Research article Special Issues

Null controllability of a coupled nonlinear parabolic system

  • Published: 12 December 2025
  • 35k59; 93B05; 35D35

  • This paper deals with the null controllability of a coupled nonlinear parabolic system. The coefficients of the system operators depend on the states, and the control acts through the first equation. To solve the control problem of the linearized system, we use maximum regularity results in the spaces $ L^{q}(0, T, L^{p}(\Omega)) $, and we use Liusternick's inverse function theorem for the nonlinear controllability problem. In addition, as an appendix, we prove the well-posedness of the system.

    Citation: Jéssica Manghi, Juan Límaco, Mauro A. Rincon. Null controllability of a coupled nonlinear parabolic system[J]. Communications in Analysis and Mechanics, 2025, 17(4): 971-984. doi: 10.3934/cam.2025040

    Related Papers:

  • This paper deals with the null controllability of a coupled nonlinear parabolic system. The coefficients of the system operators depend on the states, and the control acts through the first equation. To solve the control problem of the linearized system, we use maximum regularity results in the spaces $ L^{q}(0, T, L^{p}(\Omega)) $, and we use Liusternick's inverse function theorem for the nonlinear controllability problem. In addition, as an appendix, we prove the well-posedness of the system.



    加载中


    [1] J. Gawinecki, P. Kacprzyk, P. Bar-Yoseph, Initial-boundary value problem for some coupled nonlinear parabolic system of partial differential equations appearing in thermodiffusion in solid body, Z. Anal. Anwend, 19 (2000), 121–130. https://doi.org/10.4171/zaa/942 doi: 10.4171/zaa/942
    [2] J. Manghi, P. P. Carvalho, M. A. Rincon, J. L. Ferrel, Controllability, decay of solution and numerical simulations for a quasi-linear equation, Evol. Equ. Control. Theory, 14 (2025), 1094–1127. https://doi.org/10.3934/eect.2025027 doi: 10.3934/eect.2025027
    [3] E. Fernández-Cara, J. Límaco, I. Marín-Gayte. Theoretical and numerical local null controllability of a quasilinear parabolic equation in dimensions 2 and 3, J. Franklin Inst., 358 (2021), 2846–2871. https://doi.org/10.1016/j.jfranklin.2021.01.031 doi: 10.1016/j.jfranklin.2021.01.031
    [4] E. Fernández-Cara, D. Nina-Huaman, M. R. Nuñez-Chavez, F. B. Vieira, On the theoretical and numerical control of a one-dimensional nonlinear parabolic partial differential equation, J. Optim. Theory Appl., 175 (2017), 652–682. https://doi.org/10.1007/s10957-017-1190-4 doi: 10.1007/s10957-017-1190-4
    [5] H. R. Clark, E. Fernández-Cara, J. Límaco, L. A. Medeiros, Theoretical and numerical local null controllability for a parabolic system with local and nonlocal nonlinearities, Appl. Math. Comput., 223 (2013), 483–505. https://doi.org/10.1016/j.amc.2013.08.035 doi: 10.1016/j.amc.2013.08.035
    [6] P. P. de Carvalho, J. Límaco, D. Menezes, Y. Thamstenet, Local null controllability of a class of non-Newtonian incompressible viscous fluids, Evol. Equ. Control. Theory, 11 (2022), 1251–1283. https://doi.org/10.3934/eect.2021043 doi: 10.3934/eect.2021043
    [7] E. Fernández-Cara, J. Límaco, Y. Thamsten, D. Menezes, Local null controllability of a quasi-linear system and related numerical experiments, ESAIM: Control, Optimisation and Calculus of Variations, 29 (2023), 27. https://doi.org/10.1051/cocv/2023009 doi: 10.1051/cocv/2023009
    [8] A. Doubova, E. Fernández-Cara, M. González-Burgos, E. Zuazua, On the controllability of parabolic systems with a nonlinear term involving the state and the gradient, SIAM J. Control Optim., 41 (2002), 798–819. https://doi.org/10.1137/S0363012901386465 doi: 10.1137/S0363012901386465
    [9] C. Fabre, J.-P. Puel, E. Zuazua, Approximate controllability of the semilinear heat equation, Proc. R. Soc. Edinburg, 125 (1995), 31–61. https://doi.org/10.1017/S0308210500030742 doi: 10.1017/S0308210500030742
    [10] H. Fattorini, D. L. Russell, Uniform bounds on biorthogonal functions for real exponentials with an application to the control theory of parabolic equations, Quart. Appl. Math., 32 (1974), 45–69. https://doi.org/10.1090/qam/510972 doi: 10.1090/qam/510972
    [11] X. Liu, X. Zhang, Local controllability of multidimensional quasi-linear parabolic equations, SIAM J. Control Optim., 50 (2012), 2046-–2064. https://doi.org/10.1137/110851808 doi: 10.1137/110851808
    [12] J. Zhao, Z. H. Liu, Y. J. Liu, Approximate controllability of non-autonomous second-order evolution hemivariational inequalities with nonlocal conditions, Appl. Anal., 102 (2023), 23–37. https://doi.org/10.1080/00036811.2021.1942857 doi: 10.1080/00036811.2021.1942857
    [13] A. Bensoussan, J. Frehse, $C^\alpha-$regularity results for quasilinear parabolic systems Commentationes Mathematicae Universitatis Carolinae, 31 (1990), 453–474.
    [14] G. M. Lieberman, Second Order Parabolic Equations, World Scientific, 1996. https://doi.org/10.1142/3302
    [15] L. Hörmander, The Analysis of Linear Partial Differential Operators Ⅰ: Distribution Theory and Fourier Analysis, Springer Berlin Heidelberg, 1983. https://doi.org/10.1007/978-3-642-61497-2
    [16] J. L. Lions, Contrôlabilité Exacte, Perturbations et Stabilisation de Systémes Distribués, 1988.
    [17] Z. Wu, J. Yin, C. Wang, Elliptic & Parabolic Equations, World Scientific, 2006.
    [18] A. V. Fursikov, O. Yu Imanuvilov, Controllability of Evolution Equations, Lecture Notes Series, Vol. 34, Seoul National University, Research Institute of Mathematics, Global Analysis Research Center, 1996.
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(209) PDF downloads(38) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog