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1. Introduction

Let Q ¢ RY, N < 3, be an open bounded with a boundary dQ in the class C:, T >0, 0 =
Qx(0,7T) and X = 90Q X (0, T). Consider the following thermodiffusion system:

yi— V@, 2Vy) + f(y,2) =wx, in 0O,
22—V, 2)V2) +g(y,2) =0 in Q,
y=z=0 on X,
¥(0) = yo, 2(0) = 2o, on Q,

where y represents the temperature of a body, z is its chemical potential, v is the control function that
acts on the first equation, and a(y, z) and b(y, z) are the diffusion coefficients (in this case see [1]).
Additionally, the reaction terms f, g depend on the state, which turns (1.1) into a semilinear parabolic
system. Consider yo,zo € W,”(Q) with p > 3, a,b € C2(R?) with 0 < ap < a(r, s), 0 < by < b(r, s),
f>g € Co(R?) with g,(0,0) # 0.

In this work, we will prove the existence of a local null control for system (1.1) when the initial data
Y0, 20 € Wé’p (Q) with 3 < p < 6, thereby applying Liusternick’s right inverse function theorem.

(1.1)
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This work is a natural extension for a equation such as the following:

yi = V(ay)Vy) + f(y) =vx, in 0,
y=0 on X, (1.2)
¥(0) = yo, on Q,

with y, € Wé’p (Q2), 3 < p <6 (recently proved by Manghi et al. in [2]). Then, this work improves
the results for equation (1.2) proved by Ferndndez-Cara et al. in [3], where the authors considered
Hé (Q) N H3(Q), since Hé Q) NHQ) — Wé’p (€). Such an improvement for the initial data is due to
differences in the approach.

In [3], Fernandez-Cara et al. studied the regularity of the associated linear system through additional
estimates, where the authors used derivatives for this system, which increased the regularity of the initial
data. In our work and in [2], the regularity of the linear system is obtained using results that invoke
maximum regularity in spaces L7(0, T'; L”(Q2)), without using derivatives on this system. Moreover, this
kind of system has applications in Physics, Engineering and Biology.

For the controllability of system (1.2) with only one equation in the one-dimensional case and data
in Hé (Q) N H*(Q), we can refer to [4]. In the case of controllability in dimension 2 and 3 and initial
data in Hé (Q) N H*(Q), we can refer to [3]. For the controllability of system (1.1) with non-local terms,

that is, when a = a( f v, f z), b= b( f v, f z), we can refer to [5]. Lastly, for the case of (1.1) with
Q Q Q Q

only one equation and

a = a(y, Vy), we can refer to [6,7]. Both system (1.1) with these non-local terms and system (1.2) can
be studied following ideas from our work, thereby considering initial data in spaces with less regularity.

In general, there is a large bibliography for the controllability of quasilinear and semilinear parabolic
systems. Among them, we can refer to [§—12]. The following bibliographies were useful for the
well-posedness of (1.1) (proved in the appendix): [6, 13—17].

2. Controllability of the linearized system

In this section, we will study the controllability of the following linearized system:

yr = a(0,0)Ay + £.(0,0)y + £(0,0)z = vy, + £ in Q,

7 — b(0,0)Az + g,(0,0)y + g,(0,0)z = k in Q,
2.1
y=z=0, on 2,
¥(0) = y0,2(0) = 2o on Q,
which can be rewritten in the following equivalent form:
yi—aAy+Ay+Az=vy,+h in Q,
—BAz+ Biy+ Byz=k in ,
zt = PAzZ+ By + Byz 0 22)
y=2z=0 on X,
¥(0) = yo,2(0) = 2o on Q.
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The adjoint system of (2.2) is given by the following:
—p—alp+ Ao+ By =F, in Q,
Y =AY + Arp + oy = F, in Q,
o= l// =0 on Z,
o(T) = ¢" y(T) =y’ on Q
We will prove a Carleman inequality for System (2.3). For this, we need to establish the function «
given by the following lemma.

(2.3)

Eemma 2.1. There is a function ay € C*(Q) which satisfies ag > 0in Q, ay = 0 in OQ and [Vao| > 0 in
Q- wo.

The proof of this lemma can be found in [18].

Let m € C*([0,T]) with m(t) > T*/8 in [0, T/2] and m(f) = «(T — ) in [T/2,T]. We define the
following:
Aag(x) RA _ e/la/o

sa(x, 1) = i)

m(t) m(t)  mt)

P(x,1) =

with R > [|alle + In(2) , 1 > 0.
Next, we will use the following notation to the operator I(s, 4, z):

I(s,4,2) = f e (s0)” (Il + |AZP) + A258IVz + A% (5¢)*[2’]
0

Now, let us consider the following Carleman Inequality, which was proved in [18].

Proposition 2.2. Consider F, F; € Lz(Q), and goT, ¢T € LZ(Q). If By # 0, then there exist constants
Ao = (Q,w), Cy = Co(Q,w) and Sy = So(Q,w, a,B,Cy, 1/By) such that the solution of (2.3) satisfies
the following:

T
16,40+ 16.4.0) < Co [ eGP PP+ 1RPL+ [ [ 22k s01er)
0 w

o
forall A > Ay, s > so(T + T?).

Define, @; = min @(x) and @, = max a@(x).
xeQ xeQ
From the definition of R, we deduce that 2a; > a5; thus,

sa | sa sap 2say

en <em<em <enm

We will denote p, = em?,
Note that, from the hypotheses, we have B; = g,(0,0) # 0.

Theorem 2.3. (Controllability of the linear system) Consider 3 < p < 6 and p < g < oo. Let us assume
that the functions h, k satisfy psh, psk € LY(0, T, L?(Q)). Then, (2.3) is null controllable at time T > 0,
that is, for each vy, zp € W(’)p (Q), there exist null control v € L*(w % (0, T)) and associated states that
satisfy the following:
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[O19Y1 90,7, w2r@) + 10192 90,7, w2 ) + [019Y|c0 0,7, W1 02))
+ [019zlcoqo.rrwrr @y + 1P19Y)ilrao.r,00@) + 1(P192)il9c0,7.00 2 (2.4)
< |pshlrso.r.r@) + looklLso1.0r@) + |y0|W$,p(Q) + |Z0|Wg,p(g)-
Next, we will prove three lemmas that will be used to prove Theorem 2.3.

Lemma 2.4. Under the conditions of the Theorem 2.3, there exist v € L*(w x (0,7)), (v,2), and an
associated solution of (2.2) that satisfies the following:

T
f 3y + pglePdxdt + f f P < c(lyol® + lzol” + f 3l + 3k,
0 0 Vo Qg

Proof. Let us define Py = {(¢1,¢) € [CHO)* : ¢1 = ¢, = 0 in (0,T) x Q). Let w C w; and
Xw, € Cy(wy)suchthat 0 <y, <1, x,, =1inw. Consider the bilinear form as follows:

0((¢1,2), (@1, P2)) = fpgzLT(%,wz)LT(sbl,@z)dxdt
0
T
+ f P2 L1, @) LB, @o)dlxdt + f f Yoo Brdxdt
0 0 w

where
Li(¢1,92) = =1, — aAp; + Ajp) + Bigs,

Ly (@1, 92) = =2 — BApy + Arp1 + Brps.

From Carleman’s inequality, we conclude that 6(-, -) is an inner product in Py. Thus, P is considered
as the completion of Py with the inner product 6(-, -), that is,

— piC)
p=P

Additionally, define S : P — R by the foillowing:

S (@1, 92) = (¥0, ¢1(0)) + (20, ¥2(0)) + f he1 + koo dxdt
o

Using Carleman’s inequality, it is proven that S is bounded, and since 6 is coercive in P with the
inner product generated by 6, then from Lax-Milgram theorem, it can be verified that there exists a
unique ¢ = (g1, ¢;) € P solution of

0(p,w) =S(w), YweP. (2.5

Define y = —p3°Li¢, 2 = —py L@, ¥ = —p5°¢1 and v = ¥ |g.7yxw; from (2.5) with w = ¢, we obtain
the following:

T
f PP + pgleldxdr + f f PP < c(lyol? + lzol”® + f p3IP + p3IkP’)
o 0 Yo 0

O
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Lemma 2.5. The control function v and the associated state (y,z) have the following regularity:
P15V € LZ(O’ T’ Hz(w)): (plsv)t € LZ(Q)) P15V € CO(O’ Ta Hl(w))

