Motivated by the study of the possible breakdown of regularity for solutions of the incompressible Navier-Stokes system in the whole three-dimensional space $ {{\mathop{\mathbb R\kern 0pt}\nolimits}}^3 $, we prove that the norm $ \| u\|_{L^\infty_T(B^{\frac 12}_{2\infty})} $ and the quantity $ \sup_{I\subset [0, T[} \frac 1 {\sqrt {|I|} } \int_{I} \|\nabla u(t)\|_{L^2}^2 dt $ are non linearly equivalent. The proofs rely on the Duhamel formula, dyadic localization in the Fourier space, and for one of them, on the energy inequality.
Citation: Jean-Yves Chemin. Non linear equivalence of some scaling invariant norms for solutions of incompressible Navier-Stokes equations[J]. Communications in Analysis and Mechanics, 2025, 17(4): 944-954. doi: 10.3934/cam.2025038
Motivated by the study of the possible breakdown of regularity for solutions of the incompressible Navier-Stokes system in the whole three-dimensional space $ {{\mathop{\mathbb R\kern 0pt}\nolimits}}^3 $, we prove that the norm $ \| u\|_{L^\infty_T(B^{\frac 12}_{2\infty})} $ and the quantity $ \sup_{I\subset [0, T[} \frac 1 {\sqrt {|I|} } \int_{I} \|\nabla u(t)\|_{L^2}^2 dt $ are non linearly equivalent. The proofs rely on the Duhamel formula, dyadic localization in the Fourier space, and for one of them, on the energy inequality.
| [1] |
J. Leray, Sur le mouvement d'un liquide visqueux emplissant l'espace, Acta Math, 63 (1934), 193–248. https://doi.org/10.1007/BF02547354 doi: 10.1007/BF02547354
|
| [2] |
J. Neças, M. Ruszika, V. Šverák, On Leray's self-similar solutions of the Navier-Stokes equations, Acta Math, 176 (1996), 283–294. https://doi.org/10.1007/BF02551584 doi: 10.1007/BF02551584
|
| [3] |
L. Eskauriaza, G. Seregin and V. Šverák, $L^{3, \infty}$-solutions of Navier-Stokes equations and backward uniqueness, Uspekhi Mat. Nauk, 58 (2003), 3–44. https://doi.org/10.4213/rm609 doi: 10.4213/rm609
|
| [4] | T. Tao, Quantitative bounds for critically bounded solutions to the Navier-Stokes equations, Proceedings of Symposia in Pure Mathematics, 104, American Mathematical Society, Providence, RI, 2021,149–193. https://doi.org/10.1090/pspum/104/01874 |
| [5] |
T. Barker, C. Prange, Mild regularity breaking for the Navier–Stokes Equations, J. Math. Fluid Mech., 23 (2021), 66. https://doi.org/10.1007/s00021-021-00591-1 doi: 10.1007/s00021-021-00591-1
|
| [6] | H. Bahouri, J.-Y. Chemin, R. Danchin, Fourier Analysis and Nonlinear Partial Differential Equations: Grundlehren der mathematischen Wissenschaften, Springer-Verlag Berlin Heidelberg, 2011. https://doi.org/10.1007/978-3-642-16830-7 |
| [7] |
T. Barker, G. Seregin, V. Šverák, On stability of weak Navier-Stokes solutions with large $L^{3, \infty}$ initial data, Commun. Partial Differ. Equ, 43 (2018), 628–-651. https://doi.org/10.1080/03605302.2018.1449219 doi: 10.1080/03605302.2018.1449219
|
| [8] | G. Seregin, V. Šverák, Regularity criteria for Navier-Stokes solutions, Handbook of mathematical analysis in mechanics of viscous fluids, 2018,829–867. https://doi.org/10.1007/978-3-319-13344-7_16 |
| [9] | E. Poulon, Étude qualitative d'éventuelles singularités dans les équations de Navier-Stokes tridimensionnelles pour un fluide visqueux, Thèse de l'Université Paris 6, 2015. |
| [10] |
G. Seregin, D. Zhou, Regularity of solutions to the Navier-Stokes equations in $B^{-1}_{\infty, \infty}$, J. Math. Sci, 244 (2020), 1003–1009. https://doi.org/10.1007/s10958-020-04670-y doi: 10.1007/s10958-020-04670-y
|
| [11] | J.-Y. Chemin, Le système de Navier-Stokes incompressible soixante dix ans après Jean Leray, Séminaire et Congrès, 9 (2004), 99–123. |