. Sci., 173 (2011), 463–570. https://doi.org/10.1007/s10958-011-0260-7 doi: 10.1007/s10958-011-0260-7
|
| [10] |
B. Brandolini, F. C. Cîrstea, Anisotropic elliptic equations with gradient-dependent lower order terms and $L^1$ data, Math. Eng., 5 (2023), 1–33. https://doi.org/10.3934/mine.2023073 doi: 10.3934/mine.2023073
|
| [11] |
E. N. Dancer, D. Daners, D. Hauer, A Liouville theorem for p-harmonic functions on exterior domains, Positivity, 19 (2015), 577–586. https://doi.org/10.1007/s11117-014-0316-2 doi: 10.1007/s11117-014-0316-2
|
| [12] |
E. Mitidieri, S. I. Pohozaev, Towards a unified approach to nonexistence of solutions for a class of differential inequalities, Milan J. Math., 72 (2004), 129–162. https://doi.org/10.1007/s00032-004-0032-7 doi: 10.1007/s00032-004-0032-7
|
| [13] | I. Birindelli, F. Demengel, Some Liouville theorems for the $p$-Laplacian, Proceedings of the 2001 Luminy Conference on Quasilinear Elliptic and Parabolic Equations and System, Electron. J. Differ. Equ. Conf., 8 (2002), 35–46. |
| [14] | M. Chipot, Elliptic Equations: An Introductory Course, Second edition, Birkhäuser, 2024. https://doi.org/10.1007/978-3-031-54123-0 |
| [15] | Y. Du, Order Structure and Topological Methods in Nonlinear Partial Differential Equations, World Scientific, Taipei, 2006. |
| [16] |
A. Farina, C. Mercuri, M. Willem, A Liouville theorem for the $p$-Laplacian and related questions, Calc. Var. Partial Differential Equations, 58 (2019), 13. https://doi.org/10.1007/s00526-019-1596-y doi: 10.1007/s00526-019-1596-y
|
| [17] |
M. Meier, Liouville theorem for nonlinear elliptic equations and systems, Manuscripta Math., 29 (1979), 207–228. https://doi.org/10.1007/BF01303628 doi: 10.1007/BF01303628
|
| [18] | P. Pucci, J. Serrin, The Maximum Principle, volume 73 of Progress in Nonlinear Differential Equations and Their Applications, Birkhäuser, 2007. |
| [19] | P. Quittner, P. Souplet, Superlinear Parabolic Problems, Blow-up, Global Existence and Steady States, Birkhäuser, 2007. |
| [20] |
Y. Pinchover, A. Tertikas, K. Tintarev, A Liouville-type theorem for the p-laplacian with potential terms, Ann. I. H. Poincaré, 25 (2008), 357–368. https://doi.org/10.1016/j.anihpc.2006.12.004 doi: 10.1016/j.anihpc.2006.12.004
|
| [21] |
J. Vétois, A priori estimates for solutions of anisotropic elliptic equations, Nonlinear Anal., 71 (2009), 3881–3905. https://doi.org/10.1016/j.na.2009.02.076 doi: 10.1016/j.na.2009.02.076
|
| [22] | J. Vétois, Strong maximum principles for anisotropic elliptic and parabolic equations, Adv. Nonlinear Stud., 12 (2012), 101–114. |
| [23] | M. Chipot, Elliptic Equations: An Introductory Course, Birkhäuser, 2009. https://doi.org/10.1007/978-3-7643-9982-5 |
| [24] | D. Kinderlehrer, G. Stampacchia, An Introduction to Variational Inequalities and their Applications, volume 31 of Classic Appl. Math. SIAM, Philadelphia, 2000. |