Research article Special Issues

On a continuum model for random genetic drift: a dynamic boundary condition approach

  • Received: 31 December 2024 Revised: 17 June 2025 Accepted: 06 August 2025 Published: 08 September 2025
  • 35K65, 35K20, 92D10, 76M30

  • We propose a new continuum model for random genetic drift by employing a dynamic boundary condition approach. The model can be viewed as a regularized version of the Kimura equation and admits a continuous solution. We establish existence and uniqueness of a strong solution to the regularized system. Numerical experiments illustrate that, for sufficiently small regularization parameters, the model can capture key phenomena of the original Kimura equation, such as gene fixation and conservation of the first moment.

    Citation: Chun Liu, Jan-Eric Sulzbach, Yiwei Wang. On a continuum model for random genetic drift: a dynamic boundary condition approach[J]. Communications in Analysis and Mechanics, 2025, 17(3): 829-848. doi: 10.3934/cam.2025033

    Related Papers:

  • We propose a new continuum model for random genetic drift by employing a dynamic boundary condition approach. The model can be viewed as a regularized version of the Kimura equation and admits a continuous solution. We establish existence and uniqueness of a strong solution to the regularized system. Numerical experiments illustrate that, for sufficiently small regularization parameters, the model can capture key phenomena of the original Kimura equation, such as gene fixation and conservation of the first moment.



    加载中


    [1] W. J. Ewens, Mathematical population genetics: theoretical introduction, volume 27. Springer, 2004.
    [2] R. A. Fisher, XXI.–on the dominance ratio, Proc. R. Soc. Edinburgh, 42 (1923), 321–341. http://doi.org/10.1017/s0370164600023993 doi: 10.1017/s0370164600023993
    [3] S. Wright, Evolution in mendelian populations, Genetics, 16 (1931), 97. http://doi.org/10.1093/genetics/16.3.290 doi: 10.1093/genetics/16.3.290
    [4] M. Kimura, On the probability of fixation of mutant genes in a population, Genetics, 47 (1962), 713. http://doi.org/10.1093/genetics/47.6.713 doi: 10.1093/genetics/47.6.713
    [5] S. Wright, The differential equation of the distribution of gene frequencies, Proc. Natl. Acad. Sci., 31 (1945), 382–389. http://doi.org/10.1073/pnas.31.12.382 doi: 10.1073/pnas.31.12.382
    [6] C. L. Epstein, R. Mazzeo, Wright–Fisher diffusion in one dimension, SIAM J. Math. Anal., 42 (2010), 568–608. http://doi.org/10.1137/090766152 doi: 10.1137/090766152
    [7] C. L. Epstein, R. Mazzeo, Degenerate diffusion operators arising in population biology, Number 185. Princeton University Press, 2013.
    [8] W. Feller, Diffusion processes in genetics, In Proceedings of the second Berkeley symposium on mathematical statistics and probability, volume 2, University of California Press, 227–247, 1951.
    [9] A. N. Kolmogorov, Transition of branching processes to diffusion processes and related genetic problems, In A. N. Shiryayev, editor, Selected Works of AN Kolmogorov: Volume II Probability Theory and Mathematical Statistics, Springer, 466–469, 1992.
    [10] F. A. Chalub, M. O. Souza, A non-standard evolution problem arising in population genetics, Commun. Math. Sci., 7 (2009), 489–502. http://doi.org/10.4310/cms.2009.v7.n2.a11 doi: 10.4310/cms.2009.v7.n2.a11
    [11] A. J. McKane, D. Waxman, Singular solutions of the diffusion equation of population genetics, J. Theor. Biol., 247 (2007), 849–858. http://doi.org/10.1016/j.jtbi.2007.04.016 doi: 10.1016/j.jtbi.2007.04.016
    [12] C. Duan, C. Liu, C. Wang, X. Yue, Numerical complete solution for random genetic drift by energetic variational approach, SAIM: Math. Modell. Numer. Anal., 53 (2019), 615–634. http://doi.org/10.1051/m2an/2018058 doi: 10.1051/m2an/2018058
    [13] J. B. Casteras, L. Monsaingeon, Hidden dissipation and convexity for kimura equations, arXiv preprint arXiv: 2209.15361, 2022. http://doi.org/10.1137/22m1529270
    [14] S. Xu, M. Chen, C. Liu, R. Zhang, X. Yue, Behavior of different numerical schemes for random genetic drift, BIT Numer. Math., 59 (2019), 797–821. http://doi.org/10.1007/s10543-019-00749-4 doi: 10.1007/s10543-019-00749-4
    [15] L. Zhao, X. Yue, D. Waxman, Complete numerical solution of the diffusion equation of random genetic drift, Genetics, 194 (2013), 973–985. http://doi.org/10.1534/genetics.113.152017 doi: 10.1534/genetics.113.152017
    [16] J. A. Carrillo, L. Chen, Q. Wang, An optimal mass transport method for random genetic drift, SIAM J. Numeri. Anal., 60 (2022), 940–969. http://doi.org/10.1137/20m1389431 doi: 10.1137/20m1389431
    [17] C. E. Dangerfield, D. Kay, S. Macnamara, K. Burrage, A boundary preserving numerical algorithm for the Wright–Fisher model with mutation, BIT Numer. Math., 52 (2012), 283–304. http://doi.org/10.1007/s10543-011-0351-3 doi: 10.1007/s10543-011-0351-3
    [18] P. A. Jenkins, D. Spano, Exact simulation of the Wright–Fisher diffusion, Ann. Appl. Probab., 27 (2017), 1478–1509. http://doi.org/10.1214/16-aap1236 doi: 10.1214/16-aap1236
    [19] S. N. Ethier, M. F. Norman, Error estimate for the diffusion approximation of the Wright–Fisher model, Proc. Natl. Acad. Sci., 74 (1977), 5096–5098. http://doi.org/10.1073/pnas.74.11.5096 doi: 10.1073/pnas.74.11.5096
    [20] T. D. Tran, J. Hofrichter, J. Jost, An introduction to the mathematical structure of the Wright–Fisher model of population genetics, Theory Biosci., 132 (2013), 73–82. http://doi.org/10.1007/s12064-012-0170-3 doi: 10.1007/s12064-012-0170-3
    [21] F. A. Chalub, L. Monsaingeon, A. M. Ribeiro, M. O. Souza, Gradient flow formulations of discrete and continuous evolutionary models: a unifying perspective, Acta Appl. Math., 171 (2021), 24. http://doi.org/10.1007/s10440-021-00391-9 doi: 10.1007/s10440-021-00391-9
    [22] T. D. Tran, J. Hofrichter, J. Jost, The free energy method and the Wright–Fisher model with 2 alleles, Theory Biosci., 134 (2015), 83–92. http://doi.org/10.1007/s12064-015-0218-2 doi: 10.1007/s12064-015-0218-2
    [23] P. Knopf, K. F. Lam, C. Liu, S. Metzger, Phase-field dynamics with transfer of materials: the cahn–hilliard equation with reaction rate dependent dynamic boundary conditions, ESAIM: Math. Modell. Numer. Anal., 55 (2021), 229–282. http://doi.org/10.1051/m2an/2020090 doi: 10.1051/m2an/2020090
    [24] L. Monsaingeon, A new transportation distance with bulk/interface interactions and flux penalization, Calc. Var., 60 (2021), 101. http://doi.org/10.1007/s00526-021-01946-2 doi: 10.1007/s00526-021-01946-2
    [25] Y. Wang, C. Liu, Some recent advances in energetic variational approaches, Entropy, 24 (2022), 721. http://doi.org/10.3390/e24050721 doi: 10.3390/e24050721
    [26] G. F. Oster, A. S. Perelson, Chemical reaction dynamics: Part i: Geometrical structure, Arch. Ration. Mech. Anal., 55 (1974), 230–274. http://doi.org/10.1007/bf00281751 doi: 10.1007/bf00281751
    [27] Y. Wang, C. Liu, P. Liu, B. Eisenberg, Field theory of reaction-diffusion: Law of mass action with an energetic variational approach. Phys. Rev. E, 102 (2020), 062147. http://doi.org/10.1103/physreve.102.062147 doi: 10.1103/physreve.102.062147
    [28] A. Friedman, Partial Differential Equations of Parabolic Type, Prentice-Hall, NJ, 1964.
    [29] B. Hu, H. M. Yin, Critical exponents for a system of heat equations coupled in a non-linear boundary condition, Math. Meth. Appl. Sci., 19 (1996), 1099–1120. http://dx.doi.org/10.1002/(sici)1099-1476(19960925)19:14<1099::aid-mma780>3.0.co;2-j doi: 10.1002/(sici)1099-1476(19960925)19:14<1099::aid-mma780>3.0.co;2-j
    [30] J. Anderson, K. Deng, Z. Dong, Global solvability for the heat equation with boundary flux governed by nonlinear memory, Q. Appl. Math., 69 (2011), 759–770. http://dx.doi.org/10.1090/s0033-569x-2011-01238-x doi: 10.1090/s0033-569x-2011-01238-x
    [31] K. Deng, Z. Dong, Blow-up for the heat equation with a general memory boundary condition, Commun. Pure Appl. Anal., 11 (2012), 2147. http://doi.org/10.3934/cpaa.2012.11.2147 doi: 10.3934/cpaa.2012.11.2147
    [32] M. Marras, S. V. Piro, Continuous dependence results for parabolic problems under robin boundary conditions, Numer. Funct. Anal. Optim., 30 (2009), 121–135. http://doi.org/10.1080/01630560902735249 doi: 10.1080/01630560902735249
    [33] J. Choi, S. Kim, Green's functions for elliptic and parabolic systems with robin-type boundary conditions, J. Funct. Anal., 267 (2014), 3205–3261. http://doi.org/10.1016/j.jfa.2014.08.011 doi: 10.1016/j.jfa.2014.08.011
    [34] K. Deng, M. K. Kwong, H. A. Levine, The influence of nonlocal nonlinearities on the long time behavior of solutions of burgers' equation, Q. Appl. Math., 50 (1992), 173–200. http://doi.org/10.1090/qam/1146631 doi: 10.1090/qam/1146631
    [35] K. Deng, M. Xu, On solutions of a singular diffusion equation, Nonlinear Anal. Theory Methods Appl., 41 (2000), 489–500. http://doi.org/10.1016/s0362-546x(98)00292-2 doi: 10.1016/s0362-546x(98)00292-2
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(500) PDF downloads(53) Cited by(0)

Article outline

Figures and Tables

Figures(4)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog