This paper deals with the null controllability of a coupled nonlinear parabolic system. The coefficients of the system operators depend on the states, and the control acts through the first equation. To solve the control problem of the linearized system, we use maximum regularity results in the spaces $ L^{q}(0, T, L^{p}(\Omega)) $, and we use Liusternick's inverse function theorem for the nonlinear controllability problem. In addition, as an appendix, we prove the well-posedness of the system.
Citation: Jéssica Manghi, Juan Límaco, Mauro A. Rincon. Null controllability of a coupled nonlinear parabolic system[J]. Communications in Analysis and Mechanics, 2025, 17(4): 971-984. doi: 10.3934/cam.2025040
This paper deals with the null controllability of a coupled nonlinear parabolic system. The coefficients of the system operators depend on the states, and the control acts through the first equation. To solve the control problem of the linearized system, we use maximum regularity results in the spaces $ L^{q}(0, T, L^{p}(\Omega)) $, and we use Liusternick's inverse function theorem for the nonlinear controllability problem. In addition, as an appendix, we prove the well-posedness of the system.
| [1] |
J. Gawinecki, P. Kacprzyk, P. Bar-Yoseph, Initial-boundary value problem for some coupled nonlinear parabolic system of partial differential equations appearing in thermodiffusion in solid body, Z. Anal. Anwend, 19 (2000), 121–130. https://doi.org/10.4171/zaa/942 doi: 10.4171/zaa/942
|
| [2] |
J. Manghi, P. P. Carvalho, M. A. Rincon, J. L. Ferrel, Controllability, decay of solution and numerical simulations for a quasi-linear equation, Evol. Equ. Control. Theory, 14 (2025), 1094–1127. https://doi.org/10.3934/eect.2025027 doi: 10.3934/eect.2025027
|
| [3] |
E. Fernández-Cara, J. Límaco, I. Marín-Gayte. Theoretical and numerical local null controllability of a quasilinear parabolic equation in dimensions 2 and 3, J. Franklin Inst., 358 (2021), 2846–2871. https://doi.org/10.1016/j.jfranklin.2021.01.031 doi: 10.1016/j.jfranklin.2021.01.031
|
| [4] |
E. Fernández-Cara, D. Nina-Huaman, M. R. Nuñez-Chavez, F. B. Vieira, On the theoretical and numerical control of a one-dimensional nonlinear parabolic partial differential equation, J. Optim. Theory Appl., 175 (2017), 652–682. https://doi.org/10.1007/s10957-017-1190-4 doi: 10.1007/s10957-017-1190-4
|
| [5] |
H. R. Clark, E. Fernández-Cara, J. Límaco, L. A. Medeiros, Theoretical and numerical local null controllability for a parabolic system with local and nonlocal nonlinearities, Appl. Math. Comput., 223 (2013), 483–505. https://doi.org/10.1016/j.amc.2013.08.035 doi: 10.1016/j.amc.2013.08.035
|
| [6] |
P. P. de Carvalho, J. Límaco, D. Menezes, Y. Thamstenet, Local null controllability of a class of non-Newtonian incompressible viscous fluids, Evol. Equ. Control. Theory, 11 (2022), 1251–1283. https://doi.org/10.3934/eect.2021043 doi: 10.3934/eect.2021043
|
| [7] |
E. Fernández-Cara, J. Límaco, Y. Thamsten, D. Menezes, Local null controllability of a quasi-linear system and related numerical experiments, ESAIM: Control, Optimisation and Calculus of Variations, 29 (2023), 27. https://doi.org/10.1051/cocv/2023009 doi: 10.1051/cocv/2023009
|
| [8] |
A. Doubova, E. Fernández-Cara, M. González-Burgos, E. Zuazua, On the controllability of parabolic systems with a nonlinear term involving the state and the gradient, SIAM J. Control Optim., 41 (2002), 798–819. https://doi.org/10.1137/S0363012901386465 doi: 10.1137/S0363012901386465
|
| [9] |
C. Fabre, J.-P. Puel, E. Zuazua, Approximate controllability of the semilinear heat equation, Proc. R. Soc. Edinburg, 125 (1995), 31–61. https://doi.org/10.1017/S0308210500030742 doi: 10.1017/S0308210500030742
|
| [10] |
H. Fattorini, D. L. Russell, Uniform bounds on biorthogonal functions for real exponentials with an application to the control theory of parabolic equations, Quart. Appl. Math., 32 (1974), 45–69. https://doi.org/10.1090/qam/510972 doi: 10.1090/qam/510972
|
| [11] |
X. Liu, X. Zhang, Local controllability of multidimensional quasi-linear parabolic equations, SIAM J. Control Optim., 50 (2012), 2046-–2064. https://doi.org/10.1137/110851808 doi: 10.1137/110851808
|
| [12] |
J. Zhao, Z. H. Liu, Y. J. Liu, Approximate controllability of non-autonomous second-order evolution hemivariational inequalities with nonlocal conditions, Appl. Anal., 102 (2023), 23–37. https://doi.org/10.1080/00036811.2021.1942857 doi: 10.1080/00036811.2021.1942857
|
| [13] | A. Bensoussan, J. Frehse, $C^\alpha-$regularity results for quasilinear parabolic systems Commentationes Mathematicae Universitatis Carolinae, 31 (1990), 453–474. |
| [14] | G. M. Lieberman, Second Order Parabolic Equations, World Scientific, 1996. https://doi.org/10.1142/3302 |
| [15] | L. Hörmander, The Analysis of Linear Partial Differential Operators Ⅰ: Distribution Theory and Fourier Analysis, Springer Berlin Heidelberg, 1983. https://doi.org/10.1007/978-3-642-61497-2 |
| [16] | J. L. Lions, Contrôlabilité Exacte, Perturbations et Stabilisation de Systémes Distribués, 1988. |
| [17] | Z. Wu, J. Yin, C. Wang, Elliptic & Parabolic Equations, World Scientific, 2006. |
| [18] | A. V. Fursikov, O. Yu Imanuvilov, Controllability of Evolution Equations, Lecture Notes Series, Vol. 34, Seoul National University, Research Institute of Mathematics, Global Analysis Research Center, 1996. |