Proof. 1t is verified that

_ —sa L _ _
P15V = —p1sp7opr = —em2 = —(p_1) "1 = —p_ 1.
Consequently,
(p157) + @A(py59) = [(07)): + @A(p-]p1 — p~1 (1 + ahpy) — 2aV(p; )V,
= piLio — AipZi@1 — BipZiex — (p2Dwe1 — @A(p_ g1 — 2V (p2 )V,
=Lh+L+L+1+ 15+ I

Additionally, we have the following inequality:

11| = lpZip3y1 = prlyl < cpshyl
Thus, |I,] € L*(Q).
Applying Calerman’s inequality to systems, one has the following:
Li¢ = —p3y and Lyp = —pyz.
Additionally, we have the following:
f P (V@I + IVeal’) + p32 (1P + lpal) < € f P3P + pglzlPdrdx + f palv?
Q 0 wx(0,T)

From the last inequality, we obtain the following:

L] < cpZilei] < cp3'lenl
5] < cpZileal < cp3'lenl
1Ll < cl(pZ D1l < cp5 'l
15| < A=D1l < cp3'lenl
el < cIV(pZ)Veil < co7' [Vepul.
Then, I, I, 14, Is and I belongs to L*(0).
Furthermore, p;5v(T) = —pj(pl(T) =0.
From a parabolic regularity, we have psv € L*0,T, Hé(Q) N HX(Q)) , (p15V); € L*(0), P15V €

’(0,T, Hy(Q)) and then p,sv € L*(0, T, H*(w)), (p15v); € L*(Q), p1sv € *(0, T, H' (w)).
Following the same ideas as Propositions 2.5 and 2.6 in [3], we have the following Lemma.

Lemma 2.6. Under the hypotheses of Theorem 2.3, the associated state (y, z) with the control function v
of (2.2) satisfies the following:

sup f pi(yl* + 121%) + p3(VyI* + V2l )dx + f p3(vi + 1zl + 1Ay + [Az*)dxdt
[0,71JQ 0

< c(llyoll® + llzoll* + f P2(hI? + |kI?)dxdr).
0
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Proof of Theorem 2.3
saj 19
Consider p19 = em@m(t)? . From (2.2), we have the following:

P19Y): — aA(P19y) + A1(D19Y) = P19VXw + Proh + Proy — Axp19Z = g1

. X X . . X (2.6)
(P192)r — BA(D192) + B2(D192) = Prok + Pro;2 — Biproy = &>
Let’s analyze g and g,.
Indeed, from Lemma 2.5, we have that p;5v € CO(O, T,H 1(a))), where
prov € C°0, T, H'(w)) < LU0, T, L"(Q)) (2.7)

forl<g<ocand1 < p<6.
Additionally, from Lemma 2.6, we have psy, p7z € L¥(0, T, Hy(Q)).
As |019] < clo1s| < cilp7| and |019] < c|p7], then we obtain the following:

Py, Aoproz, Proiz, Bipioy € L0, T, Hy(Q)) — LU0, T, LP(Q)),

forl <g<oo,1<p<6.Thus, g,g € LY0,T,LP(Q))for1 <g<oo,1<p<6.
Therefore, from the maximum regularity results for parabolic equations, one has:

Proy, Proz € LU0, T, WP (Q))
and
019Y)1> (P192): € L0, T, LP(QY)),
for g, p determined by the hypothesis psh, psk € L0, T, LP(Q)).
Furthermore,
1019190, 7, w2r @) + 101920, w20 ) + [P 19Y)il 190,710 + 1(P192)i|1900,7,00(2)
< cllgilaor.r@) + 182leso @) + Yolyirq) + 120lytrq)-
If we consider the hypothesis 3 < p < g < oo, from Proposition 4.1 in the appendix, we have that
P19y, Proz € CO(O, T, whr (Q)). However, to study the nonlinear problem, we will need the following

immersion:
WP(Q) — L¥(Q),

which is valid for p > 3. Then, we complete the proof of the theorem. O
3. Nonlinear Problem

We can reduce the control problem associated with the nonlinear system (1.1) by solving the
following abstract equation:
H(y’Z’ V) = (0’ anO’ZO)a (31)

where H : Y — Z is a map between two Banach spaces, which are appropriate spaces with conveniently
chosen weights. To solve problem (3.1), we will use the right inverse theorem , namely Liusternik’s
Theorem.
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Theorem 3.1. Let Y and Z be Banach spaces, B, be an open ball centered at the origin in Y, and
consider a C' mapping H : B,(0) C Y — Z. Assume that the derivative of H at the origin, H'(0) : Y — Z
is onto and set &y := H(0). Then, there exists constant € > 0, k > 0 and a mapping W : B{(&)) C Z — Y,
with the subsequent properties holding for each & € B(&)):

a) W(e) € B,;

b) HW(e)) = &; and

¢) [IW(elly < «lig = HO)I..

