Research article Special Issues

Separable motions for self-gravitating hyperelastic matter

  • Received: 30 December 2024 Revised: 09 April 2025 Accepted: 30 May 2025 Published: 04 September 2025
  • 35Q74, 35A09, 74B99, 35K20

  • In this paper, we prove the existence of separable solutions to the equations of motion for self-gravitating hyperelastic matter, under an appropriate class of constitutive assumptions on the strain-energy function. Our framework includes both global-in-time solutions which expand and also solutions which collapse to a point in finite time. Other authors have constructed expanding solutions in similar settings, but to the best of our knowledge, the collapsing solutions we construct are completely new.

    Citation: Juhi Jang, Trevor M. Leslie. Separable motions for self-gravitating hyperelastic matter[J]. Communications in Analysis and Mechanics, 2025, 17(3): 810-828. doi: 10.3934/cam.2025032

    Related Papers:

  • In this paper, we prove the existence of separable solutions to the equations of motion for self-gravitating hyperelastic matter, under an appropriate class of constitutive assumptions on the strain-energy function. Our framework includes both global-in-time solutions which expand and also solutions which collapse to a point in finite time. Other authors have constructed expanding solutions in similar settings, but to the best of our knowledge, the collapsing solutions we construct are completely new.



    加载中


    [1] T. C. Sideris, Expansion and collapse of spherically symmetric isotropic elastic bodies surrounded by vacuum, Ann. Henri Poincaré, 2023. https://doi.org/10.1007/s00023-023-01390-2 doi: 10.1007/s00023-023-01390-2
    [2] S. Calogero, On self-gravitating polytropic elastic balls, Ann. Henri Poincaré, 23 (2022), 4279–4318. https://doi.org/10.1007/s00023-022-01205-w doi: 10.1007/s00023-022-01205-w
    [3] M. E. Gurtin, An introduction to continuum mechanics, volume 158 of Mathematics in Science and Engineering, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1981.
    [4] J. E. Marsden, T. J. R. Hughes, Mathematical Foundations of Elasticity. Dover Civil and Mechanical Engineering. Dover Publications, 2012.
    [5] R. W. Ogden, Non-linear Elastic Deformations, Dover Civil and Mechanical Engineering, Dover Publications, 1997.
    [6] C. C. Fu, S. S. Lin, On the critical mass of the collapse of a gaseous star in spherically symmetric and isentropic motion, Japan J. Indust. Appl. Math., 15 (1998), 461–469. https://doi.org/10.1007/BF03167322 doi: 10.1007/BF03167322
    [7] M. Hadžić, J. Jang, Nonlinear stability of expanding star solutions of the radially symmetric mass-critical Euler-Poisson system, Comm. Pure Appl. Math., 71 (2018), 827–891. https://doi.org/10.1002/cpa.21721 doi: 10.1002/cpa.21721
    [8] A. Alho, S. Calogero, Static self-gravitating newtonian elastic balls, Arch. Rat. Mech. Anal., 238 (2020), 639–669. https://doi.org/10.1007/s00205-020-01551-1 doi: 10.1007/s00205-020-01551-1
    [9] A. Alho, S. Calogero, A. Liljenberg, Self-gravitating static balls of power-law elastic matter, Adv. Theor. Math. Phys., 26 (2022), 2885–2908. https://doi.org/10.4310/atmp.2022.v26.n9.a1 doi: 10.4310/atmp.2022.v26.n9.a1
    [10] P. Goldreich, S. V. Weber, Homologously collapsing stellar cores, Astrophys. J, 238 (1980), 991–997. https://doi.org/10.1086/158065 doi: 10.1086/158065
    [11] T. Makino, Blowing up solutions of the euler-poisson equation for the evolution of gaseous stars, Transp. Theory Statist. Phys., 21 (1992), 615–624. https://doi.org/10.1080/00411459208203801 doi: 10.1080/00411459208203801
    [12] X. Liu, On the expanding configurations of viscous radiation gaseous stars: thermodynamic model. J. Differential Equations, 268 (2020), 2717–2751. https://doi.org/10.1016/j.jde.2019.09.043 doi: 10.1016/j.jde.2019.09.043
    [13] T. H. Li, D. H. Wang, Blowup phenomena of solutions to the euler equations for compressible fluid flow, Journal of Differential Equations, 221 (2006), 91–101. https://doi.org/10.1016/j.jde.2004.12.004 doi: 10.1016/j.jde.2004.12.004
    [14] L. V. Ovsyannikov, New solution of hydrodynamic equations, Dokl. Akad. Nauk SSSR, 111 (1956), 47–49.
    [15] T. C. Sideris, Global existence and asymptotic behavior of affine motion of 3D ideal fluids surrounded by vacuum, Arch. Ration. Mech. Anal., 225 (2017), 141–176. https://doi.org/10.1007/s00205-017-1106-3 doi: 10.1007/s00205-017-1106-3
    [16] M. Hadžić, J. Jang, Expanding large global solutions of the equations of compressible fluid mechanics, Invent. Math., 214 (2018), 1205–1266. https://doi.org/10.1007/s00222-018-0821-1 doi: 10.1007/s00222-018-0821-1
    [17] S. Shkoller, T. C. Sideris, Global existence of near-affine solutions to the compressible euler equations, Arch. Ration. Mech. Anal., 234 (2019), 115–180. https://doi.org/10.1007/s00205-019-01387-4 doi: 10.1007/s00205-019-01387-4
    [18] J. Jang, Nonlinear instability theory of Lane-Emden stars, Comm. Pure Appl. Math., 67 (2014), 1418–1465. https://doi.org/10.1002/cpa.21499 doi: 10.1002/cpa.21499
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(462) PDF downloads(39) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog