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1. Introduction

Let Ω ⊂ RN , N ≤ 3, be an open bounded with a boundary ∂Ω in the class C2, T > 0, Q =

Ω × (0,T ) and Σ = ∂Ω × (0,T ). Consider the following thermodiffusion system:∣∣∣∣∣∣∣∣∣∣∣∣∣
yt − ∇(a(y, z)∇y) + f (y, z) = vχω in Q,
zt − ∇(b(y, z)∇z) + g(y, z) = 0 in Q,
y = z = 0 on Σ,

y(0) = y0, z(0) = z0, on Ω,

(1.1)

where y represents the temperature of a body, z is its chemical potential, v is the control function that
acts on the first equation, and a(y, z) and b(y, z) are the diffusion coefficients (in this case see [1]).
Additionally, the reaction terms f , g depend on the state, which turns (1.1) into a semilinear parabolic
system. Consider y0, z0 ∈ W1,p

0 (Ω) with p > 3, a, b ∈ C2
b(R2) with 0 < a0 < a(r, s), 0 < b0 < b(r, s),

f , g ∈ C1
b(R2) with gr(0, 0) , 0.

In this work, we will prove the existence of a local null control for system (1.1) when the initial data
y0, z0 ∈ W1,p

0 (Ω) with 3 < p ≤ 6, thereby applying Liusternick’s right inverse function theorem.
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This work is a natural extension for a equation such as the following:∣∣∣∣∣∣∣∣∣
yt − ∇(a(y)∇y) + f (y) = vχω in Q,
y = 0 on Σ,

y(0) = y0, on Ω,

(1.2)

with y0 ∈ W1,p
0 (Ω), 3 < p ≤ 6 (recently proved by Manghi et al. in [2]). Then, this work improves

the results for equation (1.2) proved by Fernández-Cara et al. in [3], where the authors considered
H1

0(Ω) ∩ H3(Ω), since H1
0(Ω) ∩ H3(Ω) ↪→ W1,p

0 (Ω). Such an improvement for the initial data is due to
differences in the approach.

In [3], Fernández-Cara et al. studied the regularity of the associated linear system through additional
estimates, where the authors used derivatives for this system, which increased the regularity of the initial
data. In our work and in [2], the regularity of the linear system is obtained using results that invoke
maximum regularity in spaces Lq(0,T ; Lp(Ω)), without using derivatives on this system. Moreover, this
kind of system has applications in Physics, Engineering and Biology.

For the controllability of system (1.2) with only one equation in the one-dimensional case and data
in H1

0(Ω) ∩ H2(Ω), we can refer to [4]. In the case of controllability in dimension 2 and 3 and initial
data in H1

0(Ω) ∩ H3(Ω), we can refer to [3]. For the controllability of system (1.1) with non-local terms,

that is, when a = a
( ∫

Ω

y,
∫

Ω

z
)
, b = b

( ∫
Ω

y,
∫

Ω

z
)
, we can refer to [5]. Lastly, for the case of (1.1) with

only one equation and

a = a(y,∇y), we can refer to [6, 7]. Both system (1.1) with these non-local terms and system (1.2) can
be studied following ideas from our work, thereby considering initial data in spaces with less regularity.

In general, there is a large bibliography for the controllability of quasilinear and semilinear parabolic
systems. Among them, we can refer to [8–12]. The following bibliographies were useful for the
well-posedness of (1.1) (proved in the appendix): [6, 13–17].

2. Controllability of the linearized system

In this section, we will study the controllability of the following linearized system:∣∣∣∣∣∣∣∣∣∣∣∣∣
yt − a(0, 0)∆y + fr(0, 0)y + fs(0, 0)z = vχω + h in Q,
zt − b(0, 0)∆z + gr(0, 0)y + gs(0, 0)z = k in Q,
y = z = 0, on Σ,

y(0) = y0, z(0) = z0 on Ω,

(2.1)

which can be rewritten in the following equivalent form:∣∣∣∣∣∣∣∣∣∣∣∣∣
yt − α∆y + A1y + A2z = vχω + h in Q,
zt − β∆z + B1y + B2z = k in Q,
y = z = 0 on Σ,

y(0) = y0, z(0) = z0 on Ω.

(2.2)
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The adjoint system of (2.2) is given by the following:∣∣∣∣∣∣∣∣∣∣∣∣∣
−ϕt − α∆ϕ + A1ϕ + B1ψ = F1 in Q,
−ψt − β∆ψ + A2ϕ + β2ψ = F2 in Q,
ϕ = ψ = 0 on Σ,

ϕ(T ) = ϕT , ψ(T ) = ψT on Ω

(2.3)

We will prove a Carleman inequality for System (2.3). For this, we need to establish the function α0

given by the following lemma.

