Research article Special Issues

Endoplasmic reticulum localization of phosphoinositide specific phospholipase C enzymes in U73122 cultured human osteoblasts

  • Different signal transduction pathways contribute to the differentiation and metabolic activities of osteoblasts, with special regard to the calcium-related pathway of phosphoinositide specific phospholipase C (PLC) enzyme family. PLC enzymes were demonstrated to be involved in the differentiation of osteoblasts and differently localize in the nucleus, cytoplasm or both depending on the isoform. The amino-steroid molecule U-73122 inhibits the enzymes belonging to the PLC family. In addition to the temporary block of the enzymatic activity, U-73122 promotes off-target effects, including modulation of the expression of selected PLC genes and different localization of PLC enzymes, depending on the cell line, in different cell lines.

    In order to evaluate possible off-target effects of the molecule in human osteoblasts, we investigated the expression of PLC genes and the localization of PLC enzymes in cultured human osteoblasts (hOBs) in the presence of low dose U-73122.

    Our results confirm that all PLC genes are transcribed in hOBs, that probably splicing variants of selected PLC genes are expressed and that all PLC enzymes are present in hOBs, except for PLC δ3 in quiescent hOBs at seeding. Our results confirm literature data excluding toxicity of U-73122 on cell survival. Our results indicate that U-73122 did not significantly affect the transcription of PLC genes. It acts upon the localization of PLC enzymes, as PLC enzymes are detected in cell protrusions or pseudopodia-like structures, at the nuclear or the plasma membrane, in membrane ruffles and/or in the endoplasmic reticulum.

    Citation: Matteo Corradini, Marta Checchi, Marzia Ferretti, Francesco Cavani, Carla Palumbo, Vincenza Rita Lo Vasco. Endoplasmic reticulum localization of phosphoinositide specific phospholipase C enzymes in U73122 cultured human osteoblasts[J]. AIMS Biophysics, 2023, 10(1): 25-49. doi: 10.3934/biophy.2023004

    Related Papers:

    [1] Boyu Wang . A splitting lattice Boltzmann scheme for (2+1)-dimensional soliton solutions of the Kadomtsev-Petviashvili equation. AIMS Mathematics, 2023, 8(11): 28071-28089. doi: 10.3934/math.20231436
    [2] Amna Mumtaz, Muhammad Shakeel, Abdul Manan, Marouan Kouki, Nehad Ali Shah . Bifurcation and chaos analysis of the Kadomtsev Petviashvili-modified equal width equation using a novel analytical method: describing ocean waves. AIMS Mathematics, 2025, 10(4): 9516-9538. doi: 10.3934/math.2025439
    [3] Jalil Manafian, Onur Alp Ilhan, Sizar Abid Mohammed . Forming localized waves of the nonlinearity of the DNA dynamics arising in oscillator-chain of Peyrard-Bishop model. AIMS Mathematics, 2020, 5(3): 2461-2483. doi: 10.3934/math.2020163
    [4] Cheng Chen . Hyperbolic function solutions of time-fractional Kadomtsev-Petviashvili equation with variable-coefficients. AIMS Mathematics, 2022, 7(6): 10378-10386. doi: 10.3934/math.2022578
    [5] Abeer S. Khalifa, Hamdy M. Ahmed, Niveen M. Badra, Jalil Manafian, Khaled H. Mahmoud, Kottakkaran Sooppy Nisar, Wafaa B. Rabie . Derivation of some solitary wave solutions for the (3+1)- dimensional pKP-BKP equation via the IME tanh function method. AIMS Mathematics, 2024, 9(10): 27704-27720. doi: 10.3934/math.20241345
    [6] Wafaa B. Rabie, Hamdy M. Ahmed, Taher A. Nofal, Soliman Alkhatib . Wave solutions for the (3+1)-dimensional fractional Boussinesq-KP-type equation using the modified extended direct algebraic method. AIMS Mathematics, 2024, 9(11): 31882-31897. doi: 10.3934/math.20241532
    [7] Gulnur Yel, Haci Mehmet Baskonus, Wei Gao . New dark-bright soliton in the shallow water wave model. AIMS Mathematics, 2020, 5(4): 4027-4044. doi: 10.3934/math.2020259
    [8] Jamilu Sabi'u, Sekson Sirisubtawee, Surattana Sungnul, Mustafa Inc . Wave dynamics for the new generalized (3+1)-D Painlevé-type nonlinear evolution equation using efficient techniques. AIMS Mathematics, 2024, 9(11): 32366-32398. doi: 10.3934/math.20241552
    [9] Xiaoli Wang, Lizhen Wang . Traveling wave solutions of conformable time fractional Burgers type equations. AIMS Mathematics, 2021, 6(7): 7266-7284. doi: 10.3934/math.2021426
    [10] Zhe Ji, Yifan Nie, Lingfei Li, Yingying Xie, Mancang Wang . Rational solutions of an extended (2+1)-dimensional Camassa-Holm- Kadomtsev-Petviashvili equation in liquid drop. AIMS Mathematics, 2023, 8(2): 3163-3184. doi: 10.3934/math.2023162
  • Different signal transduction pathways contribute to the differentiation and metabolic activities of osteoblasts, with special regard to the calcium-related pathway of phosphoinositide specific phospholipase C (PLC) enzyme family. PLC enzymes were demonstrated to be involved in the differentiation of osteoblasts and differently localize in the nucleus, cytoplasm or both depending on the isoform. The amino-steroid molecule U-73122 inhibits the enzymes belonging to the PLC family. In addition to the temporary block of the enzymatic activity, U-73122 promotes off-target effects, including modulation of the expression of selected PLC genes and different localization of PLC enzymes, depending on the cell line, in different cell lines.

    In order to evaluate possible off-target effects of the molecule in human osteoblasts, we investigated the expression of PLC genes and the localization of PLC enzymes in cultured human osteoblasts (hOBs) in the presence of low dose U-73122.

    Our results confirm that all PLC genes are transcribed in hOBs, that probably splicing variants of selected PLC genes are expressed and that all PLC enzymes are present in hOBs, except for PLC δ3 in quiescent hOBs at seeding. Our results confirm literature data excluding toxicity of U-73122 on cell survival. Our results indicate that U-73122 did not significantly affect the transcription of PLC genes. It acts upon the localization of PLC enzymes, as PLC enzymes are detected in cell protrusions or pseudopodia-like structures, at the nuclear or the plasma membrane, in membrane ruffles and/or in the endoplasmic reticulum.



    Nonlinear evolution equations (NLEEs) play an important part in the study of nonlinear science, particular in plasma physics, quantum field theory, nonlinear wave propagation and nonlinear optical fibers so that it attracted the attention of a large number of scholars. The extended auxiliary equation technique [1], the Bernoulli's equation approach [2], the Exp-function technique [3], the homotopy analysis technique [4], the homotopy perturbation technique [5], the improved tan(ϕ/2)-expansion technique ([6,7]), the Hirota's bilinear technique [8,9,10,11,12,13,14,15], the He's variational principle [16,17], the binary Darboux transformation [18], the Lie group analysis [19,20], the Bäcklund transformation method [21], optimal galerkin-homotopy asymptotic method applied [22], and the multiple rogue waves method ([23,24]) have been proposed to solve NLEEs. By using these approaches, various exact solutions including soliton solution, lump solution, rogue wave solution, periodic solution, interaction solution, rational solution and high-order rational solution were obtained ([25,26]).

    In this paper, we mainly consider the following dynamical model, which can be used to describe some interesting (3+1)-dimensional waves of physics, namely, the generalized Kadomtsev-Petviashvili (gKP) equation [27]. That is

    (Ψt+6ΨΨx+Ψxxx)x+aΦyy=0, (1.1)

    and also above equation is integrable. Author of [28] introduced the modification of KP (mKP) equation [29] given

    4Ψt6Ψ2Ψx+Ψxxx+6Ψx1xΨy+Ψ1xΦyy=0. (1.2)

    The generalized KP (gKP) equation has been researched by some scholars [30,31,32] in which is given as

    (Ψt+αΨx+βΨΨx+γΨΨxxt)x+Ψyy=0. (1.3)

    The another type of gKP equation is given in [33] as below

    Ψxxxy+3(ΨxΨy)x+Ψtx+Ψty+ΨtzΨzz=0. (1.4)

    We first present the bilinear form for Eq (1.4), by taking the following first-order logarithmic transformation

    Ψ=2(lnf)x, (1.5)

    then, Eq (1.4) is turned into the bilinear form

    (D3xDy+DxDt+DyDt+DzDtD2z)f.f=0, (1.6)

    in which Dt,Dx,Dy and Dz are Hirota's bilinear frames. Cao [34] investigated the generalized B-type KP equation as follows

    Ψxxxy+3(ΨxΨy)x3ΨxzΨty=0. (1.7)

    Guan et al. [35] derived a (3+1)-dimensional gKP equation in below form

    Ψxxxy+3(ΨxΨy)x+αΨxxxz+3α(ΨxΨz)x+λ1Ψxt+λ2Φyt+λ3Φzt+ω1Φxz+ω2Φyz+ω3Φzz=0, (1.8)

    and some lump soliton solutions have been constructed using the Hirota bilinear method in [36]. Via transformation Ψ=2(lnf)x, the bilinear form of equation (1.8) reads:

    (D3xDy+αD3xDz+λ1DxDt+λ2DyDt+λ3DzDt+ω1DxDz+ω2DyDz+ω3D2z)f.f=0. (1.9)

    Most classical test functions for solving NLPDEs by using the several particular functions can be constructed via Hirota bilinear technique. In other words, Hirota operator covers most of the classical hypothesis function method. For example, the fractional generalized CBS-BK equation [37], the generalized Bogoyavlensky-Konopelchenko equation [38], the (2+1)-dimensional asymmetrical Nizhnik-Novikov-Veselov equation [39], and the (2+1)-dimensional generalized variable-coefficient KP-Burgers-type equation [40]. Diverse kinds of studies on solve NLPDEs were perused via mighty authors in which some of them can be stated, for instance, multivariate rogue wave to some PDEs [41], interaction lump solutions the gKP equation [42], the (1+1)-dimensional coupled integrable dispersionless equations [43]. Therefore, we embark on the new research topic of constructing the analytic solutions of nonlinear PDEs by exploring the bilinear method. According to recent studies, we can obtain some of the new exact analytic solutions of nonlinear PDEs by way of constructing their corresponding bilinear differential equations in [44,45,46,47]. Here, we will study the multiple Exp-function method (MEFM) for determining the multiple soliton solutions (MSSs). The MEFM employed by some of powerful authors for various nonlinear equations have been surveyed in more studies in [31,48,49,50]. Authors of [51] utilized the reduced differential transform method for solving partial differential equations. Also, Yu and Sun [52] studied the dimensionally reduced generalized KP equations by help of Hirita bilinear method and obtained of lump solutions.

    The outline of our paper is as follows: the multiple Exp-function scheme has been summarized in section 2. In sections 3, the KP equation, will investigate to finding 1-wave, 2-wave, and three-wave solutions. The Sections 4-6 devote to determined the periodic, cross-kink, and solitary wave solutions. Moreover, in Section 7, the modulation instability analysis is investigated. Finally in Section 8, the SIVP technique is considered with four cases for finding the solitary, bright, dark and singular wave solutions. A few of conclusions and outlook will be given in the final section.

    This method was summarized and improved for achieving the analytic solutions of NLPDEs:

    Step 1. Assume a nonlinear PDE is given in general frame as follows

    N(x,y,t,Ψ,Ψx,Ψy,Ψz,Ψt,Ψxx,Ψtt,...)=0. (2.1)

    Take the novel variables ξi=ξi(x,y,z,t),1in, by differentiable frames:

    ξi,x=αiξi,  ξi,y=βiξi,  ξi,z=γiξi,  ξi,t=δiξi,  1in, (2.2)

    where αi,βi,γi,1in, are unfound amounts. It noted that one can get as the following function

    ξi=ϖieθi,  θi=αix+βiy+γizδit,  1in, (2.3)

    where ϖi,1in, unspecified amounts.

    Step 2. Assuming the solution of the Eq (2.1) is function of variables ξi,1in:

    Ψ=Δ(ξ1,ξ2,...,ξn)Ω(ξ1,ξ2,...,ξn),  Δ=nr,s=1Mi,j=0Δrs,ijξirξjs,  Ω=nr,s=1Ni,j=0Ωrs,ijξirξjs,   (2.4)

    in which Δrs,ij and Ωrs,ij are amounts to be remained. Replacing Eq (2.4) into Eq (2.1) can be achieved the below form as:

    Ψ=Δ(ϖ1eα1x+β1y+γ1zδ1t,...,ϖneαnx+βny+γnzδnt)Ω(ϖ1eα1x+β1y+γ1zδ1t,...,ϖneαnx+βny+γnzδnt), (2.5)

    and also we have

    Δt=ni=1Δξiξi,t,  Ωt=ni=1Ωξiξi,t,  Δx=ni=1Δξiξi,x,  Ωx=ni=1Ωξiξi,x,  Δy=ni=1Δξiξi,y,  Δz=ni=1Δξiξi,z, Ωy=ni=1Ωξiξi,y,  Ωz=ni=1Ωξiξi,z,  (2.6)
       Ψt=Ωni=1Δξiξi,tΔni=1Ωξiξi,tΩ2,  Ψx=Ωni=1Δξiξi,xΔni=1Ωξiξi,xΩ2,
    Ψy=Ωni=1Δξiξi,yΔni=1Ωξiξi,yΩ2,  Ψz=Ωni=1Δξiξi,zΔni=1Ωξiξi,zΩ2.

    The one-wave function of the solution will be reduced as below form

    Ψ=2Δ1Ω1,  Ω1=1+ρ1+ρ2 eα1x+β1y+γ1zδ1t,  Δ1=σ1+σ2 eα1x+β1y+γ1zδ1t, (3.1)

    in which ρ1,ρ2,σ1 and σ2 are unspecified amounts. Substituting (3.1) into Eq (1.8), the below cases will be concluded as:

    Case I:

    α1=α1,  β1=β1,  ρ1=ρ1,  ρ2=  σ2(ρ1+1)σ1  ,  σ1=σ1,  σ2=σ2,  δ1=δ1,  γ1=γ1,  γ2=γ2. (3.2)

    Case II:

    α1=α1,  β1=  αα1  3γ1α1δ1λ1+α1γ1ω1δ1γ1λ3+γ12ω3  α13δ1λ2+γ1ω2,  ρ1=1,  ρ2=ρ2,   (3.3)
    σ1=σ1,  σ2=σ2,  δ1=δ1,  γ1=γ1,  γ2=γ2.

    Case III:

    α1=  γ1(αδ1λ2αγ1ω2δ1λ3+γ1ω3)δ1λ1γ1ω1,  β1=αγ1,  ρ1=ρ1,  ρ2=ρ2,   (3.4)
    σ1=σ1,  σ2=σ2,  δ1=δ1,    γ1=γ1,  γ2=γ2.

    Case IV:

    α1=ϑ,  β1=β1, or  β1=αγ1,   ρ1=1,  ρ2=ρ2,  σ1=σ1,  σ2=σ2, δ1=ϑ3+γ1ω2λ2,  γ1=γ1,  γ2=γ2,  (3.5)

    in which ϑ, solves the equation λ1ϑ4+(γ1λ3αγ1λ2)ϑ3+(γ1λ1ω2γ1λ2ω1)ϑγ21ω3λ2+γ21λ3ω2=0.

    For example, the 1-wave solution for Case III will be considered as

    Ψ=2σ1+σ2e  γ1(αδ1λ2αγ1ω2δ1λ3+γ1ω3)δ1λ1γ1ω1  xαγ1y+γ1zδ1t1+ρ1+ρ2e  γ1(αδ1λ2αγ1ω2δ1λ3+γ1ω3)δ1λ1γ1ω1    xαγ1y+γ1zδ1t. (3.6)

    The two-wave function of the solution will be reduced as below form

    Ψ=2Δ2Ω2, (3.7)
    Ω2=1+σ1eα1x+β1y+γ1zδ1t+σ2eα2x+β2y+γ2zδ2t+σ1σ2σ12e(α1+α2)x+(β1+β2)y+(γ1+γ2)z(δ1+δ2)t,   (3.8)
    Δ2=ρ1eα1x+β1y+γ1zδ1t+ρ2eα2x+β2y+γ2zδ2t+ρ1ρ2ρ12e(α1+α2)x+(β1+β2)y+(γ1+γ2)z(δ1+δ2)t.

    Substituting (3.7) in terms of (3.8) into Eq (1.8), the below cases will be resulted as:

    Case I:

    α1=0,  α2=α2,  β1=β1,  β2=αγ2,  δ1=  γ1(β1ω2+ω3γ1)β1λ2+γ1λ3,  δ2=  γ2(αγ2ω 2α2ω1γ2ω3)αγ2λ2α2λ1γ2λ3,γ1=γ1,  γ2=γ2,  ρ1=0,  ρ2=ρ2, (3.9)
      ρ12=ρ12,  σ1=σ1,  σ2=σ2,  σ12=1.

    Case II:

    α1=α1,  α2=0,  β1=αγ1,  β2=β2,  δ1=  γ1(αγ1ω 2α1ω1ω3γ1)αγ1λ2α1λ1γ1λ3,  δ2=  γ2(β2ω2+γ2ω3)β2λ2+γ2λ3,γ1=γ1,  γ2=γ2,  ρ1=0,  (3.10)
     ρ2=ρ2,  ρ12=ρ12,  σ1=σ1,  σ2=σ2,  σ12=1.

    Case III:

    α1=α1,  α2=α2,  β1=αγ1,  β2=αγ2,  δ1=  γ1(αγ1ω 2α1ω1ω3γ1)αγ1λ2α1λ1γ1λ3,  δ2=  γ2(αγ2ω 2α2ω1γ2ω3)αγ2λ2α2λ1γ2λ3,γ1=γ1,  γ2=γ2,  ρ1=0, (3.11)
      ρ2=ρ2,  ρ12=ρ12,  σ1=σ1,  σ2=σ2,  σ12=1.

    Case IV:

    α1=0,  α2=α2,  β1=β1,  β2=αγ2,  δ1=  γ1(β1ω2+ω3γ1)β1λ2+γ1λ3,  δ2=  γ2(αγ2ω 2α2ω1γ2ω3)αγ2λ2α2λ1γ2λ3,γ1=γ1,  γ2=γ2,  ρ1=ρ1,  ρ2=0, (3.12)
      ρ12=ρ12,  σ1=σ1,  σ2=σ2,  σ12=1.

    Case V:

    α1=α1,  α2=α2,  β1=αγ1,  β2=αγ2,  δ1=  γ1(αγ1ω 2α1ω1ω3γ1)αγ1λ2α1λ1γ1λ3,  δ2=  γ2(αγ2ω 2α2ω1γ2ω3)αγ2λ2α2λ1γ2λ3,γ1=γ1,  γ2=γ2,  ρ1=ρ1,  ρ2=0, (3.13)
      ρ12=ρ12,  σ1=σ1,  σ2=σ2,  σ12=1.

    Case VI:

    α1=α1,  α2=α2,  β1=αα1γ2  α2,  β2=αγ2,  δ1=  α1γ2(αγ 2ω2α2ω1γ2ω3)α2(αγ2λ2α2λ1γ2λ3),  δ2=  γ2(αγ2ω 2α2ω1γ2ω3)αγ2λ2α2λ1γ2λ3,γ1=γ1,  γ2=γ2,  ρ1=ρ1,  ρ2=0, (3.14)
      ρ12=ρ12,  σ1=σ1,  σ2=σ2,  σ12=σ12.

    Case VII:

    α1=α1,  α2=α2,  β1=αα1γ2  α2,  β2=αγ2,  δ1=  α1γ2(αγ 2ω2α2ω1γ2ω3)α2(αγ2λ2α2λ1γ2λ3),  δ2=  γ2(αγ2ω 2α2ω1γ2ω3)αγ2λ2α2λ1γ2λ3,γ1=  α1γ2  α2  ,  γ2=γ2,  ρ1=ρ1,  ρ2=ρ2, (3.15)
      ρ12=ρ12,  σ1=0,  σ2=σ2,  σ12=σ12.

    Case VIII:

    α1=12α2,  α2=α2,  β1=12αγ2,  β2=αγ2,  δ1=12  γ2(αγ2ω2α2ω1γ2ω3)αγ2λ2α2λ1γ2λ3,  δ2=  γ2(αγ2ω 2α2ω1γ2ω3)αγ2λ2α2λ1γ2λ3,γ1=12γ2,  γ2=γ2,  ρ1=ρ1,  (3.16)
     ρ2=ρ2,  ρ12=ρ12,  σ1=σ1,  σ2=σ2,  σ12=0.

    For instance, the 2-wave solution for Case I will be taken as

    Ψ1=2ρ2e  tγ2(αγ 2ω2α2ω1γ2ω3)αγ2λ2α2λ1γ2λ3  +xα2yαγ2+zγ2  /(1+σ1etγ1(β1ω2+ω3γ1)β1λ2+γ1λ3  +yβ1+zγ1  + (3.17)
    σ2e  tγ2(αγ2ω2α2ω1γ2ω3)αγ2λ2α2λ1γ2λ3  +xα2yαγ2+zγ2  +σ1σ2e  tγ1(β1ω2+ω3γ1)β1λ2+γ1λ3    tγ2(αγ2ω2α2ω1γ2ω3)αγ2λ2α2λ1γ2λ3  +xα2+yβ1yαγ2+zγ1+zγ2).

    Also, the 2-wave solution for Case III will be considered as

    Ψ2=2ρ2e  tγ2(αγ 2ω2α2ω1γ2ω3)αγ2λ2α2λ1γ2λ3  +xα2yαγ2+zγ2  /(1+σ1etγ1(αγ1ω2α1ω1ω3γ1)αγ1λ2α1λ1γ1λ3  +xα1yαγ1+zγ1  + (3.18)
    σ2e  tγ2(αγ2ω2α2ω1γ2ω3)αγ2λ2α2λ1γ2λ3  +xα2yαγ2+zγ2  +σ1σ2e  tγ1(αγ1ω2α1ω1ω3γ1)αγ1λ2α1λ1γ1λ3    tγ2(αγ2ω2α2ω1γ2ω3)αγ2λ2α2λ1γ2λ3  +xα1+xα2yαγ1yαγ2+zγ1+zγ2).

    And finally, the resulting two-wave solution for Case VIII will be read as

    Ψ3(x,y,z,t)=2(ρ1e12  tγ2(αγ2ω2α2ω1γ2ω3)αγ2λ2α2λ1γ2λ3  +12xα212yαγ2+12zγ2  +ρ2e  tγ2(αγ2ω2α2ω1γ2ω3)αγ2λ2α2λ1γ2λ3  +xα2yαγ2+zγ2  + (3.19)
    ρ1ρ2ρ12 e32tγ2(αγ2ω2α2ω1γ2ω3)αγ2λ2α2λ1γ2λ3  +32xα232yαγ2+32zγ2  )/(1+σ1e12  tγ2(αγ2ω2α2ω1γ2ω3)αγ2λ2α2λ1γ2λ3  +12xα212yαγ2+12zγ2  
    +σ2e  tγ2(αγ2ω2α2ω1γ2ω3)αγ2λ2α2λ1γ2λ3  +xα2yαγ2+zγ2  ).

    The triple-wave function of the solution will be reduced as below form

    Ψ=Δ3Ω3, (3.20)
    Ω3=1+ρ1eΛ1+ρ2eΛ2+ρ3eΛ3+ρ1ρ2ρ12eΛ1+Λ2+ρ1ρ3ρ13eΛ1+Λ3+ρ2ρ3ρ23eΛ2+Λ3+ρ1ρ2ρ3ρ12ρ13ρ23eΛ1+Λ2+Λ3,   (3.21)
    Δ3=2σ1eΛ1+2σ2eΛ2+2σ1σ2σ12eΛ1+Λ2+2σ1σ3σ13eΛ1+Λ3+2σ2σ3σ23eΛ2+Λ3+
    2σ1σ2σ3σ12σ13σ23eΛ1+Λ2+Λ3,

    in which Λi=αix+βiy+γixδit,i=1,2,3. Inserting (3.20) in terms of (3.21) into Eq (1.8), the below case will be reached:

    αi=αi,  γi=γi,  σi=σi,  ρ1=0,  ρ2=ρ2,  ρ3=ρ3,  βi=αγi,  δi=  γi(αγiω 2αiω1ω3γi)αγiλ2αiλ1γiλ3,  i=1,2,3,  ρij=ρij,  σij=1,  i,j=1,2,3, ij. (3.22)

    Then, the solution is

    Ψ1=2σ1eΛ1+2σ2eΛ2+2σ1σ2eΛ1+Λ2+2σ1σ3eΛ1+Λ3+2σ2σ3eΛ2+Λ3+2σ1σ2σ3eΛ1+Λ2+Λ3  1+ρ2eΛ2+ρ3eΛ3+ρ2ρ3ρ23eΛ2+Λ3  , (3.23)

    in which Λi=αixαγiy+γixγi(αγiω 2αiω1ω3γi)αγiλ2αiλ1γiλ3  t,i=1,2,3 and Ψ=Ψ(x,y,z,t).

    The triangular periodic waves for Eq (1.8) can be assumed as below:

    f=exp(τ1)+a16exp(τ1)+cosh(τ2)+cos(τ3)+a17,   τ1=4i=1aixi+a5,   τ2=9i=6aixi5+a10,    (4.1)
    τ3=14i=11aixi10+a15,  (x1,x2,x3,x4)=(x,t)=(x,y,z,t),   Ψ(x,t)=v0+2ln(f)x, (4.2)

    in which ai,i=1,...,17 are unfound values. Substituting (4.1) and (4.2) into Eq (1.8) the below consequences will be gained:

    Case I:

    f=ea4t+a1x  y(a3a14ω3a4a12ω2a4a13ω3)a14ω2  +a3z+a5  +cosh(a9ty(a8a14ω3a9a12ω2a 9a13ω3)a14ω2  +a8z+a 10)+cos(ta14+ya12+za13+a15). (4.3)

    Appending (4.3) into (4.1) and (4.2), the soliton-periodic wave solution of Eq (1.8) as below will be achieved:

    Ψ1=v0+2a1ea4t+a1x  y(a3a14ω3a4a12ω2a4a13ω3)a14ω2  +a3z+a5  f. (4.4)

    By selecting the suitable values of parameters including

    a1=1,a3=1.5,a4=2,a5=1.5,a8=2,a9=1.5,a10=1,a12=2,a13=2.5,a14=1,a15=3.2,ω2=1.5,ω3=1.2,

    the graphical display of soliton-periodic wave solution is offered in Figure 1 such as 3D plot and density plot.

    Figure 1.  The soliton-periodic solution (4.4) at (f1, f2) x=2,y=2, (f3, f4) x=0,y=0, and (f5, f6) x=2,y=2.

    Case II:

    f=ea4t+a1x+ya2  (a1  3a 14a4a13ω2)za14ω2  +a5  +cosh(a9t+ya7+  a9a13za14  +a10)+cos(ta14+ya12+za13+a 15). (4.5)

    Plugging (4.5) into (4.1) and (4.2), obtain a soliton-periodic wave solution of Eq (1.8) as below case:

    Ψ2=v0+2a1ea4t+a1x+ya2  (a13a14a4a13ω2)za14ω2  +a5  f. (4.6)

    Case III:

    f=ea4t+a1x  y(a3ω3+a4λ3)ω2  +a3z+a5  +cosh(a9t  y(a8ω3+a9λ3)ω2  +a8z+a10)+cos(  a13ω3yω2  +za13+a15). (4.7)

    Incorporating (4.7) into (4.1) and (4.2), the soliton-periodic wave solution of Eq (1.8) will be gained as below:

    Ψ3=v0+2a1ea4t+a1x  y(a3ω3+a4λ3)ω2  +a3z+a5  f. (4.8)

    Case IV:

    f=ea4t  y(a3a9ω3a4a7ω2a4a8ω3)a9ω2  +a3z+a5  +cosh(a9t+ya7+a8z+a10)+cos(xa11+a15). (4.9)

    Plugging (4.9) into (4.1) and (4.2), the soliton-periodic wave solution of Eq (1.8) will be achieved as below:

    Ψ4=v02sin(xa11+a15)a11f. (4.10)

    Case V:

    f=ea4t+ya2+  a4a8za9  +a5+cosh(a9t+ya7+a8z+a10)+cos(xa11  (a112ω3+ω 1ω2)a11yω22  +  a 11  3zω2  +a15). (4.11)

    Incorporating (4.11) into (4.1) and (4.2), we capture a soliton-periodic wave solution of Eq (1.8) as below:

    Ψ5=v02sin(xa11  (a11  2ω3+ω1ω2)a11yω2  2  + a113zω2  +a15)a11f. (4.12)

    Case VI:

    f=ea4t+  ω2(a3a9a4a8)xa9a112  13  y(2αa9a116ω2+2a9a11  6ω3+3αa32a9ω2  33αa3a4a8ω23+2a9a114ω1ω2)ω23(a3a9a4a8)  +a3z+a5+cosh(a9t13  yΩa4ω2  3(a3a9a4a8)(a92a116+ω22(a3a9a4a8)2)+a8z+a10)+cos(xa11  αa113yω2  +a113zω2  +a15), (4.13)
    Ω=3αa4a8ω25(a3a9a4a8)3+αa92a116ω23(a3a9+2a4a8)(a3a9a4a8)a92a114ω22(a3a9a4a8)2(a112ω3+ω1ω2)a92a1112(3a42a9  2)(αω2ω3).

    Appending (4.13) into (4.1) and (4.2), the soliton-periodic wave solution of Eq (1.8) will be obtained as below:

    Ψ5=v0+2f[  ω2(a3a9a4a8)a9a112ea4t+  ω2(a3a9a4a8)xa9a112  13  y(2αa9a116ω2+2a9a116ω3+3αa32a9ω233αa3a4a8ω23+2a9a114ω1ω2)ω23(a3a9a4a8)+a3z+a5  +sin(xa11+  αa113yω2    a113zω2  a15)a11]. (4.14)

    By selecting suitable values of parameters including

    α=0.5,a3=1,a4=1.5,a5=2,a8=2,a9=1.5,a10=1,a11=2,a13=2.5,a14=1,a15=3.2,ω1=1.5,ω2=1.2,ω3=1.5,

    the graphical display of soliton-periodic wave solution is offered in Figure 2 such as 3D chart and density chart.

    Figure 2.  The soliton-periodic solution (4.14) at (f1, f2) x=2,y=2, (f3, f4) x=0,y=0, and (f5, f6) x=2,y=2.

    Case VII:

    f=e  Ωa9ta113  +a1x16  y(6a14a115ω33a14a113ω1ω2+2a117ω1ω2+6Ωa1a8a112ω2ω3+3Ωa1a8ω1ω2  2)a115ω22a1  +  (a13a113+Ωa8ω2)za11  3ω2  +a5  + (4.15)
    cosh(a9t+ya7+a8z+a10)+cos(xa1112  (2a112ω3+ω1ω2)a11yω22  +  a113zω2  +a15),
    Ω=a162a14a112+a116.

    Incorporating (4.15) into (4.1) and (4.2), the soliton-periodic wave solution of Eq (1.8) will be received as below:

    Ψ5=v0+2f[a1e  Ωa9ta113  +a1x16  y(6a14a115ω33a14a11  3ω1ω2+2a117ω1ω2+6Ωa1a8a112ω2ω3+3Ωa1a8ω1ω22)a115ω22a1  +  (a13a11  3+Ωa8ω2)za113ω2  +a5  sin(xa1112  (2a11  2ω3+ω1ω2)a11yω22  +  a113zω2  +a15)a11]. (4.16)

    By selecting the specific amounts of parameters including

    α=0.5,a1=1,a4=a9=ω1=ω3=1.5,,a5=2,a7=1.5,a8=2,a10=1,a11=2,a13=2.5,a14=1,a15=3.2,ω2=1.2,

    the graphical display of soliton-periodic wave solution is offered in Figure 3 such as 3D chart, density chart, and 2D chart and below cases:

    (f3) y=1,2,3,  (f6) y=1,2,3, and  (f9) y=1,2,3.
    Figure 3.  The soliton-periodic solution (4.16) at (f1, f2) z=2,t=2, (f4, f5) z=0,t=0, and (f7, f8) z=2,t=2.

    Three function containing exponential, hyperbolic, and triangular periodic waves for Eq (1.8) can be assumed as the following:

    f=exp(τ1)+a16exp(τ1)+sinh(τ2)+sin(τ3)+a17,   τ1=4i=1aixi+a5,   τ2=9i=6aixi5+a10, (5.1)
    τ3=14i=11aixi10+a15,  (x1,x2,x3,x4)=(x,t)=(x,y,z,t),   Ψ(x,t)=v0+2ln(f)x, (5.2)

    in which ai,i=1,...,17 are unfound values. Substituting (5.2) into Eq (1.8) the below consequences will be gained:

    Case I:

    f=ea4t+a1x  (a3a14ω3a4a12ω2a4a13ω3)ya14ω2  +a3z+a5  +sinh(a9t  (a8a14ω3a9a12ω2a9a13ω3)ya14ω2  +a8z+a10) (5.3)
    +sin(ta14+ya12+za13+a15).

    Substituting (5.3) into (5.1) and (5.2), the cross-kink solution of Eq (1.8) will be gained as the following:

    Ψ1=v0+2a1ea4t+a1x  (a3a14ω3a4a12ω2a4a13ω3)ya14ω2  +a3z+a5  f. (5.4)

    By selecting the suitable values of parameters including

    a1=1,a3=3,a4=2,a5=1.5,a8=1.7,a9=1.5,a10=1.5,a12=2.5,a13=1.1,a14=2.1,a15=3.2,ω2=1,ω3=1.5,

    the graphical representation of cross-kink wave solution is offered in Figure 4 such 3D plot and density plot.

    Figure 4.  The cross-kink wave solution (5.4) at (f1, f2) x=3,y=2, (f3, f4) x=0,y=2, and (f5, f6) x=3,y=2.

    Case II:

    f=ea4t+a1x+a2y  (a1  3a14a4a13ω2)za14ω2  +a5  +sinh(a9t+a7y+  a9a13za14  +a10)+sin(ta14+ya12+za13+a15). (5.5)

    Putting (5.5) into (5.1) and (5.2), the cross-kink solution of Eq (1.8) will be received as the following:

    Ψ2=v0+2a1ea4t+a1x+a2y(a13a14a4a13ω2)za14ω2  +a5  f. (5.6)

    By selecting the suitable values of parameters including

    a1=1,a3=3,a4=2,a5=1.5,a8=1.7,a9=1.5,a10=1.5,a12=2.5,a13=1.1,a14=2.1,a15=3.2,ω2=1,ω3=1.5,

    the graphical exhibition of cross-kink solution is offered in Figure 5 such as 3D chart and density chart.

    Figure 5.  The cross-kink wave solution (5.6) at (f1, f2) x=3,y=2, (f3, f4) x=0,y=2, and (f5, f6) x=3,y=2.

    Case III:

    f=ea4t+a1x  (a3ω3+a4λ3)yω2  +a3z+a5  +sinh(a9t  (a8ω3+a9λ 3)yω2  +a8z+a10)+sin(  a13ω3yω2  +a13z+a15). (5.7)

    Plugging (5.7) into (5.1) and (5.2), the cross-kink solution of Eq (1.8) will be obtained as the following:

    Ψ3=v0+2a1ea4t+a1x  (a3ω3+a4λ3)yω2  +a3z+a5  f. (5.8)

    Case IV:

    f=e  a9(a112(ω3a12ω1ω2)(a1  3+a3ω2)a15ω1ω2)ta12a7a112ω22  +a1x  a3(ω3a12ω1ω2)ya12ω2  +a3z+a5  +sin(xa11+a15)+sinh(a9t+a7y  (a13+a3ω2)a12a7a112ω2za11  2(ω3a12ω1ω2)(a13+a3ω2)a15ω1ω2  +a10). (5.9)

    Inserting (5.9) into (5.1) and (5.2), the cross-kink solution of Eq (1.8) will be gained as the following:

    Ψ4=v0+2a1e  a9(a11  2(ω3a12ω1ω2)(a13+a3ω2)a15ω1ω2)ta12a7a112ω2  2  +a1x  a3(ω3a12ω1ω2)ya12ω2  +a3z+a5  +cos(xa11+a15)a11  f. (5.10)

    Case V:

    f=ea4t+a2y+  a4a8za9  +a5  +sinh(a9t+a7y+a8z+a10)+sin(xa11  a11(a112ω3+ω1ω2)yω22  +  a113zω2  +a15). (5.11)

    Substituting (5.11) into (5.1) and (5.2), the cross-kink solution of Eq (1.8) will be received as the following:

    Ψ5=v0+2cos(xa11  a11(a112ω3+ω1ω2)yω22+  a113zω2  +a15)a11  f. (5.12)

    By selecting the suitable values of parameters including

    a1=1,a3=3,a4=2,a5=1.5,a8=1.7,a9=1.5,a10=1.5,a12=2.5,a13=1.1,a14=2.1,a15=3.2,ω2=1,ω3=1.5,

    the graphical exhibition of cross-kink solution is offered in Figure 6 such as 3D chart and density chart.

    Figure 6.  The cross-kink wave solution (5.6) at (f1, f2) x=3,y=2, (f3, f4) x=0,y=2, and (f5, f6) x=3,y=2.

    Case VI:

    f=e  Ωa9ta113  +a1x112  (3Ωa1a8ω2(4a112ω3+3ω1ω2)12a14a115ω3a113ω1ω2(9a142a112a122a11  4))ya115ω22a1  +  (a13a113+Ωa8ω2)zω2a113  +a5  sinh(a9t+a7y+a8z+a10)+sin(xa11112  a11(12a112ω3+7ω1ω2)yω22  +  a311zω2+a15), (5.13)
    Ω=3a164a14a112+a116.

    Putting (5.13) into (5.1) and (5.2), the cross-kink solution of Eq (1.8) will be concluded as the following:

    Ψ5=v0+2f[a1e  Ωa9ta113  +a1x112  (3Ωa1a8ω2(4a112ω3+3ω1ω2)12a14a11  5ω3a113ω1ω2(9a1  42a112a122a114))ya115ω22a1  +  (a13a11  3+Ωa8ω2)zω2a113  +a5  +cos(xa11112  a11(12a112ω3+7ω1ω2)yω2  2  +  a113zω2  +a15)a11]. (5.14)

    By selecting suitable values of parameters including

    α=0.5,a3=1,a4=a9=ω1=ω3=1.5,a5=2,a8=2,a10=1,a11=2,a13=2.5,a14=1,a15=3.2,ω2=1.2,

    the graphical representation of cross-kink solution is offered in Figure 7 such as 3D chart and density chart.

    Figure 7.  The cross-kink wave solution (5.14) at (f1, f2) x=2,y=2, (f3, f4) x=0,y=0, and (f5, f6) x=2,y=2.

    Case VII:

    f=e  Ωa9ta113  +a1x16 y(6a14a115ω33a14a113ω1ω2+2a11  7ω1ω2+6Ωa1a8a11  2ω2ω3+3Ωa1a8ω1 ω22)a115ω22a1  + (a13a113+Ωa8ω2)za113ω2  +a5  +cosh(a9t+ya7+a8z+a10)+cos(xa 1112  (2a112ω3+ω1ω2)a11yω22  +  a113zω2  +a15), (5.15)
    Ω=a162a14a112+a116.

    Inserting (5.15) into (5.1) and (5.2), the cross-kink solution of Eq (1.8) will be gained as the following:

    Ψ5=v0+2f[a1e  Ωa9ta113  +a1x16  y(6a14a115ω33a14a11  3ω1ω2+2a117ω1ω2+6Ωa1a8a112ω2ω3+3Ωa1a8ω1ω22)a115ω22a1  +  (a13a11  3+Ωa8ω2)za113ω2  +a5  sin(xa1112  (2a11  2ω3+ω1ω2)a11yω22  +  a113zω2  +a15)a11]. (5.16)

    By selecting suitable values of parameters including

    α=0.5,a1=1,a5=1.5,a8=2,a9=0.5,a10=1.5,a15=3.2,ω1=1.5,ω2=1.2,ω3=1.5,

    the graphical representation of cross-kink solution is offered in Figure 8 such as 3D chart and density chart.

    Figure 8.  The lump-periodic solution (5.16) at (f1, f2) z=2, (f4, f5) z=0, and (f7, f8) z=2.

    Three function containing exponential, hyperbolic, and triangular periodic waves for Eq (1.8) can be assumed as the following:

    f=exp(τ1)+a16exp(τ1)+tanh(τ2)+tan(τ3)+a17,   τ1=4i=1aixi+a5,   τ2=9i=6aixi5+a10,    (6.1)
    τ3=14i=11aixi10+a15,  (x1,x2,x3,x4)=(x,t)=(x,y,z,t),   Ψ(x,t)=v0+2ln(f)x, (6.2)

    in which ai,i=1,...,17 are unfound values. Substituting (6.2) into Eq (1.8) the below consequences will be gained:

    Case I:

    f=ea4t+a1x+a2y  (a1  3+a4λ2)zω2  +a5  +tanh(ya7+a10)+tan(ya12+a15)+a17. (6.3)

    Substituting (6.3) into (6.1) and (6.2), we can capture a solitary wave solution of Eq (1.8) as the following:

    Ψ1=v0+2a1ea4t+a1x+a2y(a13+a4λ2)zω2  +a5  f. (6.4)

    Case II:

    f=ea1x+a2y  a13zω2  +a5  +tanh(ya7+a10)+tan(ya12+a15)+a17. (6.5)

    Inserting (6.5) into (6.1) and (6.2), we can capture a solitary wave solution of Eq (1.8) as below:

    Ψ2=v0+2a1ea1x+a2y  a13zω2  +a5  f. (6.6)

    Case III:

    f=ea4t+a1x+a2y  (a1  3ω3+a4λ3ω2)zω2ω3  +a5  +tanh(ta9+ya7  za9λ3  ω3  +a10)+tan(ya12+a15)+a17. (6.7)

    Putting (6.7) into (6.1) and (6.2), the solitary wave solution of Eq (1.8) can be indicated as below:

    Ψ3=v0+2a1ea4t+a1x+a2y(a13ω3+a4λ3ω2)zω2ω3  +a5  f. (6.8)

    Case IV:

    f=ea4t+a1x+a2y+za3+a5  tanh(  ya8ω3  ω2  za8a10)tan(  ya13ω3  ω2  a13za15)+a17. (6.9)

    Putting (6.9) into (6.1) and (6.2), the solitary wave of Eq (1.8) can be stated as the following:

    Ψ4=v0+2a1ea4t+a1x+a2y+za3+a5  f. (6.10)

    By selecting the suitable values of parameters including

    a1=1,a2=1.5,a3=2,a4=2,a5=1.5,a8=2,a9=1.5,a10=1.5,a13=2,a13=1.1,a15=3.2,a17=2,ω2=1.5,
    ω3=1.2,λ2=1,λ3=1.5,x=2,t=2,

    with the following components

    α=  a13ω3a1ω1ω2a2ω22a3ω2ω3+a4λ2ω3a4λ3ω2  ω2a13  ,  λ1=  a13a2ω2+a13a3ω3+a2a4λ2ω2+a3a4λ2ω3  a1a4ω2,

    the graphical representation of rational solitary solution is offered in Figure 9 such as 3D chart and density chart.

    Figure 9.  The rational solitary wave solution (6.10) at (f1) z=0, (f2) z=1, and (f3) z=3.

    Case V:

     f=ea1x  a3ω3yω2  +za3+a5  tanh(  ya8ω3  ω2za8a10)tan(  ya13ω3  ω2  a13za15)+a17. (6.11)

    Incorporating (6.11) into (6.1) and (6.2), the solitary solution of Eq (1.8) will be gained as below:

    Ψ5=v0+2a1ea1x  a3ω3yω2  +za3+a5  f,  α=  a12ω3ω1ω2  a12ω2  . (6.12)

    Case VI:

    f=ea4t+a1x  (a3ω3+a4λ3)yω2  +za3+a5  +tanh(ta9  y(a8ω3+a9λ3)ω2  +za8+a10)tan( ya13ω3  ω2  a13za15)+a17. (6.13)

    Appending (6.13) into (6.1) and (6.2), the solitary solution of Eq (1.8) can be written as the following:

    Ψ6=v0+2a1ea4t+a1x  (a3ω 3+a4λ3)yω2  +za3+a5  f,  α=  a12ω3ω1ω2  a12ω2  . (6.14)

    Case VII:

    f=ea4t+a1x  a3ω3yω2  +za3+a5  +tanh(ta9  ya8ω3  ω2  +za8+a10)tan(  ya13ω3  ω2  a13za15)+a17. (6.15)

    Appending (6.15) into (6.1) and (6.2), the solitary solution of Eq (1.8) will be obtained as below:

    Ψ7=v0+2a1ea4t+a1x  a3ω3yω2  +za3+a5  f,  α=  a12ω3ω1ω2  a1  2ω2,  λ2=  λ3ω2  ω3  . (6.16)

    By choosing the specific amounts of parameters including

    a1=1,a2=1.5,a3=2,a4=2,a5=1.5,a8=2,a9=1.3,a10=1.5,a13=2,a13=2,a15=3.2,a17=2,ω2=1.5,ω3=1.2,λ2=1,λ3=1.5,x=2,t=2,

    the graphical representation of rational solitary solution is offered in Figure 10 such as 3D chart and density chart.

    Figure 10.  The rational solitary wave solution (6.16) at (f1) z=0, (f2) z=1, and (f3) z=3.

    Case VIII:

    f=ea4t+a1x+a2y  (a1  3a 14a4a13ω2)za14ω2  +a5  +tanh(ta9+ya7+  za9a13  a14  +a10)+tan(ta14+ya12+a13z+a 15)+a17. (6.17)

    Incorporating (6.17) into (6.1) and (6.2), the solitary solution of Eq (1.8) will be received as below:

    Ψ8=v0+2a1ea4t+a1x+a2y(a13a14a4a13ω2)za14ω2  +a5  f,  α=  a1  2ω3ω1ω2  a12ω2,  λ2=  a13ω2  a14,  λ3=a13ω3  a14  . (6.18)

    Case IX:

    f=ea4t+a1x  (a3a14ω3a4a12ω2a4a13ω3)ya14ω2  +a3z+a5   (6.19)
    +tanh(ta9  y(a8a14ω3a9a12ω2a 9a13ω3)a14ω2  +za8+a 10) (6.20)
    +tan(ta14+ya12+za13+a15)+a17. (6.21)

    Appending (6.21) into (6.1) and (6.2), the solitary solution of Eq (1.8) can be reached as below:

    Ψ9=v0+2a1ea4t+a1x  (a3a14ω3a4a12ω2a4a13ω3)ya14ω2  +a3z+a5  f, α=  a12ω3ω1ω2  a12ω2,  (6.22)
    λ1=  a12(a12ω2+a 13ω3)a14ω2, λ3=  a12ω2+a13ω3  a 14  .