Considering 3 < p < 6 and p < g < oo, we define the spaces of functions with weights by Y, F, Z as
follows:

Y ={(0,z,v) : v € LAwx (0,T)),p7v € L*(w % (0,T)), p3h, psk € L0, T, LP(Q)) with h = y, —
a(0, 0)Ay+£,(0, 0)y+£,(0, 0)z—x oV . k = z,—b(0,0)Az+g,(0, 0)y+£,(0, 0)z , p1oy, P10z € L1(0, T, WP (Q)),
(D199)s» (Pr92); € L0, T, LP(Q), ¥(0), 2(0) € W, P(Q), y;, = 0,z, = O}, with the norm

v, 2, WIly = lle7vllzwsxo.1y) + leshllzao,r.0r@) + o3kl Lao,7,00@) + 1019190, 7. w20 (2))
+ 0192l a0, 7. w202 + 1P 19Y)ellaco,r,00 ) + 1P192)dllLa(0.7,00(2))

+ |y(0)|W$’p(Q) + |Z(O)|W$,F(Q) ’

F ={g:psg € L0, T, L(2))} with the norm ||g||r = llo38llre0.7.r @) » and we consider the product
space Z = F X F x Wé’p (Q) x W(;’p (Q) with the norm

G s 0, 20)llz = WAl + IlLr =+ Ivolly oy + 2oy -

We define the application H : Y — Z by the following:

Hy,z,v) = (= V- (@, V) + f(y,2) = Wz — V - (b(y, 2)V2) + g(1,2), ¥(0), 2(0))
= (Hl (y’ <, V)’ HZ(y’ <y V)9 H3(Y, 2y V)9 H4(Y, 2y V))

Remark 1: In the definition of the space Y, the conditions in p3h, psk, y(0), z(0), y, and z, make the
elements (y, z, v) of the space Y have the same regularity as the pair state-control (y, z, v) of the linear
system from Theorem 2.3 , which verify the estimate (2.4).

Theorem 3.2. If a, b, f, g satisfy the hypotheses given in the introduction, then there exists € > 0 such
that if

”(yOa ZO)llwéJ’(Q)Xwévl’(Q) <eE,
then there exists a solution (y, z) of the nonlinear system (1.1) which satisfies y(T) = 0, z(T) = 0.

Proof. To prove Theorem 3.2, we will use Theorem 3.1 to prove that the abstract equation (3.1) has a
solution. However, to do this, we need to prove the following three lemmas.

Lemma 3.3. Let H : Y — Z be the application defined above. Then, H is well defined and continuous.
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Proof. We will prove that H,(y, z,v) € F. First, we have the following:
T
\Hi(y, 2, V)l = f 3 = V - (@(y, 2) + (0 2) = Wolir,
0
T
S C( f |p3(yl‘ - a(()’ O)Ay + f;’(o’ O)y + f&‘(o’ O)Z - VleZ/)(Q))
0

+ fo sV - (aty. ) — a0, DV, + fo oot 1.
=L +5L+1
Using the definition of the space Y, one has the following:
I <1z, V)lly-

Additionally, we have the following:

T
L= j; l03((ar (3 DIV + a5y, )VZVY) + (a(r,2) = a0, DAY,

T T T

<o f 3 IVYPIL ) + f o3IV, ) + f Io3(y! + DAY, )
0 0 0

= K] + K2 + K3

Since 2a; > a@,, we have the following:

A “2s@) 35
losp ™| = le* e m? |

(3.2)

s(ap—2ay) -35
< e m m 2 | S C.

Thus, from (2.4), the immersion W'7(Q) < L=(Q) is valid for n = 2 and 3, p > 3 and from (3.2),
we have the following:

T a
Ki<e [ ([ sty
Q

T 4
=c f ( f 03513) 119V ) P16V )
0 Q
T
< [ DuTIL Pl
0
T
<o f 15951 193
0

T
A A
SC3f |P19)’|Wz,p(g)|P19)’|W1,p(Q)
0

N q A q
S C3 |p19ylc()(0’T’Wl,p(Q)) |p19y|Lq(0’T’W2,p(Q))

- - 2
q q q
< C4(|,03h|Lq(O’T’U(Q)) + |p0k|Lq(0’T’U)(Q)) + |yO|W3,P(Q) + |Z0|Wé,p(Q)) .
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The analysis of K, is similar. Let’s analyze K3 as follows:

q

T 1
K3l < c f ( f P51 + [217)IAx)

0 Q
T q
< f o f WPIAYP + f iy’
0 Q Q
T

<c f PIVIE + 12DIAV,
0
T
< Cf (03919) (1P1oYIE% + 1P192l ) Pr1oAVIY )
0

T
< [ 0Ty + Pl o) Pl )
0

A q N q A
< C(|Pl9Y|Co(O’T,W1.p(Q)) + |p19Z|CO(O’T’W1.p(Q)))(|p19y|L‘1(O,T,W2~1’(Q)))-

From and Remark 1, it follows that

- - 2
q q q q
ksl < C(|p3h|m<0,T,U(9)) ookl oo 7.0 ) + |y0|wé'1’(g) + |ZO|W(;’1J(Q)) :

Lemma 3.4. The application H : Y — Z is continuously differentiable.
Proof. We can write H in the following form:
H(y,z,v) = Hi(y,z,v) + Ha(y, 2, V),

where
7_-[1 (ya Z, V) = ()’z — VXw> > )’(O)a Z(O))7

and
7’{2()7, e V) = (_V : (a(y’ Z)V)’) + f(y’ Z)’ -V. (b(y’ Z)VZ) + g(y’ Z)’ O’ 0)

As H,(y, z,v) is linear, then H is continuously differentiable. Then, it will be enough to analyze
H(y, z,v). For (y, z,v), (¥,Z, V) belonging to Y and € > 0, one has the following:

1 1
E[Wz((y, V) + €y, Z,7) — Ha(y,z,v)] = Z(—V(a(y + €y, 2+ e)V(y + €)) — a(y, 2)Vy))
b0+ .2+ )~ [0, D), Vb + 65,2+ Vez + €D
1
- b(y,2)Vz) + E(g(y +€y,z+€2) - g(3,2)),0,0).

The linear application DgH>(y, z, v) € L(Y, Z) is defined by the following:

DGWZ(% e V)()_), Z’ ‘_}) = (_V(ay(y’ Z))_)Vy + aZ(y7 Z)ZV)’ + a(.y’ Z)V)_)) + f;i)_) + ‘fZZ’
= V- (by(y,2)yVz + b(y,2)ZVz + b(y,2)VZ) + g,y + 8.2, 0, 0).
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Using similar arguments as in Lemma 3.3, we can prove that

L0204 €52, 7))~ Fh )
strongly converges in Z for the operator DgH,. Thus, H, is G-differentiable and
H; = D6H,.
Therefore, H is G-differentiable and
H'(y,z,v) = Hi + DgH,.
Additionally, using Lemma 3.3 and Lebesgue’s dominated convergence theorem, it can be proven that
DH Y — L(y,2)
(3.3)
»,z,v) = DH(y,z,v) = H'(y,2,v)

is continuous with the topologies of Y and L(Y, Z). Thus, H is F-differentiable and its derivative is
H'. ]

Lemma 3.5. The application H'(0,0,0) : Y — Z is surjective.

Proof. The proof is a consequence of Theorem 2.3 since the surjectivity of H’(0, 0, 0) is equivalent to
solving the control problem of the linearized system (2.1). O

4. Appendix

Proposition 4.1. Consider 3 < p < g < oo. If u € L0, T, W*’(Q)) and ' € LU0, T, LP(Q)), then
ue C°0, T, W (Q)).

Proof. Consider u a regular function with a compact support contained in Q. Thus, we have the

following:
d d P
_ Yul? = Z(IVul*)?
dtj;zl vl fgdt(l u)

- fQ P((VuP)5 ) (Vuvu)

=p f \VulP~>VuVi/
¢ (4.1)

-p f V(VulP2Vu)u' + f pIVulP 2V - u' -7
Q oQ

= | (p(p = 2)(\Vul"*VuV (u,)u,, + p|Vul">Au)u’
Q

< Cf (p(p = 2IVul”2|D?ul + pIVul” | Aul)lud .
Q
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1

+I = 1,then

p-2

d
d—tfgwuv’ < cl(

SC](

1 1
Since — + —
P P

(Vuv”)ﬁ)%z( fg D2l f W)’

Q
-2

V 4 pT ’

[Vul |M|W2’1’(Q)|u |LP(Q)-

5— 5

p—2

! L > < 1, one has the following:

1
Integrating in [0, 7], as — + — + — = 1 and using that
q

BN

q-2

T P2 4 42
2
f Vu(r) < f VuO) + e f ( f Val?) ") lulgao.rwerc) 1 ooz oy
Q Q 0 Q

q-2

p
+ cululy o 7 w1 Moz w20 @) - 11 190,120 -

<|u
| OlWS’p(Q)

Then, the result follows using density arguments. O

4.1. Well-posedness
Theorem 4.2. Consider y,, 7y € H(])(Q) N H*(Q); there exists € > 0 sufficiently small such that if

olms) + l20lm30) < €,

then (1.1) has a unique strong solution of the following system:

yi = V(a(y,2Vy) + f(0,2) =0 in Qx(0,7),
22— VOO, 2V2) +g(y,2) =0 in Qx(0,7T),
y=z=0 on %,

¥(0) = yo,2(0) = zo.

4.2)

Proof of theorem
Let (w;); be a special basis of Hé(Q), where —Aw; = Aw; and V,, = [wy, ..., w,] 1s the space generated
by the first m functions w;. Consider the approximate problem:

Then y,,(t) = Z gim(Ow;, and z,,,(¢) = Z him(t)w; solves the following system:

i=1 i=1

3ps 01) = (V@O 20) VYD) + (f Qs Zn)s ) = 0, in w €V,
(@ @) = (VOO 20)VZ)D) + (§Oms 2), @) =0, in @€V,
¥in(0) = You = Yo in H(Q) N Hy(),
z2n(0) = Zom = 20 in H(Q) N Hy(€),

4.3)
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Consider w = —Ay,, and ® = —Az,, in (4.11). Then, we have

1d .
EE(Wy’”lz + [Vzul?) + min{ag, bo}(1Ayml* + 1Azl) + BUVYWI* + Vzl)

4.4)
< ki(1Aynl +182,%) + ko (1AZallAyml* + 1Ayl AZ) + 291V 2l V)
Now, consider w = —Ay/, and & = —Az,, in (4.11). Then, one has the following:
1 72 712 1d 2 2
_(|Vym| + |VZm| )+ __( a(Ym, Zm)lAyml + b(Ym, Zm)lAZml )
2 2dt’ Jq Q @5)

< 8(AY, P + Az, P) + cs(1Azul* + 1AYul") + c(IVyul* + [VZu).

’

Applying derivatives to (4.2); and (4.2), with respect to ¢ and considering w = —Ay,, and & = —Az,,
in these new equations, we have

1d

id—t(lVyinl2 + V2, %) + min{ao, bo}(1Ay,,I* + |Az,,[*)

(4.6)
< (A, + 1AZ, ) AVl + 1Azl + (Al + 1AZ4])

If we sum (4.4) - (4.6) and denote ¢y = min{ay, by}, then we have the following:

d ’ /
T (Vyal + 192, + f A ) AVl + bGms 2l AZl> + VY, 2 + V2, )
Q

+ Ayl + 1Az + 1AV, P + Az, + Vyul® + V2, %)
4.7)

+ (A7l + Az T = 208wl + Azl + 1Ayl +182,)
+ (A7, + 182, T = es(1Aval + 1Azl + 1Ayl +182,P)} < 0.
Proceeding in a standard way and using
193,00 + 92,0 < c(lAyol* +1Az0* + IyolslAyol + lzolsalAzol + Iyolua + lzols),
from (4.7), for € > 0 sufficiently small with
olms) + l20lm3 ) < €,
we obtain the following estimate:

YVl o,y + 12l oo,y + |)’:n|L°°(0,T,H5) + |Z;n|L°°(O,T,H(')) 48)

[Ymlre©.7.02) + 1Zmlie©.1.02) + Iy;nle(O,T,Hz) + |Z;/n|L2(O,T,H2) <c,

where, we obtain a solution to Theorem 4.2 taking this to the limit as m — +oo.
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