Lemma 2.1. There is a function α0 ∈ C2(Ω̄) which satisfies α0 > 0 in Ω, α0 = 0 in ∂Ω and |∇α0| > 0 in
Ω − ω0.

The proof of this lemma can be found in [18].

Let m ∈ C∞([0,T ]) with m(t) ≥ T 2/8 in [0,T/2] and m(t) = t(T − t) in [T/2,T ]. We define the
following:

φ(x, t) =
eλα0(x)

m(t)
, α(x, t) =

eRλ − eλα0

m(t)
=
ᾱ(x)
m(t)

with R > ||α0||∞ + ln(2) , λ > 0.
Next, we will use the following notation to the operator I(s, λ, z):

I(s, λ, z) =

∫
Q

e−2sα[(sφ)−1(|zt|
2 + |∆z|2) + λ2sφ|∇z|2 + λ4(sφ)3|z|2]

Now, let us consider the following Carleman Inequality, which was proved in [18].

Proposition 2.2. Consider F1, F2 ∈ L2(Q), and ϕT , ψT ∈ L2(Ω). If B1 , 0, then there exist constants
λ0 = λ0(Ω, ω), C0 = C0(Ω, ω) and S 0 = S 0(Ω, ω, α, β,C1, 1/B1) such that the solution of (2.3) satisfies
the following:

I(s, λ, ϕ) + I(s, λ, ψ) ≤ C0

( ∫
Q

e−2sα[λ4(sφ)3|F1|
2 + |F2|

2] +

∫ T

0

∫
ω

e−2sαλ8(sφ)7|ϕ|2
)

for all λ ≥ λ0, s ≥ s0(T + T 2).

Define, α1 = min
x∈Ω̄

ᾱ(x) and α2 = max
x∈Ω̄

ᾱ(x).

From the definition of R, we deduce that 2α1 ≥ α2; thus,

e
sα1
m < e

sα
m ≤ e

sα2
m ≤ e

2sα1
m

We will denote ρk = esαm
k
2 .

Note that, from the hypotheses, we have B1 = gr(0, 0) , 0.

Theorem 2.3. (Controllability of the linear system) Consider 3 < p ≤ 6 and p < q < ∞. Let us assume
that the functions h, k satisfy ρ3h, ρ3k ∈ Lq(0,T, Lp(Ω)). Then, (2.3) is null controllable at time T > 0,
that is, for each y0, z0 ∈ W ,p

0 (Ω), there exist null control v ∈ L2(ω × (0,T )) and associated states that
satisfy the following:
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|ρ̂19y|Lq(0,T,W2,p(Ω) + |ρ̂19z|Lq(0,T,W2,p(Ω)) + |ρ̂19y|C0(0,T,W1,p(Ω))

+ |ρ̂19z|C0([0,T ];W1,p(Ω)) + |(ρ̂19y)t|Lq(0,T,Lp(Ω)) + |(ρ̂19z)t|Lq(0,T,Lp(Ω))

≤ |ρ3h|Lq(0,T,Lp(Ω)) + |ρ0k|Lq(0,T,Lp(Ω)) + |y0|W1,p
0 (Ω) + |z0|W1,p

0 (Ω).

(2.4)

Next, we will prove three lemmas that will be used to prove Theorem 2.3.

Lemma 2.4. Under the conditions of the Theorem 2.3, there exist v ∈ L2(ω × (0,T )), (y, z), and an
associated solution of (2.2) that satisfies the following:∫

Q
ρ2

3|y|
2 + ρ2

0|z|
2dxdt +

∫ T

0

∫
ω

ρ2
7|v|

2 ≤ c
(
|y0|

2 + |z0|
2 +

∫
Q
ρ2

3|h|
2 + ρ2

3|k|
2
)
.

Proof. Let us define P0 = {(ϕ1, ϕ2) ∈ [C2(Q)]2 : ϕ1 = ϕ2 = 0 in (0,T ) × ∂Ω}. Let ω ⊂ ω1 and
χω1 ∈ C∞0 (ω1) such that 0 ≤ χω1 ≤ 1, χω1 = 1 in ω. Consider the bilinear form as follows:

θ((ϕ1, ϕ2), (ϕ̃1, ϕ̃2)) =

∫
Q
ρ−2

3 L∗1(ϕ1, ϕ2)L∗1(ϕ̃1, ϕ̃2)dxdt

+

∫
Q
ρ−2

0 L∗2(ϕ1, ϕ2)L∗2(ϕ̃1, ϕ̃2)dxdt +

∫ T

0

∫
ω

χω1ρ
−2
7 ϕ1ϕ̃1dxdt

where
L∗1(ϕ1, ϕ2) = −ϕ1t − α∆ϕ1 + A1ϕ1 + B1ϕ2,

L∗2(ϕ1, ϕ2) = −ϕ2t − β∆ϕ2 + A2ϕ1 + B2ϕ2.

From Carleman’s inequality, we conclude that θ(·, ·) is an inner product in P0. Thus, P is considered
as the completion of P0 with the inner product θ(·, ·), that is,

P = P̄θ(·,·)
0 .

Additionally, define S : P→ R by the foillowing:

S (ϕ1, ϕ2) = (y0, ϕ1(0)) + (z0, ϕ2(0)) +

∫
Q

hϕ1 + kϕ2 dxdt

Using Carleman’s inequality, it is proven that S is bounded, and since θ is coercive in P with the
inner product generated by θ, then from Lax-Milgram theorem, it can be verified that there exists a
unique ϕ = (ϕ1, ϕ2) ∈ P solution of

θ(ϕ, ω) = S (ω), ∀ω ∈ P. (2.5)

Define y = −ρ−2
3 L∗1ϕ, z = −ρ−2

0 L∗2ϕ, v̄ = −ρ−2
7 ϕ1 and v = v̄ |(0,T )×ω; from (2.5) with ω = ϕ, we obtain

the following: ∫
Q
ρ2

3|y|
2 + ρ2

0|z|
2dxdt +

∫ T

0

∫
ω

ρ2
7|v|

2 ≤ c
(
|y0|

2 + |z0|
2 +

∫
Q
ρ2

3|h|
2 + ρ2

3|k|
2
)

�
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Lemma 2.5. The control function v and the associated state (y, z) have the following regularity:
ρ15v ∈ L2(0,T,H2(ω)), (ρ15v)t ∈ L2(Q), ρ15v ∈ C0(0,T,H1(ω)).

Proof. It is verified that

ρ15v̄ = −ρ15ρ
−2
7 ϕ1 = −e−sαm

1
2 = −(ρ−1)−1ϕ1 = −ρ−1

−1ϕ1.

Consequently,

(ρ15v̄)t + α∆(ρ15v̄) = [(ρ−1
−1)t + α∆(ρ−1

−1)]ϕ1 − ρ
−1
−1(ϕ1t + α∆ϕ1) − 2α∇(ρ−1

1 )∇ϕ1

= ρ−1
−1L∗1ϕ − A1ρ

−1
−1ϕ1 − B1ρ

−1
−1ϕ2 − (ρ−1

−1)tϕ1 − α∆(ρ−1
−1)ϕ1 − 2α∇(ρ−1

−1)∇ϕ1

= I1 + I2 + I3 + I4 + I5 + I6.

Additionally, we have the following inequality:

|I1| = |ρ
−1
−1ρ

2
3y| = ρ7|y| ≤ cρ3|y|.

Thus, |I1| ∈ L2(Q).
Applying Calerman’s inequality to systems, one has the following:

L∗1ϕ = −ρ2
3y and L∗2ϕ = −ρ2

0z.

Additionally, we have the following:∫
Q
ρ−2

1 (|∇ϕ1|
2 + |∇ϕ2|

2) + ρ−2
3 (|ϕ1|

2 + |ϕ2|
2) ≤ c

∫
Q
ρ2

3|y|
2 + ρ2

0|z|
2dtdx +

∫
ω×(0,T )

ρ2
7|v|

2

From the last inequality, we obtain the following:

|I2| ≤ cρ−1
−1|ϕ1| ≤ cρ−1

3 |ϕ1|

|I3| ≤ cρ−1
−1|ϕ2| ≤ cρ−1

3 |ϕ2|

|I4| ≤ c|(ρ−1
−1)tϕ1| ≤ cρ−1

3 |ϕ1|

|I5| ≤ c|∆(ρ−1
−1)ϕ1| ≤ cρ−1

3 |ϕ1|

|I6| ≤ c|∇(ρ−1
−1)∇ϕ1| ≤ cρ−1

1 |∇ϕ1|.

Then, I2, I3, I4, I5 and I6 belongs to L2(Q).
Furthermore, ρ15v̄(T ) = −ρ−1

−1ϕ1(T ) = 0 .
From a parabolic regularity, we have ρ15v̄ ∈ L2(0,T,H1

0(Ω) ∩ H2(Ω)) , (ρ15v̄)t ∈ L2(Q), ρ15v̄ ∈
c0(0,T,H1

0(Ω)) and then ρ15v ∈ L2(0,T,H2(ω)), (ρ15v)t ∈ L2(Q), ρ15v ∈ c0(0,T,H1(ω)).
Following the same ideas as Propositions 2.5 and 2.6 in [3], we have the following Lemma.

Lemma 2.6. Under the hypotheses of Theorem 2.3, the associated state (y, z) with the control function v
of (2.2) satisfies the following:

sup
[0,T ]

∫
Ω

ρ2
5(|y|2 + |z|2) + ρ2

7(|∇y|2 + |∇z|2)dx +

∫
Q
ρ2

7(|y2
t + |zt|

2 + |∆y|2 + |∆z|2)dxdt

≤ c(||y0||
2 + ||z0||

2 +

∫
Q
ρ2

3(|h|2 + |k|2)dxdt).
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Proof of Theorem 2.3
Consider ρ̂19 = e

sα1
m(t) m(t)

19
2 . From (2.2), we have the following:

(ρ̂19y)t − α∆(ρ̂19y) + A1(ρ̂19y) = ρ̂19vχω + ρ̂19h + ρ̂19ty − A2ρ19z = g1

(ρ̂19z)t − β∆(ρ̂19z) + B2(ρ̂19z) = ρ̂19k + ρ̂19tz − B1ρ̂19y = g2

(2.6)

Let’s analyze g1 and g2.
Indeed, from Lemma 2.5, we have that ρ15v ∈ C0(0,T,H1(ω)), where

ρ̂19v ∈ C0(0,T,H1(ω)) ↪→ Lq(0,T, Lp(Ω)) (2.7)

for 1 ≤ q ≤ ∞ and 1 ≤ p ≤ 6.
Additionally, from Lemma 2.6, we have ρ7y, ρ7z ∈ L∞(0,T,H1

0(Ω)).
As |ρ̂19t| ≤ c|ρ15| ≤ c1|ρ7| and |ρ̂19| ≤ c|ρ7|, then we obtain the following:

ρ̂19ty, A2ρ̂19z, ρ̂19tz, B1ρ̂19y ∈ L∞(0,T,H1
0(Ω)) ↪→ Lq(0,T, Lp(Ω)),

for 1 ≤ q ≤ ∞, 1 ≤ p ≤ 6. Thus, g1, g2 ∈ Lq(0,T, Lp(Ω)) for 1 ≤ q ≤ ∞, 1 ≤ p ≤ 6.
Therefore, from the maximum regularity results for parabolic equations, one has:

ρ̂19y, ρ̂19z ∈ Lq(0,T,W2,p(Ω))

and
(ρ̂19y)t, (ρ̂19z)t ∈ Lq(0,T, Lp(Ω)),

for q, p determined by the hypothesis ρ3h, ρ3k ∈ Lq(0,T, Lp(Ω)).
Furthermore,

|ρ̂19y|Lq(0,T,W2,p(Ω)) + |ρ̂19z|Lq(0,T,W2,p(Ω) + |(ρ̂19y)t|Lq(0,T,Lp(Ω)) + |(ρ̂19z)t|Lq(0,T,Lp(Ω))

≤ c(|g1|Lq(0,T,Lp(Ω)) + |g2|Lq(0,T,Lp(Ω)) + |y0|W1,p
0 (Ω) + |z0|W1,p

0 (Ω)).

If we consider the hypothesis 3 < p < q < ∞, from Proposition 4.1 in the appendix, we have that
ρ̂19y, ρ̂19z ∈ C0(0,T,W1,p(Ω)). However, to study the nonlinear problem, we will need the following
immersion:

W1,p(Ω) ↪→ L∞(Ω),

which is valid for p > 3. Then, we complete the proof of the theorem. �

3. Nonlinear Problem

We can reduce the control problem associated with the nonlinear system (1.1) by solving the
following abstract equation:

H(y, z, v) = (0, 0, y0, z0), (3.1)

where H : Y → Z is a map between two Banach spaces, which are appropriate spaces with conveniently
chosen weights. To solve problem (3.1), we will use the right inverse theorem , namely Liusternik’s
Theorem.

Communications in Analysis and Mechanics Volume 17, Issue 4, 971–984.
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Theorem 3.1. Let Y and Z be Banach spaces, Br be an open ball centered at the origin in Y, and
consider a C1 mapping H : Br(0) ⊂ Y → Z. Assume that the derivative of H at the origin, H′(0) : Y → Z
is onto and set ξ0 := H(0). Then, there exists constant ε > 0, κ > 0 and a mapping W : Bε(ξ0) ⊂ Z → Y,
with the subsequent properties holding for each ξ ∈ Bε(ξ0):
a) W(ε) ∈ Br;
b) H(W(ε)) = ξ; and
c) ||W(ε)||y ≤ κ||ξ − H(0)||z.

Considering 3 < p ≤ 6 and p < q < ∞, we define the spaces of functions with weights by Y, F,Z as
follows:

Y = {(y, z, v) : v ∈ L2(ω × (0,T )), ρ7v ∈ L2(ω × (0,T )), ρ3h̄, ρ3k̄ ∈ Lq(0,T, Lp(Ω)) with h̄ = yt −

a(0, 0)∆y+ fr(0, 0)y+ fs(0, 0)z−χωv , k̄ = zt−b(0, 0)∆z+gr(0, 0)y+gs(0, 0)z , ρ̂19y, ρ̂19z ∈ Lq(0,T,W2,p(Ω)),
(ρ̂19y)t, (ρ̂19z)t ∈ Lq(0,T, Lp(Ω), y(0), z(0) ∈ W1,p

0 (Ω), y|Σ = 0, z|Σ = 0}, with the norm

||(y, z, v)||Y = ||ρ7v||L2(ω×(0,T )) + ||ρ3h̄||Lq(0,T,Lp(Ω)) + ||ρ3k̄||Lq(0,T,Lp(Ω)) + |ρ̂19y|Lq(0,T,W2,p(Ω))

+ |ρ̂19z|Lq(0,T,W2,p(Ω)) + ||(ρ̂19y)t||Lq(0,T,Lp(Ω)) + ||(ρ̂19z)t||Lq(0,T,Lp(Ω))

+ |y(0)|W1,p
0 (Ω) + |z(0)|W1,p

0 (Ω) ,

F = {g : ρ3g ∈ Lq(0,T, Lp(Ω))} with the norm ||g||F = ||ρ3g||Lq(0,T,Lp(Ω)) , and we consider the product
space Z = F × F ×W1,p

0 (Ω) ×W1,p
0 (Ω) with the norm

||(h, k, y0, z0)||Z = ||h||F + ||k||F + ||y0||W1,p
0 (Ω) + ||z0||W1,p

0 (Ω) .

We define the application H : Y → Z by the following:

H(y, z, v) =
(
yt − ∇ · (a(y, z)∇y) + f (y, z) − vχω, zt − ∇ · (b(y, z)∇z) + g(y, z), y(0), z(0)

)
=

(
H1(y, z, v),H2(y, z, v),H3(y, z, v),H4(y, z, v)

)
.

Remark 1: In the definition of the space Y , the conditions in ρ3h̄, ρ3k̄, y(0), z(0), y|Σ and z|Σ make the
elements (y, z, v) of the space Y have the same regularity as the pair state-control (y, z, v) of the linear
system from Theorem 2.3 , which verify the estimate (2.4).

Theorem 3.2. If a, b, f , g satisfy the hypotheses given in the introduction, then there exists ε > 0 such
that if

||(y0, z0)||W1,p
0 (Ω)×W1,p

0 (Ω) < ε,

then there exists a solution (y, z) of the nonlinear system (1.1) which satisfies y(T ) = 0, z(T ) = 0.

Proof. To prove Theorem 3.2, we will use Theorem 3.1 to prove that the abstract equation (3.1) has a
solution. However, to do this, we need to prove the following three lemmas.

Lemma 3.3. Let H : Y → Z be the application defined above. Then, H is well defined and continuous.

Communications in Analysis and Mechanics Volume 17, Issue 4, 971–984.
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Proof. We will prove that H1(y, z, v) ∈ F. First, we have the following:

|H1(y, z, v)|qF =

∫ T

0
|ρ3(yt − ∇ · (a(y, z)) + f (y, z) − vχω|

q
Lp(ω)

≤ c
( ∫ T

0
|ρ3(yt − a(0, 0)∆y + fr(0, 0)y + fs(0, 0)z − vχω|

q
Lp(Ω)

)
+

∫ T

0
|ρ3(∇ · (a(y, z) − a(0, 0))∇y)|qLp(Ω) +

∫ T

0
|ρ3 f (y, z)|qLp(Ω)

= I1 + I2 + I3.

Using the definition of the space Y, one has the following:

I1 ≤ ||(y, z, v)||Y .

Additionally, we have the following:

I2 =

∫ T

0
|ρ3

(
(ar(y, z)|∇y|2 + as(y, z)∇z∇y) + (a(y, z) − a(0, 0))∆y

)
|
q
Lp

≤ c1

( ∫ T

0
|ρ3|∇y|2|qLp(Ω) +

∫ T

0

∣∣∣ρ3|∇z||∇y|
∣∣∣q
Lp(Ω)

+

∫ T

0
|ρ3(|y| + |z|)∆y|qLp(Ω)

)
= K1 + K2 + K3

Since 2α1 > α2, we have the following:

|ρ3ρ̂
−2| = |esαe

−2sα1
m m

−35
2 |

≤ |e
s(α2−2α1)

m m
−35

2 | ≤ c.
(3.2)

Thus, from (2.4), the immersion W1,p(Ω) ↪→ L∞(Ω) is valid for n = 2 and 3, p > 3 and from (3.2),
we have the following:

|K1| ≤ c1

∫ T ( ∫
Ω

ρ
p
3 |∇y|2p

Rn

) q
p

= c1

∫ T

0

( ∫
Ω

(ρ3ρ̂
−2
19 )p|ρ̂19∇y|pRn |ρ̂19∇y|pRn

) q
p

≤ c2

∫ T

0
|ρ̂19∇y|qL∞ |ρ̂19∇y|qLp(Ω)

≤ c2

∫ T

0
|ρ̂19∇y|q

W1,P(Ω)|ρ̂19y|q
W1,p(Ω)

≤ c3

∫ T

0
|ρ̂19y|q

W2,p(Ω)|ρ̂19y|q
W1,p(Ω)

≤ c3|ρ̂19y|q
C0(0,T,W1,p(Ω))|ρ̂19y|q

Lq(0,T,W2,p(Ω))

≤ c4

(
|ρ3h̄|qLq(0,T,Lp(Ω)) + |ρ0k̄|qLq(0,T,Lp(Ω)) + |y0|W1,p

0 (Ω) + |z0|
q

W1,p
0 (Ω)

)2
.
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The analysis of K2 is similar. Let’s analyze K3 as follows:

|K3| ≤ c
∫ T

0

( ∫
Ω

ρ
p
3(|y|p + |z|p)|∆y|p

) q
p

≤ c
∫ T

0
ρ

q
3

( ∫
Ω

|y|p|∆y|p +

∫
Ω

|z|p|∆y|p
) q

p

≤ c
∫ T

0
ρ

q
3(|y|q∞ + |z|q∞)|∆y|qLp(Ω)

≤ c
∫ T

0
(ρ3ρ̂

−2
19 )q(|ρ̂19y|q∞ + |ρ̂19z|q∞)|ρ̂19∆y|qLp(Ω)

≤ c
∫ T

0
(|ρ̂19y|q

W1,p(Ω) + |ρ̂19z|q
W1,p(Ω))(|ρ̂19y|q

W2,p(Ω))

≤ c
(
|ρ̂19y|q

C0(0,T,W1,p(Ω)) + |ρ̂19z|q
C0(0,T,W1,p(Ω)))(|ρ̂19y|Lq(0,T,W2,p(Ω))

)
.

�
From and Remark 1, it follows that

|k3| ≤ c
(
|ρ3h̄|qLq(0,T,Lp(Ω)) + |ρ0k̄|qLq(0,T,Lp(Ω) + |y0|

q

W1,p
0 (Ω)

+ |z0|
q

W1,p
0 (Ω)

)2
.

Lemma 3.4. The application H : Y → Z is continuously differentiable.

Proof. We can write H in the following form:

H(y, z, v) = H1(y, z, v) +H2(y, z, v),

where
H1(y, z, v) = (yt − vχω, zt, y(0), z(0)),

and
H2(y, z, v) = (−∇ · (a(y, z)∇y) + f (y, z),−∇ · (b(y, z)∇z) + g(y, z), 0, 0).

As H1(y, z, v) is linear, then H1 is continuously differentiable. Then, it will be enough to analyze
H2(y, z, v). For (y, z, v), (ȳ, z̄, v̄) belonging to Y and ε > 0, one has the following:

1
ε

[H2((y, z, v) + ε(ȳ, z̄, v̄)) −H2(y, z, v)] =
1
ε

(−∇(a(y + εȳ, z + ε z̄)∇(y + εȳ) − a(y, z)∇y))

+
1
ε

( f (y + εȳ, z + ε z̄) − f (y, z)),
1
ε

(−∇(b(y + εȳ, z + ε z̄)∇cz + ε z̄)

− b(y, z)∇z) +
1
ε

(g(y + εȳ, z + ε z̄) − g(y, z)), 0, 0).

The linear application DGH2(y, z, v) ∈ L(Y,Z) is defined by the following:

DGH2(y, z, v)(ȳ, z̄, v̄) = (−∇(ay(y, z)ȳ∇y + az(y, z)z̄∇y + a(y, z)∇ȳ) + fyȳ + fzz̄,

− ∇ · (by(y, z)ȳ∇z + bz(y, z)z̄∇z + b(y, z)∇z̄) + gyȳ + gzz̄, 0, 0).
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Using similar arguments as in Lemma 3.3, we can prove that

1
ε

[H2((y, z, v) + ε(ȳ, z̄, v̄)) −H2(y, z, v)]

strongly converges in Z for the operator DGH2. Thus,H2 is G-differentiable and

H ′2 = DGH2.

Therefore, H is G-differentiable and

H′(y, z, v) = H1 + DGH2.

Additionally, using Lemma 3.3 and Lebesgue’s dominated convergence theorem, it can be proven that

DH : Y → L(y, z)

(y, z, v) 7→ DH(y, z, v) = H′(y, z, v)
(3.3)

is continuous with the topologies of Y and L(Y,Z). Thus, H is F-differentiable and its derivative is
H′. �

Lemma 3.5. The application H′(0, 0, 0) : Y → Z is surjective.

Proof. The proof is a consequence of Theorem 2.3 since the surjectivity of H′(0, 0, 0) is equivalent to
solving the control problem of the linearized system (2.1). �

4. Appendix

Proposition 4.1. Consider 3 < p < q < ∞. If u ∈ Lq(0,T,W2,p(Ω)) and u′ ∈ Lq(0,T, Lp(Ω)), then
u ∈ C0(0,T,W1,p(Ω)).

Proof. Consider u a regular function with a compact support contained in Ω. Thus, we have the
following:

d
dt

∫
Ω

|∇u|p =

∫
Ω

d
dt

(
|∇u|2

) p
2

=

∫
Ω

p
(
(|∇u|2)

p
2−1)(∇u∇u′

)
= p

∫
Ω

|∇u|p−2∇u∇u′

− p
∫

Ω

∇(|∇u|p−2∇u)u′ +
∫
∂Ω

p|∇u|p−2∇u · u′ · −→η

=

∫
Ω

(
p(p − 2)(|∇u|p−4∇u∇(uxi)uxi + p|∇u|p−2∆u

)
u′

≤ c
∫

Ω

(
p(p − 2)|∇u|p−2|D2u| + p|∇u|p−2|∆u|

)
|u′|.

(4.1)
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Since
1
p

+
1
p

+
1
p

p−2

= 1, then

d
dt

∫
Ω

|∇u|p ≤ c1

( ∫
Ω

(∇u|p−2)
p

p−2
) p−2

p
( ∫

Ω

|D2u|p
) 1

p
( ∫

Ω

|u′|p
) 1

p

≤ c1

( ∫
Ω

|∇u|p
) p−2

p
|u|W2,p(Ω)|u′|Lp(Ω).

Integrating in [0, T ], as
1
q

+
1
q

+
1
q

q−2

= 1 and using that
p − 2
q − 2

< 1, one has the following:

∫
Ω

|∇u(t)|p ≤
∫

Ω

|∇u(0)|p + c1

( ∫ T

0

( ∫
Ω

|∇u|p
) p−2

p
q

q−2
) q−2

q
· |u|Lq(0,T,W2,p(Ω)) · |u′|Lq(0,T,Lp(Ω))

≤ |u0|
p

W1,p
0 (Ω)

+ c1|u|
q−2
Lq(0,T,W1,p(Ω))|u|Lq(0,T,W2,p(Ω)) · |u′|Lq(0,T,Lp(Ω)).

Then, the result follows using density arguments. �

�

4.1. Well-posedness

Theorem 4.2. Consider y0, z0 ∈ H1
0(Ω) ∩ H3(Ω); there exists ε > 0 sufficiently small such that if

|y0|H3(Ω) + |z0|H3(Ω) ≤ ε,

then (1.1) has a unique strong solution of the following system:
yt − ∇(a(y, z)∇y) + f (y, z) = 0 in Ω × (0,T ),
zt − ∇(b(y, z)∇z) + g(y, z) = 0 in Ω × (0,T ),
y = z = 0 on Σ,

y(0) = y0, z(0) = z0.

(4.2)

Proof of theorem
Let (ωi)i be a special basis of H1

0(Ω), where −∆ωi = λωi and Vm = [ω1, ..., ωm] is the space generated
by the first m functions ωi. Consider the approximate problem:

Then ym(t) =

m∑
i=1

gim(t)wi, and zm(t) =

m∑
i=1

him(t)wi solves the following system:

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(y′m, ωi) − (∇(a(ym, zm)∇ym)ωi) + ( f (ym, zm), ωi) = 0, in ω ∈ Vm

(z′m, ω̃i) − (∇(b(ym, zm)∇zm)ω̃i) + (g(ym, zm), ω̃i) = 0, in ω̃ ∈ Vm

ym(0) = y0m → y0 in H3(Ω) ∩ H1
0(Ω),

zm(0) = z0m → z0 in H3(Ω) ∩ H1
0(Ω),

(4.3)
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Consider ω = −∆ym and ω̃ = −∆zm in (4.11). Then, we have

1
2

d
dt

(|∇ym|
2 + |∇zm|

2) + min{a0, b0}(|∆ym|
2 + |∆zm|

2) + β(|∇ym|
2 + |∇zm|

2)

≤ k1(|∆ym|
3 + |∆zm|

2) + k2(|∆zm||∆ym|
2 + |∆ym||∆zm|

2) + 2γ(|∇zm||∇ym|)
(4.4)

Now, consider ω = −∆y′m and ω̃ = −∆z′m in (4.11). Then, one has the following:

1
2

(|∇y′m|
2 + |∇z′m|

2) +
1
2

d
dt

( ∫
Ω

a(ym, zm)|∆ym|
2 +

∫
Ω

b(ym, zm)|∆zm|
2
)

≤ δ(|∆y′m|
2 + |∆z′m|

2) + cδ(|∆zm|
4 + |∆ym|

4) + c(|∇ym|
2 + |∇zm|

2).

(4.5)

Applying derivatives to (4.2)1 and (4.2)2 with respect to t and considering ω = −∆y′m and ω̃ = −∆z′m
in these new equations, we have

1
2

d
dt

(|∇y′m|
2 + |∇z′m|

2) + min{a0, b0}(|∆y′m|
2 + |∆z′m|

2)

≤ c(|∆y′m|
2 + |∆z′m|

2)(|∆ym|
2 + |∆zm|

2 + |∆ym| + |∆zm|)
(4.6)

If we sum (4.4) - (4.6) and denote c0 = min{a0, b0}, then we have the following:

d
dt

(
|∇ym|

2 + |∇zm|
2 +

∫
Ω

a(ym, zm)|∆ym|
2 + b(ym, zm)|∆zm|

2 + |∇y′m|
2 + |∇z′m|

2
)

+ c(|∆ym|
2 + |∆zm|

2 + |∆y′m|
2 + |∆z′m|

2 + |∇ym|
2 + |∇zm|

2)

+ (|∆ym|
2 + |∆zm|

2)
{c0

2
− c2(|∆ym| + |∆zm| + |∆ym|

2 + |∆zm|
2)
}

+ (|∆y′m|
2 + |∆z′m|

2)
{c0

2
− c3(|∆ym| + |∆zm| + |∆ym|

2 + |∆zm|
2)
}
≤ 0.

(4.7)

Proceeding in a standard way and using

|∇y′m(0)| + |∇z′m(0)| ≤ c(|∆y0|
3 + |∆z0|

3 + |y0|H3 |∆y0| + |z0|H3 |∆z0| + |y0|H3 + |z0|H3),

from (4.7), for ε > 0 sufficiently small with

|y0|H3(Ω) + |z0|H3(Ω) ≤ ε,

we obtain the following estimate:

|ym|L∞(0,T,H1
0

+ |zm|L∞(0,T,H1
0 ) + |y′m|L∞(0,T,H1

0 ) + |z′m|L∞(0,T,H1
0 )

|ym|L∞(0,T,H2) + |zm|L∞(0,T,H2) + |y′m|L2(0,T,H2) + |z′m|L2(0,T,H2) ≤ c,
(4.8)

where, we obtain a solution to Theorem 4.2 taking this to the limit as m→ +∞.
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