    Case X:

    f=ea4t+a1x  a3ω3yω2+a3z+a5  +tanh(  ya8ω3ω2  +za8+a10)+tan(ta14 ya13ω3  ω2  +za13+a15)+a17. (6.23)

    Inserting (6.21) into (6.1) and (6.2), the solitary solution of Eq (1.8) will be gained as below form:

    Ψ10=v0+2a1ea4t+a1x  a3ω3yω2  +a3z+a5  f, α=a12ω3ω1ω2  a1  2ω2  , λ2=  λ3ω2  ω3  . (6.24)

    By choosing the specific amounts of parameters including

    a1=1,a3=1.5,a4=2,a5=1.5,a7=2,a8=2,a9=2.1,a10=1.5,a13=2,a13=2,a14=2.5,a15=3.2,a17=2,ω2=1.5,ω3=1.2,λ3=1.5,x=2,t=2,

    the graphical representation of rational solitary solution is offered in Figure 11 such as 3D chart and density chart.

    Figure 11.  The rational solitary wave solution (6.24) at (f1) z=2, (f2) z=0, and (f3) z=2.

    Case XI:

    f=ea4t+a1x+a2y  (a1  3a 14a4a13ω2)za14ω2  +a5  +tanh(  ta14a8  a13  +ya7+za8+a10)+tan(ta14+za13+a15)+a17. (6.25)

    Inserting (6.25) into (6.1) and (6.2), the solitary solution of Eq (1.8) can be stated as below case:

    Ψ11=v0+2a1ea4t+a1x+a2y(a13a14a4a13ω2)za14ω2  +a5  f, α=  a1  3a2+a1a3ω1+a2a3ω2+a3  2ω3  a13a3, (6.26)
    λ1=  a13a2a12a13a1  3a3a122+a2a3a12a13ω2+a2a3a132ω3+a2a3a13a14λ3  a3a12a1a14  +a32a122ω2a32a12a13ω3a32a12a14λ3  a3a12a1a14  ,
    λ2=  a13(a12ω2+a13ω3+a14λ3)a12a14  .

    Case XII:

    f=ea4t+a1x  a3ω3yω2  +a3z+a5  +tanh(ta9+ya7  za7ω2  ω3  +a10)+tan(ta14 ya13ω3  ω2  +za13+a15)+a17. (6.27)

    Inserting (6.27) into (6.1) and (6.2), the solitary solution of Eq (1.8) will be gained as below form:

    Ψ12=v0+2a1ea4t+a1x  a3ω3yω2  +a3z+a5  f, α=a13a2+a1a3ω1+a2a3ω2+a32ω3  a13a3, (6.28)
    λ1=  a13a2a12a13a1  3a3a122+a2a3a12a13ω2+a2a3a132ω3+a2a3a13a14λ3  a3a12a1a14  +a32a122ω2a32a12a13ω3a32a12a14λ3  a3a12a1a14  ,
    λ2=  a13(a12ω2+a13ω3+a14λ3)a12a14  .

    In the current section, we will analyze the continuous modulational instability of the nonlinear generalized KP equation. In addition, the feasibility of the localized waves in the present system is certified by linear stability analysis. First, we search the perturbed solution for the giving Eq (1.8) of the form

    Ψ(x,y,z,t)=ζ+δ Θ, (7.1)

    where Θ=Θ(x,y,z,t) and ζ is a steady state solution. Inserting (7.1) into Eq (1.8), become

    δ  4x3yΘ+αδ  4x3zΘ+3δ2(  2x2  Θ) yΘ+3δ2(xΘ)  2xyΘ+3αδ2(  2x2  Θ)  zΘ+ (7.2)
    3αδ2(  xΘ) 2xzΘ+λ1δ  2txΘ+λ2δ2tyΘ+λ3δ 2tzΘ+ω1δ2xzΘ+ω2δ2yzΘ+ω3δ 2z2  Θ=0,

    by linerization Eq (7.2), one gets

    δ  4x3yΘ+αδ  4x3zΘ+λ1δ  2txΘ+λ2δ  2tyΘ+λ3δ  2tzΘ+ω1δ  2xzΘ+ω2δ  2yzΘ+ω3δ  2z2  Θ=0. (7.3)

    Theorem 7.1. Assume that the solution of Eq (7.3) has the following case as

    Θ(x,y,z,t)=ρ1 ei(Mx+Ny+Pz+Bt), (7.4)

    in which M,N,P are the normalized wave numbers, by plugging (7.4) into Eq (7.3), separation the coefficients of ei(Mx+Ny+Pz+Wt) one gets

    B(M,N,P)=  M3Pα+M3NMPω1NPω2P2ω3  Mλ1+Nλ2+Pλ3  . (7.5)

    Proof. By putting (7.4) into (7.3), becomes

    δ  4x3y¯Θ+αδ  4x3z¯Θ+λ1δ  2tx¯Θ+λ2δ  2ty¯Φ+λ3δ  2tz¯Θ+ω1δ  2xz¯Θ+ω2δ  2yz¯Θ+ω3δ  2z2  ¯Θ (7.6)
    =ei(Mx+Ny+Pz+Bt)δρ1(M3Pα+M3NMPω1MBλ1NPω2NBλ2P2ω3PBλ3),

    in which ¯Θ=Θ(x,y,z,t). By solving and simplifying we can determine the function of B(M,N,P) as the following

    B(M,N,P)=  M3Pα+M3NMPω1NPω2P2ω3  Mλ1+Nλ2+Pλ3  . (7.7)

    Accordingly, the considered solution was obtained. Thereupon the proof is perfect.

    It is easy to notice that modulation stability occurs when Mλ1+Nλ2+Pλ30. So, the modulation stability achieve spectrum Υ(B) will be as below form:

    Υ(B)=  M3Pα+M3NMPω1NPω2P2ω3  Mλ1+Nλ2+Pλ3  . (7.8)

    In Figures 12-14 can be discovered that while the sign of B(M,N,P) is positive for all quantity of M. Furthermore, in Figure 12 can be observed if the B(M,N,P) is positive or negative for some quantities of M. Finally, in Figure 13 and 14 can be perceived that while the sign of B(M,N,P) is positive for all quantity of M.

    Figure 12.  The graphic representation Υ(B) for the wave number M via considering the diverse quantities λ1=1,λ2=1.5,λ3=2,ω1=2.2,ω2=2,ω3=3,α=0.5.
    Figure 13.  The graphic representation Υ(B) for the wave number M via considering the diverse quantities λ1=1,λ2=1.5,λ3=2,ω1=2.2,ω2=2,ω3=3,α=0.5.
    Figure 14.  The graphic representation Υ(B) for the wave number M via considering the diverse quantities λ1=1,λ2=1.5,λ3=2,ω1=2.2,ω2=2,ω3=3,α=0.5.

    Via employing the wave alteration ξ=k(x+ay+bzct) in Eq (1.8) once can gain to the below ODE as

    k2(αb+a)Ψ+6k(αb+a)ΨΨ+(abω2acλ2+b2ω3bcλ3+bω1cλ1)Ψ=0, (8.1)

    in which Ψ=Ψ(ξ) and Ψ=dΨdξ. According to the SIVP [16,17] and by multiplying Eq (8.1) with Ψ and integrating once respect to ξ, the following stationary integral will be arises

    J=0[A1(ΨΨ12(Ψ2)+13A2(Ψ3+12A3(Ψ2]dξ, (8.2)

    in which

    A1=k2(αb+a),   A2=6k(αb+a),   A3=abω2acλ2+b2ω3bcλ3+bω1cλ1.

    We utilize the solitary wave function as the following

    u(ξ)=δ sech(μξ). (8.3)

    Hence, the stationary integral transforms to

    J=130k2δ2μ21αbk2μ221ak2μ28αbδkμ8aδkμ+5abω25acλ2+5b2ω35bcλ 3+5bω15cλ1). (8.4)

    Based on the SIVP and using derivative J respect to A and B, one get

    JA=115k2δμ21αbk2μ221ak2μ28αbδkμ8aδkμ+5abω25acλ2+5b2ω35bcλ3+5bω15cλ1)+130k2δ2μ(8αbkμ8akμ)=0, (8.5)

    and

    JB=130k2δ221αbk2μ221a k2μ28αbδkμ8aδkμ+5abω25acλ2+5b2ω35bcλ3+5bω15cλ1)+130k2δ2μ(42αbk2μ42ak2μ8αbδk8aδk)=0. (8.6)

    Solve the Eqs (8.5) and (8.6), become

    δ=±212  abω2acλ2+b2ω3bcλ3+bω1cλ1  (21αb+21a)(abω2acλ2+b2ω3bcλ3+bω1cλ1),    (8.7)
    μ=±121  (21αb+21a)(abω2acλ2+b2ω3bcλ3+bω1cλ1)(αb+a)k.

    The condition can be obtained as below

    (αb+a)(abω2acλ2+b2ω3bcλ3+bω1cλ1)<0. (8.8)

    Finally, the solitary solution received by utilizing of SIVP can be reached as

    Ψ(x,y,z,t)=δ sech[kμ(x+ay+bzct)]. (8.9)

    We utilize the bright wave function as the following

    u(ξ)=δ sech2(μξ). (8.10)

    Hence, the stationary integral transforms to

    J=  2δ2μ(120αbk2μ2+120ak2μ2+35αbδkμ+35aδkμ14abω2  105+14acλ214b2ω3+14bcλ314bω1+14cλ1)105. (8.11)

    Based on the SIVP and using derivative J respect to A and B, one get

    JA=  4δμ(120αbk2μ2+120ak2μ2+35αbδkμ+35aδkμ14abω2+14acλ2  105+14b2ω3+14bcλ314bω1+14cλ1)2δ2μ(35αbkμ+35akμ)105=0. (8.12)

    and

    JB=  2δ2(120αbk2μ2+120a k2μ2+35αbδkμ+35aδkμ14abω2+14acλ214b2ω3  105++14bcλ314bω1+14cλ1)2δ2μ(240αbk2μ+240ak2μ+35αbδk+35aδk)105=0. (8.13)

    Solve the Eqs (8.12) and (8.13), become

    δ=±485  abω2acλ2+b2ω3bcλ3+bω1cλ1  (21αb+21a)(abω2acλ2+b2ω3bcλ3+bω1cλ1),    (8.14)
    μ=±130  (21αb+21a)(abω2acλ2+b2ω3bcλ3+bω1cλ1)(αb+a)k.

    The condition of definition of the above relations can be expressed as

    (αb+a)(abω2acλ2+b2ω3bcλ3+bω1cλ1)<0. (8.15)

    Finally, the solitary solution gained by utilizing of SIVP will be as

    Ψ(x,y,z,t)=δ sech2[kμ(x+ay+bzct)]. (8.16)

    Assume the dark soliton wave solution be as the below case as

    u(ξ)=δ tanh2(μξ). (8.17)

    Hence, the stationary integral transforms to

    J=  2δ2μ(120αbk2μ2120ak2μ2+35αbδkμ+35aδkμ+14abω2  105+14acλ2+14b2ω314bcλ3+14bω114cλ1)105. (8.18)

    Based on the SIVP and using derivative J respect to A and B, one get

    Jδ=  4δμ(120αbk2μ2120ak2μ2+35αbδkμ+35aδkμ+14abω214acλ2  105++14b2ω314bcλ3+14bω114cλ1)+2δ2μ(35αbkμ+35akμ)105=0, (8.19)

    and

    Jμ=  2δ2(120αbk2μ2120a k2μ2+35αbδkμ+35aδkμ+14abω214acλ2+105+14b2ω314bcλ3+14bω114cλ1)+2δ2μ(240αbk2μ240ak2μ+35αbδk+35aδk)105=0. (8.20)

    Solve the Eqs (8.19) and (8.20), one get

    δ=485  abω2acλ2+b2ω3bcλ3+bω1cλ1  (21αb+21a)(abω2acλ2+b2ω3bcλ3+bω1cλ1),    (8.21)
    μ=±130  (21αb+21a)(abω2acλ2+b2ω3bcλ3+bω1cλ1)(αb+a)k.

    The condition of definition of the above relations can be presented the following form

    (αb+a)(abω2acλ2+b2ω3bcλ3+bω1cλ1)<0. (8.22)

    Finally, the dark solution acquired by utilizing of SIVP will be as

    Ψ(x,y,z,t)=δ tanh2[kμ(x+ay+bzct)]. (8.23)

    Let the singular soliton wave solution be as the below case as

    u(ξ)=δ csch2(μξ). (8.24)

    Then, the stationary integral transforms to

    J=  2δ2μ(120αbk2μ2120ak2μ270αbδkμ70aδkμ+14abω2  105+14acλ2+14b2ω314bcλ3+14bω114cλ1)105. (8.25)

    Based on the SIVP and using derivative J respect to A and B, become

    Jδ=  4δμ(120αbk2μ2120ak2μ270αbδkμ70aδkμ+14abω214acλ2105++14b2ω314bcλ3+14bω114cλ1)2δ2μ(70αbkμ70akμ)105=0 (8.26)

    and

    Jμ=  2δ2(120αbk2μ2120ak2μ270αbδkμ70aδkμ+14abω214acλ2+14b2ω3  105+14bcλ3+14bω114cλ1)2δ2μ(240αbk2μ240ak2μ70αbδk70aδk)105=0. (8.27)

    Solve the Eqs (8.26) and (8.27), one get

    δ=±245  abω2acλ2+b2ω3bcλ3+bω1cλ1  (21αb+21a)(abω2acλ2+b2ω3bcλ3+bω1cλ1),    (8.28)
    μ=±130  (21αb+21a)(abω2acλ2+b2ω3bcλ3+bω1cλ1)(αb+a)k.

    The condition of definition of the above relations can be presented as the below form as

    (αb+a)(abω2acλ2+b2ω3bcλ3+bω1cλ1)<0. (8.29)

    Finally, the singular solution acquired by utilizing of SIVP will be as

    Ψ(x,y,z,t)=δ csch2[kμ(x+ay+bzct)]. (8.30)

    In this article, the MEFM employed for searching the MSSs for the gKP equation, which contains 1-wave, 2-wave, and 3-wave solutions. The periodic wave, cross-kink, and solitary wave solutions have been obtained. In continuing, the modulation instability applied to discuss the stability of earned solutions. It is quite visible that these novel schemes have plenty of family solutions containing rational exponential, hyperbolic, and periodic functions with selecting particular parameters. Also, the semi-inverse variational principle will be used for the gKP equation. Four major cases containing the solitary, bright, dark and singular wave solutions were studied from four different ansatzes.

    By means of symbolic computation, these analytical solutions and corresponding rogue waves are obtained. Via various curve plots, density plot and three-dimensional plots, dynamical characteristics of these rouge waves are exhibited. Because of the strong nonlinear characteristic of Hirota bilinear method, the test function constructed by the Hirota operator, which can be regarded as the test function constructed by considered model. The results are beneficial to the study of the plasma, optics, acoustics, fluid dynamics and fluid mechanics. All computations in this paper have been employed quickly with the help of the Maple 18. Moreover, the method applied in this paper provides an effective tool to obtain exact solutions of nonlinear system and can in common use for other NLEEs.

    This work is supported by the Education and scientific research project for young and middle-aged teachers of Fujian Province (No. JAT.190666-No.JAT200469)

    The authors declare that there is no conflict of interests regarding the publication of this paper.


    Acknowledgments



    The present research work was funded by the University of Modena and Reggio Emilia, Grant COFIFAR2021DIPARTIMENTO to VR Lo Vasco.

    Conflict of interest



    All authors declare no conflicts of interest in this paper.

    Author contribution



    Matteo Corradini: formal analysis, methodology. Marta Checchi: methodology. Carla Palumbo: conceptualization, funding acquisition. Vincenza R. Lo Vasco: conceptualization, project administration, supervision, funding acquisition, writing.

    [1] Sharma A, Sharma L, Goyal R (2021) Molecular signaling pathways and essential metabolic elements in bone remodeling: An implication of therapeutic targets for bone diseases. Curr Drug Targets 22: 77-104. https://doi.org/10.2174/1389450121666200910160404
    [2] Zaidi M (2007) Skeletal remodeling in health and disease. Nat Med 13: 791-801. https://doi.org/10.1038/nm1593
    [3] Khosla S, Riggs BL (2005) Pathophysiology of age-related bone loss and osteoporosis. Endocrin Metab Clin North Am 34: 1015-1030. https://doi.org/10.1016/j.ecl.2005.07.009
    [4] Marie PJ (2015) Osteoblast dysfunctions in bone diseases: from cellular and molecular mechanisms to therapeutic strategies. Cell Mol Life Sci 72: 1347-1361. https://doi.org/10.1007/s00018-014-1801-2
    [5] Kawai M, Modder UI, Khosla S, et al. (2011) Emerging therapeutic opportunities for skeletal restoration. Nat Rev Drug Discov 10: 141-156. https://doi.org/10.1038/nrd3299
    [6] Gether U (2000) Uncovering molecular mechanisms involved in activation of G protein-coupled receptors. Endocr Rev 21: 90-113. https://doi.org/10.1210/edrv.21.1.0390
    [7] Wu M, Deng L, Zhu G, et al. (2010) G Protein and its signaling pathway in bone development and disease. Front Biosci (Landmark Ed) 15: 957-985. https://doi.org/10.2741/3656
    [8] Bowler WB, Gallagher JA, Bilbe G (1998) G-protein coupled receptors in bone. Front Biosci 3: 769-780. https://doi.org/10.2741/a320
    [9] Conklin BR, Hsiao EC, Claeysen S, et al. (2008) Engineering GPCR signaling pathways with RASSLs. Nat Methods 5: 673-678. https://doi.org/10.1038/nmeth.1232
    [10] Saggio I, Remoli C, Spica E, et al. (2014) Constitutive expression of Gsα(R201C) in mice produces a heriTable, direct replica of human fibrous dysplasia bone pathology and demonstrates its natural history. J Bone Miner Res 29: 2357-2368. https://doi.org/10.1002/jbmr.2267
    [11] Remoli C, Michienzi S, Sacchetti B, et al. (2015) Osteoblast-specific expression of the fibrous dysplasia (FD)-causing mutation Gsα(R201C) produces a high bone mass phenotype but does not reproduce FD in the mouse. J Bone Miner Res 30: 1030-1043. https://doi.org/10.1002/jbmr.2425
    [12] Daisy CS, Romanelli A, Checchi M, et al. (2022) Expression and localization of Phosphoinositide-specific Phospholipases C in cultured, differentiating and stimulated human osteoblasts. J Cell Signal 3: 44-61. https://doi.org/10.33696/Signaling.3.067
    [13] Berridge MJ, Irvine RF (1984) Inositol triphosphate, a novel second messenger in cellular signal transduction. Nature 312: 315-321. https://doi.org/10.1038/312315a0
    [14] Berridge MJ (1981) Phosphatidylinositol hydrolysis: a multifunctional transducing mechanism. Mol Cell Endocrinol 24: 115-140. https://doi.org/10.1016/0303-7207(81)90055-1
    [15] Berridge MJ (2009) Inositol trisphosphate and calcium signalling mechanisms. Biochim Biophys Acta 1793: 933-940. https://doi.org/10.1016/j.bbamcr.2008.10.005
    [16] Tang X, Edwards EM, Holmes BB, et al. (2006) Role of phospholipase C and diacylglyceride lipase pathway in arachidonic acid release and acetylcholine-induced vascular relaxation in rabbit aorta. Am J Physiol Heart Circ Physiol 290: H37-H45. https://doi.org/10.1152/ajpheart.00491.2005
    [17] Suh PG, Park J, Manzoli L, et al. (2008) Multiple roles of phosphoinositide-specific phospholipase C isozymes. BMB Rep 41: 415-434. https://doi.org/10.5483/bmbrep.2008.41.6.415
    [18] Mebarek S, Abousalham A, Magne D, et al. (2013) Phospholipases of mineralization competent cells and matrix vesicles: roles in physiological and pathological mineralizations. Int J Mol Sci 14: 5036-5129. https://doi.org/10.3390/ijms14035036
    [19] Bahk YY, Song H, Baek SH, et al. (1998) Localization of two forms of phospholipase C-beta1, a and b, in C6Bu-1 cells. Biochim Biophys Acta 1389: 76-80. https://doi.org/10.1016/S0005-2760(97)00128-8
    [20] Mao GF, Kunapuli SP, Koneti Rao A (2000) Evidence for two alternatively spliced forms of phospholipase C-beta2 in haematopoietic cells. Brit J Haematol 110: 402-408. https://doi.org/10.1046/j.1365-2141.2000.02201.x
    [21] Kim MJ, Min DS, Ryu SH, et al. (1998) A cytosolic, galphaq- and betagamma-insensitive splice variant of phospholipase C-beta4. J Biol Chem 273: 3618-3624. https://doi.org/10.1074/jbc.273.6.3618
    [22] Lee SB, Rhee SG (1996) Molecular cloning, splice variants, expression, and purification of phospholipase C-delta 4. J Biol Chem 271: 25-31. https://doi.org/10.1074/jbc.271.1.25
    [23] Sorli SC, Bunney TD, Sugden PH, et al. (2005) Signaling properties and expression in normal and tumor tissues of two phospholipase C epsilon splice variants. Oncogene 24: 90-100. https://doi.org/10.1038/sj.onc.1208168
    [24] Lo Vasco VR, Fabrizi C, Artico M, et al. (2007) Expression of phosphoinositide-specific phospholipase C isoenzymes in cultured astrocytes. J Cell Biochem 100: 952-959. https://doi.org/10.1002/jcb.21048
    [25] Lo Vasco VR, Pacini L, Di Raimo T (2011) Expression of phosphoinositide-specific phospholipase C isoforms in human umbilical vein endothelial cells. J Clin Pathol 64: 911-915. http://dx.doi.org/10.1136/jclinpath-2011-200096
    [26] Lo Vasco VR, Leopizzi M, Chiappetta C, et al. (2012) Expression of Phosphoinositide-specific Phospholipase C enzymes in normal endometrium and in endometriosis. Fertil Steril 98: 410-414. https://doi.org/10.1016/j.fertnstert.2012.04.020
    [27] Lo Vasco VR, Leopizzi M, Chiappetta C, et al. (2013) Expression of Phosphoinositide-specific phospholipase C enzymes in human osteosarcoma cell lines. J Cell Commun Signal 7: 141-150. https://doi.org/10.1007/s12079-013-0194-6
    [28] Fais P, Leopizzi M, Di Maio V, et al. (2019) Phosphoinositide-specific Phospholipase C in normal human liver and in alcohol abuse. J Cell Biochem 120: 7907-7917. https://doi.org/10.1002/jcb.28067
    [29] Leopizzi M, Di Maio V, Della Rocca C, et al. (2020) Supernatants from human osteosarcoma cultured cell lines induce modifications in growth and differentiation of THP-1 cells and phosphoinositide-specific phospholipase C enzymes. Multidiscip Cancer Invest 4: 1-12. https://doi.org/10.30699/mci.4.4.430
    [30] Hwang JI, Kim HS, Lee JR, et al. (2005) The interaction of phospholipase C-beta3 with Shank2 regulates mGluR-mediated calcium signal. J Biol Chem 280: 12467-12473. https://doi.org/10.1074/jbc.M410740200
    [31] Bertagnolo V, Mazzoni M, Ricci D, et al. (1995) Identification of PI-PLC beta 1, gamma 1, and delta 1 in rat liver: subcellular distribution and relationship to inositol lipid nuclear signalling. Cell Signal 7: 669-678. https://doi.org/10.1016/0898-6568(95)00036-O
    [32] Nishida T, Huang TP, Seiyama A, et al. (1998) Endothelin A-receptor blockade worsens endotoxin-induced hepatic microcirculatory changes and necrosis. Gastroenterology 115: 412-420. https://doi.org/10.1016/s0016-5085(98)70208-2
    [33] Lo Vasco VR, Fabrizi C, Fumagalli L, et al. (2010) Expression of phosphoinositide specific phospholipase C isoenzymes in cultured astrocytes activated after stimulation with Lipopolysaccharide. J Cell Biochem 109: 1006-1012. https://doi.org/10.1002/jcb.22480
    [34] Lo Vasco VR, Leopizzi M, Chiappetta C, et al. (2013) Lypopolysaccharide down-regulates the expression of selected phospholipase C genes in cultured endothelial cells. Inflammation 36: 862-868. https://doi.org/10.1007/s10753-013-9613-3
    [35] Lo Vasco VR, Leopizzi M, Puggioni C, et al. (2014) Neuropeptide Y significantly reduces the expression of PLCB2, PLCD1 and moderately decreases selected PLC genes in endothelial cells. Mol Cell Biochem 394: 43-52. https://doi.org/10.1007/s11010-014-2079-2
    [36] Lo Vasco VR, Leopizzi M, Puggioni C, et al. (2014) Fibroblast growth factor acts upon the transcription of phospholipase C genes in human umbilical vein endothelial cells. Mol Cell Biochem 388: 51-59. https://doi.org/10.1007/s11010-013-1898-x
    [37] Di Raimo T, Leopizzi M, Mangino G, et al. (2016) Different expression and subcellular localization of Phosphoinositide-specific Phospholipase C enzymes in differently polarized macrophages. J Cell Commun Signal 10: 283-293. https://doi.org/0.1007/s12079-016-0335-9
    [38] Lo Vasco VR, Fabrizi C, Panetta B, et al. (2010) Expression pattern and sub cellular distribution of Phosphoinositide specific Phospholipase C enzymes after treatment with U-73122 in rat astrocytoma cells. J Cell Biochem 110: 1005-1012. https://doi.org/10.1002/jcb.22614
    [39] Lo Vasco VR, Leopizzi M, Di Maio V, et al. (2016) U-73122 reduces the cell growth in cultured MG-63 ostesarcoma cell line involving Phosphoinositide-specific Phospholipases C. Springerplus 5: 156. https://doi.org/10.1186/s40064-016-1768-6
    [40] Lo Vasco VR (2010) Signalling in the genomic era. J Cell Commun Signal 4: 115-117. https://doi.org/10.1007/s12079-010-0091-1
    [41] Urciuoli E, Leopizzi M, Di Maio V, et al. (2020) Phosphoinositide-specific phospholipase C isoforms are conveyed by osteosarcoma-derived extracellular vesicles. J Cell Commun Signal 14: 417-426. https://doi.org/10.1007/s12079-020-00571-6
    [42] Bleasdale JE, Thakur NR, Gremban RS, et al. (1990) Selective inhibition of receptor-coupled phospholipase C dependent processes in human platelets and polymorphonuclear neutrophils. J Pharmacol Exp Ther 255: 756-768.
    [43] Hellberg C, Molony L, Zheng L, et al. (1996) Ca2+ signalling mechanisms of the β2 integrin on neutrophils: involvement of phospholipase Cγ2 and Ins (1, 4, 5) P3. Biochem J 317: 403-409. https://doi.org/10.1042/bj3170403
    [44] Smallridge RC, Kiang JG, Gist ID, et al. (1992) U-73122, an aminosteroid phospholipase C antagonist, non-competitively inhibits thyrotropin-releasing hormone effects in GH3 rat pituitary cells. Endocrinology 131: 1883-1888. https://doi.org/10.1210/endo.131.4.1396332
    [45] Yang YR, Follo MY, Cocco L, et al. (2013) The physiological roles of primary phospholipase C. Adv Biol Regul 53: 232-241. https://doi.org/10.1016/j.jbior.2013.08.003
    [46] Ramazzotti G, Bavelloni A, Blalock W, et al. (2016) BMP-2 Induced Expression of PLCβ1 That is a Positive Regulator of Osteoblast Differentiation. J Cell Physiol 231: 623-629. https://doi.org/10.1002/jcp.25107
    [47] Rammler DH, Zaffaroni A (1967) Biological implications of DMSO based on a review of its chemical properties. Ann N Y Acad Sci 141: 13-23. https://doi.org/10.1111/j.1749-6632.1967.tb34861.x
    [48] Jacob SW, Herschler R (1986) Pharmacology of DMSO. Cryobiology 23: 14-27. https://doi.org/10.1016/0011-2240(86)90014-3
    [49] Li X, Majdi S, Dunevall J, et al. (2015) Quantitative measurement of transmitters in individual vesicles in the cytoplasm of single cells with nanotip electrodes. Angew Chem Int Ed Engl 54: 11978-11982. https://doi.org/10.1002/anie.201504839
    [50] Norwood TH, Zeigler CJ, Martin GM (1976) Dimethyl sulfoxide enhances polyethylene glycol-mediated somatic cell fusion. Somatic Cell Genet 2: 263-270. https://doi.org/10.1007/bf01538964
    [51] Norwood TH, Zeigler CJ (1982) The use of dimethyl sulfoxide in mammalian cell fusion. Techniques in Somatic Cell Genetics . Boston: Springer. https://doi.org/10.1007/978-1-4684-4271-7_4
    [52] Santos NC, Figueira-Coelho J, Martins-Silva J, et al. (2003) Multidisciplinary utilization of dimethyl sulfoxide: pharmacological, cellular, and molecular aspects. Biochem Pharmacol 65: 1035-1041. https://doi.org/10.1016/s0006-2952(03)00002-9
    [53] Spray DC, Campos de Carvalho AC, Mendez-Otero R (2010) Chemical induction of cardiac differentiation in p19 embryonal carcinoma stem cells. Stem Cells Dev 19: 403-412. https://doi.org/10.1089/scd.2009.0234
    [54] Galvao J, Davis B, Tilley M (2013) Unexpected low-dose toxicity of the universal solvent DMSO. FASEB J 28: 1317-1330. https://doi.org/10.1096/fj.13-235440
    [55] Best BP (2015) Cryoprotectant toxicity: facts, issues, and questions. Rejuvenation Res 18: 422-36. https://doi.org/10.1089/rej.2014.1656
    [56] Majdi S, Najafinobar N, Dunevall J, et al. (2017) DMSO chemically alters cell membranes to slow exocytosis and increase the fraction of partial transmitter released. Chembiochem 18: 1898-1902. https://doi.org/10.1002/cbic.201700410
    [57] de Ménorval MA, Mir LM, Fernández ML, et al. (2012) Effects of dimethyl sulfoxide in cholesterol-containing lipid membranes: a comparative study of experiments in silico and with cells. PLoS One 7: e41733. https://doi.org/10.1371/journal.pone.0041733
    [58] Notman R, Noro M, O'Malley B, et al. (2006) Molecular basis for dimethylsulfoxide (DMSO) action on lipid membranes. J Am Chem Soc 128: 13982-13983. https://doi.org/10.1021/ja063363t
    [59] Gurtovenko AA, Anwar J (2007) Modulating the structure and properties of cell membranes: the molecular mechanism of action of dimethyl sulfoxide. J Phys Chem B 111: 10453-10460. https://doi.org/10.1021/jp073113e
    [60] Hughes ZE, Mark AE, Mancera RL (2012) Molecular dynamics simulations of the interactions of DMSO with DPPC and DOPC phospholipid membranes. J Phys Chem B 116: 11911-11923. https://doi.org/10.1021/jp3035538
    [61] Gironi B, Kahveci Z, McGill B, et al. (2020) Effect of DMSO on the mechanical and structural properties of mmodel and biological mmembranes. Biophys J 119: 274-286. https://doi.org/10.1016/j.bpj.2020.05.037
    [62] Vickers AE, Fisher RL (2004) Organ slices for the evaluation of human drug toxicity. Chem Biol Interact 150: 87-96. https://doi.org/10.1016/j.cbi.2004.09.005
    [63] Thomas MJ, Smith A, Head DH, et al. (2005) Airway inflammation: chemokine-induced neutrophilia and the class I phosphoinositide 3-kinases. Eur J Immunol 35: 1283-1291. https://doi.org/10.1002/eji.200425634
    [64] Cenni B, Picard D (1999) Two compounds commonly used for phospholipase C inhibition activate the nuclear estrogen receptors. Biochem Biophys Res Commun 261: 340-344. https://doi.org/10.1006/bbrc.1999.1017
    [65] Feisst C, Albert D, Steinhilber D, et al. (2005) The aminosteroid phospholipase C antagonist U-73122 (1-[6-[[17-beta-3-methoxyestra-1,3,5(10)-trien-17-yl]amino]hexyl]-1Hpyrrole-2,5-dione) potently inhibits human 5-lipoxygenase in vivo and in vitro. Mol Pharmacol 67: 1751-1757. https://doi.org/10.1124/mol.105.011007
    [66] Hughes S, Gibson WJ, Young JM (2000) The interaction of U-73122 with the histamine H-1 receptor: implications for the use of U-73122 in defining H-1 receptor-coupled signalling pathways. Naunyn Schmiedeberg's Arch Pharmacol 362: 555-558. https://doi.org/10.1007/s002100000326
    [67] Walker EM, Bispham JR, Hill SJ (1998) Nonselective effects of the putative phospholipase C inhibitor, U73122, on adenosine A(1) receptor-mediated signal transduction events in Chinese hamster ovary cells. Biochem Pharmacol 56: 1455-1462. https://doi.org/10.1016/s0006-2952(98)00256-1
    [68] Berven LA, Barritt GJ (1995) Evidence obtained using single hepatocytes for inhibition by the phospholipase-C inhibitor U73122 of store-operated Ca2+ inflow. Biochem Pharmacol 49: 1373-1379. https://doi.org/10.1016/0006-2952(95)00050-a
    [69] Pulcinelli FM, Gresele P, Bonuglia M, et al. (1998) Evidence for separate effects of U73122 on phospholipase C and calcium channels in human platelets. Biochem Pharmacol 56: 1481-1484. https://doi.org/10.1016/s0006-2952(98)00146-4
    [70] Boujard D, Anselme B, Cullin C, et al. (2014) Vesikulärer Transport. Zell- und Molekularbiologie im Überblick . Berlin: Springer Spektrum. https://doi.org/10.1007/978-3-642-41761-0
    [71] Bray D (1992) Cell Movements: From Molecules to Motility. New York: Garland Publishing Inc. https://doi.org/10.4324/9780203833582
    [72] Chhabra ES, Higgs HN (2007) The many faces of actin: matching assembly factors with cellular structures. Nat Cell Biol 9: 1110-1121. https://doi.org/10.1038/ncb1007-1110
    [73] Lauffenburger DA, Horwitz FA (1996) Cell migration: a physically integrated molecular process. Cell 84: 359-369. https://doi.org/10.1016/s0092-8674(00)81280-5
    [74] Ridley AJ, Schwartz MA, Burridge K, et al. (2003) Cell migration: integrating signals from front to back. Science 302: 1704-1709. https://doi.org/10.1126/science.1092053
    [75] Pollard TD, Borisy GG (2003) Cellular motility driven by assembly and disassembly of actin filaments. Cell 112: 453-465. https://doi.org/10.1016/s0092-8674(03)00120-x
    [76] Chan AY, Raft S, Bailly M, et al. (1998) EGF stimulates an increase in actin nucleation and filament number at the leading edge of the lamellipod in mammary adenocarcinoma cells. J Cell Sci 111: 199-211. https://doi.org/10.1242/jcs.111.2.199
    [77] Damsky CH, Ilić D (2002) Integrin signaling: it's where the action is. Curr Opin Cell Biol 14: 594-602. https://doi.org/10.1016/s0955-0674(02)00368-x
    [78] Hynes RO (2002) Integrins: bidirectional, allosteric signaling machines. Cell 110: 673-687. https://doi.org/10.1016/s0092-8674(02)00971-6
    [79] Wells A (1999) EGF receptor. Int J Biochem Cell Biol 31: 637-643. https://doi.org/10.1016/s1357-2725(99)00015-1
    [80] DeMali KA, Wennerberg K, Burridge K (2003) Integrin signaling to the actin cytoskeleton. Curr Opin Cell Biol 15: 572-582. https://doi.org/10.1016/s0955-0674(03)00109-1
    [81] Aspenström P (1999) Effectors for the Rho GTPases. Curr Opin Cell Biol 11: 95-102. https://doi.org/10.1016/s0955-0674(99)80011-8
    [82] DeMali KA, Burridge K (2003) Coupling membrane protrusion and cell adhesion. J Cell Sci 116: 2389-2397. https://doi.org/10.1242/jcs.00605
    [83] Burridge K, Wennerberg K (2004) Rho and Rac take center stage. Cell 116: 167-179. https://doi.org/10.1016/s0092-8674(04)00003-0
    [84] Beningo KA, Dembo M, Kaverina I, et al. (2001) Nascent focal adhesions are responsible for the generation of strong propulsive forces in migrating fibroblasts. J Cell Biol 153: 881-888. https://doi.org/10.1083/jcb.153.4.881
    [85] Balaban NQ, Schwarz US, Riveline D, et al. (2001) Force and focal adhesion assembly: a close relationship studied using elastic micropatterned substrates. Nat Cell Biol 3: 466-472. https://doi.org/10.1038/35074532
    [86] Abercrombie M (1980) The Croonian Lecture, 1978-The crawling movement of metazoan cells. Proc R Soc Lond, Ser B 207: 129-147. https://doi.org/10.1098/rspb.1980.0017
    [87] Hinz B, Alt W, Johnen C, et al. (1999) Quantifying lamella dynamics of cultured cells by SACED, a new computer-assisted motion analysis. Exp Cell Res 251: 234-243. https://doi.org/10.1006/excr.1999.4541
    [88] Araki N, Egami Y, Watanabe Y, et al. (2007) Phosphoinositide metabolism during membrane ruffling and macropinosome formation in EGF-stimulated A431 cells. Exp Cell Res 313: 1496-1507. https://doi.org/10.1016/j.yexcr.2007.02.012
    [89] Rilla K, Koistinen A (2015) Correlative light and electron microscopy reveals the HAS3-induced dorsal plasma membrane ruffles. Int J Cell Biol 2015: 769163. https://doi.org/10.1155/2015/769163
    [90] Hoon JL, Wong WK, Koh CG (2012) Functions and regulation of circular dorsal ruffles. Mol Cell Biol 32: 4246-4257. https://doi.org/10.1128/MCB.00551-12
    [91] Bernitt E, Döbereiner HG, Gov NS, et al. (2017) Fronts and waves of actin polymerization in a bistability-based mechanism of circular dorsal ruffles. Nat Commun 8: 15863. https://doi.org/10.1038/ncomms15863
    [92] Li G, D'Souza-Schorey C, Barbieri MA, et al. (1997) Uncoupling of membrane ruffling and pinocytosis during Ras signal transduction. J Biol Chem 272: 10337-10340. https://doi.org/10.1074/jbc.272.16.10337
    [93] Jones SJ, Boyde A (1976) Morphological changes of osteoblasts in vitro. Cell Tissue Res 166: 101-107. https://doi.org/10.1007/BF00215129
    [94] Lohmann CH, Schwartz Z, Köster G, et al. (2000) Phagocytosis of wear debris by osteoblasts affects differentiation and local factor production in a manner dependent on particle composition. Biomaterials 21: 551-561. https://doi.org/10.1016/s0142-9612(99)00211-2
    [95] Sala G, Dituri F, Raimondi C, et al. (2008) PPhospholipase Cγ1 is required for metastasis development and progression. Cancer Res 68: 10187-10196. https://doi.org/10.1158/0008-5472.CAN-08-1181
    [96] Barber MA, Welch HCE (2006) PI3K and RAC signaling in leukocyte and cancer cell migration. Bull Cancer 93: 10044-10052.
    [97] Marée AF, Grieneisen VA, Edelstein-Keshet L (2012) How cells integrate complex stimuli: the effect of feedback from phosphoinositides and cell shape on cell polarization and motility. PLoS computational biology 8: e1002402. https://doi.org/10.1371/journal.pcbi.1002402
    [98] Razzini G, Berrie CP, Vignati S, et al. (2000) Novel functional PI 3-kinase antagonists inhibit cell growth and tumorigenicity in human cancer cell lines. FASEB J 14: 1179-1187. https://doi.org/10.1096/fasebj.14.9.1179
    [99] Baugher PJ, Krishnamoorthy L, Price JE (2005) Rac1 and Rac3 isoform activation is involved in the invasive and metastatic phenotype of human breast cancer cells. Breast Cancer Res 7: R965-R974. https://doi.org/10.1186/bcr1329
    [100] Takenawa T, Miki H (2001) WASP and WAVE family proteins: key molecules for rapid rearrangement of cortical actin filaments and cell movement. J Cell Sci 114: 1801-1809. https://doi.org/10.1242/jcs.114.10.1801
    [101] Zhao B, Wang HB, Lu YJ, et al. (2011) Transport of receptors, receptor signaling complexes and ion channels via neuropeptide-secretory vesicles. Cell Res 21: 741-753. https://doi.org/10.1038/cr.2011.29
    [102] Illenberger D, Schwald F, Gierschik P (1997) Characterization and purification from bovine neutrophils of a soluble guanine-nucleotide-binding protein that mediates isozyme-specific stimulation of phospholipase C beta2. Eur J Biochem 246: 71-77. https://doi.org/10.1111/j.1432-1033.1997.t01-1-00071.x
    [103] Illenberger D, Schwald F, Pimmer D, et al. (1998) Stimulation of phospholipase C-β2 by the Rho GTPases Cdc42Hs and Rac1. EMBO J 17: 6241-6249. https://doi.org/10.1093/emboj/17.21.6241
    [104] Illenberger D, Walliser C, Strobel J, et al. (2003) Rac2 regulation of phospholipase C-β 2 activity and mode of membrane interactions in intact cells. J Biol Chem 278: 8645-8652. https://doi.org/10.1074/jbc.m211971200
    [105] Reid DW, Nicchitta CV (2015) Diversity and selectivity in mRNA translation on the endoplasmic reticulum. Nat Rev Mol Cell Biol 16: 221-231. https://doi.org/10.1038/nrm3958
    [106] Rapoport TA (2007) Protein translocation across the eukaryotic endoplasmic reticulum and bacterial plasma membranes. Nature 450: 663-669. https://doi.org/10.1038/nature06384
    [107] Braakman I, Hebert DN (2013) Protein folding in the endoplasmic reticulum. Cold Spring Harb Perspect Biol 5: a013201. https://doi.org/10.1101/cshperspect.a013201
    [108] Fagone P, Jackowski S (2009) Membrane phospholipid synthesis and endoplasmic reticulum function. J Lipid Res 50: S311-S316. https://doi.org/10.1194/jlr.R800049-JLR200
    [109] Hebert DN, Garman SC, Molinari M (2005) The glycan code of the endoplasmic reticulum: asparagine-linked carbohydrates as protein maturation and quality-control tags. Trends Cell Biol 15: 364-370. https://doi.org/10.1016/j.tcb.2005.05.007
    [110] Clapham DE (2007) Calcium signaling. Cell 131: 1047-1058. https://doi.org/10.1016/j.cell.2007.11.028
    [111] Westrate LM, Lee JE, Prinz WA, et al. (2015) Form follows function: the importance of endoplasmic reticulum shape. Annu Rev Biochem 84: 791-811. https://doi.org/10.1146/annurev-biochem-072711-163501
    [112] Jan CH, Williams CC, Weissman JS (2014) Principles of ER cotranslational translocation revealed by proximity-specific ribosome profiling. Science 346: 1257521. https://doi.org/10.1126/science.1257521
    [113] Glick BS, Nakano A (2009) Membrane traffic within the Golgi apparatus. Annu Rev Cell Dev Biol 25: 113-132. https://doi.org/10.1146/annurev.cellbio.24.110707.175421
    [114] Appenzeller-Herzog C, Hauri HP (2006) The ER-Golgi intermediate compartment (ERGIC): in search of its identity and function. J Cell Sci 119: 2173-2183. https://doi.org/10.1242/jcs.03019
    [115] Jaffe LF (1983) Sources of calcium in egg activation: a review and hypothesis. Dev Biol 99: 265-276. https://doi.org/10.1016/0012-1606(83)90276-2
    [116] Eisen A, Reynolds GT (1985) Source and sinks for the calcium released during fertilization of single sea urchin eggs. J Cell Biol 100: 1522-1527. https://doi.org/10.1083/jcb.100.5.1522
    [117] Samtleben S, Jaepel J, Fecher C, et al. (2013) Direct imaging of ER calcium with targeted-esterase induced dye loading (TED). J Vis Exp 75: e50317. https://doi.org/10.3791/50317
    [118] Oude Weernink PA, Han L, Jakobs KH, et al. (2007) Dynamic phospholipid signaling by G protein-coupled receptors. Biochim Biophys Acta 1768: 888-900. https://doi.org/10.1016/j.bbamem.2006.09.012
    [119] Kanehara K, Yu CY, Cho Y, et al. (2015) Arabidopsis AtPLC2 is a primary phosphoinositide-specific phospholipase C in phosphoinositide metabolism and the endoplasmic reticulum stress response. PLoS Genet 11: e1005511. https://doi.org/10.1371/journal.pgen.1005511
  • This article has been cited by:

    1. Chaudry Masood Khalique, Oke Davies Adeyemo, Kentse Maefo, Symmetry solutions and conservation laws of a new generalized 2D Bogoyavlensky-Konopelchenko equation of plasma physics, 2022, 7, 2473-6988, 9767, 10.3934/math.2022544
    2. K. Hosseini, D. Baleanu, S. Rezapour, S. Salahshour, M. Mirzazadeh, M. Samavat, Multi-complexiton and positive multi-complexiton structures to a generalized B-type Kadomtsev−Petviashvili equation, 2022, 24680133, 10.1016/j.joes.2022.06.020
    3. Abdul-Majid Wazwaz, Naisa S. Alatawi, Wedad Albalawi, S. A. El-Tantawy, Painlevé analysis for a new (3 +1 )-dimensional KP equation: Multiple-soliton and lump solutions, 2022, 140, 0295-5075, 52002, 10.1209/0295-5075/aca49f
    4. Yan Zhu, Chuyu Huang, Junjie Li, Runfa Zhang, Lump solitions, fractal soliton solutions, superposed periodic wave solutions and bright-dark soliton solutions of the generalized (3+1)-dimensional KP equation via BNNM, 2024, 112, 0924-090X, 17345, 10.1007/s11071-024-09911-2
    5. Adisie Fenta Agmas, Fasika Wondimu Gelu, Meselech Chima Fino, A robust, exponentially fitted higher-order numerical method for a two-parameter singularly perturbed boundary value problem, 2025, 10, 2297-4687, 10.3389/fams.2024.1501271
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2872) PDF downloads(126) Cited by(0)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog