
Based on the generalized version of Newton's Shell Theorem
Citation: István P. Sugár. Density of electric field energy around two surface-charged spheres surrounded by electrolyte II. The smaller sphere is inside the larger one[J]. AIMS Biophysics, 2022, 9(1): 61-71. doi: 10.3934/biophy.2022006
[1] | Jun Zhou . Initial boundary value problem for a inhomogeneous pseudo-parabolic equation. Electronic Research Archive, 2020, 28(1): 67-90. doi: 10.3934/era.2020005 |
[2] | Yang Cao, Qiuting Zhao . Initial boundary value problem of a class of mixed pseudo-parabolic Kirchhoff equations. Electronic Research Archive, 2021, 29(6): 3833-3851. doi: 10.3934/era.2021064 |
[3] | Qianqian Zhu, Yaojun Ye, Shuting Chang . Blow-up upper and lower bounds for solutions of a class of higher order nonlinear pseudo-parabolic equations. Electronic Research Archive, 2024, 32(2): 945-961. doi: 10.3934/era.2024046 |
[4] | Xu Liu, Jun Zhou . Initial-boundary value problem for a fourth-order plate equation with Hardy-Hénon potential and polynomial nonlinearity. Electronic Research Archive, 2020, 28(2): 599-625. doi: 10.3934/era.2020032 |
[5] | Hui Jian, Min Gong, Meixia Cai . Global existence, blow-up and mass concentration for the inhomogeneous nonlinear Schrödinger equation with inverse-square potential. Electronic Research Archive, 2023, 31(12): 7427-7451. doi: 10.3934/era.2023375 |
[6] | Shuting Chang, Yaojun Ye . Upper and lower bounds for the blow-up time of a fourth-order parabolic equation with exponential nonlinearity. Electronic Research Archive, 2024, 32(11): 6225-6234. doi: 10.3934/era.2024289 |
[7] | Yitian Wang, Xiaoping Liu, Yuxuan Chen . Semilinear pseudo-parabolic equations on manifolds with conical singularities. Electronic Research Archive, 2021, 29(6): 3687-3720. doi: 10.3934/era.2021057 |
[8] | Yaning Li, Yuting Yang . The critical exponents for a semilinear fractional pseudo-parabolic equation with nonlinear memory in a bounded domain. Electronic Research Archive, 2023, 31(5): 2555-2567. doi: 10.3934/era.2023129 |
[9] | Mingyou Zhang, Qingsong Zhao, Yu Liu, Wenke Li . Finite time blow-up and global existence of solutions for semilinear parabolic equations with nonlinear dynamical boundary condition. Electronic Research Archive, 2020, 28(1): 369-381. doi: 10.3934/era.2020021 |
[10] | Lianbing She, Nan Liu, Xin Li, Renhai Wang . Three types of weak pullback attractors for lattice pseudo-parabolic equations driven by locally Lipschitz noise. Electronic Research Archive, 2021, 29(5): 3097-3119. doi: 10.3934/era.2021028 |
Based on the generalized version of Newton's Shell Theorem
In this paper, we consider the following initial-boundary value problem
{ut−Δut−Δu=|x|σ|u|p−1u,x∈Ω,t>0,u(x,t)=0,x∈∂Ω,t>0,u(x,0)=u0(x),x∈Ω | (1) |
and its corresponding steady-state problem
{−Δu=|x|σ|u|p−1u,x∈Ω,u=0,x∈∂Ω, | (2) |
where
1<p<{∞,n=1,2;n+2n−2,n≥3,σ>{−n,n=1,2;(p+1)(n−2)2−n,n≥3. | (3) |
(1) was called homogeneous (inhomogeneous) pseudo-parabolic equation when
The homogeneous problem, i.e.
Li and Du [12] studied the Cauchy problem of equation in (1) with
(1) If
(2) If
Φα:={ξ(x)∈BC(Rn):ξ(x)≥0,lim inf|x|↑∞|x|αξ(x)>0}, |
and
Φα:={ξ(x)∈BC(Rn):ξ(x)≥0,lim sup|x|↑∞|x|αξ(x)<∞}. |
Here
In view of the above introductions, we find that
(1) for Cauchy problem in
(2) for zero Dirichlet problem in a bounded domain
The difficulty of allowing
σ>(p+1)(n−2)2−n⏟<0 if n≥3 |
for
The main results of this paper can be summarized as follows: Let
(1) (the case
(2) (the case
(3) (arbitrary initial energy level) For any
(4) Moreover, under suitable assumptions, we show the exponential decay of global solutions and lifespan (i.e. the upper bound of blow-up time) of the blowing-up solutions.
The organizations of the remain part of this paper are as follows. In Section 2, we introduce the notations used in this paper and the main results of this paper; in Section 3, we give some preliminaries which will be used in the proofs; in Section 4, we give the proofs of the main results.
Throughout this paper we denote the norm of
‖ϕ‖Lγ={(∫Ω|ϕ(x)|γdx)1γ, if 1≤γ<∞;esssupx∈Ω|ϕ(x)|, if γ=∞. |
We denote the
Lp+1σ(Ω):={ϕ:ϕ is measurable on Ω and ‖u‖Lp+1σ<∞}, | (4) |
where
‖ϕ‖Lp+1σ:=(∫Ω|x|σ|ϕ(x)|p+1dx)1p+1,ϕ∈Lp+1σ(Ω). | (5) |
By standard arguments as the space
We denote the inner product of
(ϕ,φ)H10:=∫Ω(∇ϕ(x)⋅∇φ(x)+ϕ(x)φ(x))dx,ϕ,φ∈H10(Ω). | (6) |
The norm of
‖ϕ‖H10:=√(ϕ,ϕ)H10=√‖∇ϕ‖2L2+‖ϕ‖2L2,ϕ∈H10(Ω). | (7) |
An equivalent norm of
‖∇ϕ‖L2≤‖ϕ‖H10≤√λ1+1λ1‖∇ϕ‖L2,ϕ∈H10(Ω), | (8) |
where
λ1=infϕ∈H10(Ω)‖∇ϕ‖2L2‖ϕ‖2L2. | (9) |
Moreover, by Theorem 3.2, we have
for p and σ satisfying (4), H10(Ω)↪Lp+1σ(Ω) continuously and compactly. | (10) |
Then we let
Cpσ=supu∈H10(Ω)∖{0}‖ϕ‖Lp+1σ‖∇ϕ‖L2. | (11) |
We define two functionals
J(ϕ):=12‖∇ϕ‖2L2−1p+1‖ϕ‖p+1Lp+1σ | (12) |
and
I(ϕ):=‖∇ϕ‖2L2−‖ϕ‖p+1Lp+1σ. | (13) |
By (3) and (10), we know that
We denote the mountain-pass level
d:=infϕ∈NJ(ϕ), | (14) |
where
N:={ϕ∈H10(Ω)∖{0}:I(ϕ)=0}. | (15) |
By Theorem 3.3, we have
d=p−12(p+1)C−2(p+1)p−1pσ, | (16) |
where
For
Jρ={ϕ∈H10(Ω):J(ϕ)<ρ}. | (17) |
Then, we define the set
Nρ={ϕ∈N:‖∇ϕ‖2L2<2(p+1)ρp−1},ρ>d. | (18) |
For
λρ:=infϕ∈Nρ‖ϕ‖H10,Λρ:=supϕ∈Nρ‖ϕ‖H10 | (19) |
and two sets
Sρ:={ϕ∈H10(Ω):‖ϕ‖H10≤λρ,I(ϕ)>0},Sρ:={ϕ∈H10(Ω):‖ϕ‖H10≥Λρ,I(ϕ)<0}. | (20) |
Remark 1. There are two remarks on the above definitions.
(1) By the definitions of
(2) By Theorem 3.4, we have
√2(p+1)dp−1≤λρ≤Λρ≤√2(p+1)(λ1+1)ρλ1(p−1). | (21) |
Then the sets
‖sϕ‖H10≤√2(p+1)dp−1⇔s≤δ1:=√2(p+1)dp−1‖ϕ‖−1H10,I(sϕ)=s2‖∇ϕ‖2L2−sp+1‖ϕ‖p−1Lp+1σ>0⇔s<δ2:=(‖∇ϕ‖2L2‖ϕ‖p+1Lp+1σ)1p−1,‖sϕ‖H10≥√2(p+1)(λ1+1)ρλ1(p−1)⇔s≥δ3:=√2(p+1)(λ1+1)ρλ1(p−1)‖ϕ‖−1H10,I(sϕ)=s2‖∇ϕ‖2L2−sp+1‖ϕ‖p−1Lp+1σ<0⇔s>δ2. |
So,
{sϕ:0<s<min{δ1,δ2}}⊂Sρ,{sϕ:s>max{δ2,δ3}}⊂Sρ. |
In this paper we consider weak solutions to problem (1), local existence of which can be obtained by Galerkin's method (see for example [22,Chapter II,Sections 3 and 4]) and a standard limit process and the details are omitted.
Definition 2.1. Assume
∫Ω(utv+∇ut⋅∇v+∇u⋅∇v−|x|σ|u|p−1uv)dx=0 | (22) |
holds for any
u(⋅,0)=u0(⋅) in H10(Ω). | (23) |
Remark 2. There are some remarks on the above definition.
(1) Since
(2) Denote by
(3) Taking
‖u(⋅,t)‖2H10=‖u0‖2H10−2∫t0I(u(⋅,s))ds,0≤t≤T, | (24) |
where
(4) Taking
J(u(⋅,t))=J(u0)−∫t0‖us(⋅,s)‖2H10ds,0≤t≤T, | (25) |
where
Definition 2.2. Assume (3) holds. A function
∫Ω(∇u⋅∇v−|x|σ|u|p−1uv)dx=0 | (26) |
holds for any
Remark 3. There are some remarks to the above definition.
(1) By (10), we know all the terms in (26) are well-defined.
(2) If we denote by
Φ={ϕ∈H10(Ω):J′(ϕ)=0 in H−1(Ω)}⊂(N∪{0}), | (27) |
where
With the set
Definition 2.3. Assume (3) holds. A function
J(u)=infϕ∈Φ∖{0}J(ϕ). |
With the above preparations, now we can state the main results of this paper. Firstly, we consider the case
(1)
(2)
(3)
Theorem 2.4. Assume (3) holds and
‖∇u(⋅,t)‖L2≤√2(p+1)J(u0)p−1,0≤t<∞, | (28) |
where
V:={ϕ∈H10(Ω):J(ϕ)≤d,I(ϕ)>0}. | (29) |
In, in addition,
‖u(⋅,t)‖H10≤‖u0‖H10exp[−λ1λ1+1(1−(J(u0)d)p−12)t]. | (30) |
Remark 4. Since
J(u0)>p−12(p+1)‖∇u0‖2L2>0. |
So the equality (28) makes sense.
Theorem 2.5. Assume (3) holds and
limt↑Tmax∫t0‖u(⋅,s)‖2H10ds=∞, |
where
W:={ϕ∈H10(Ω):J(ϕ)≤d,I(ϕ)<0} | (31) |
and
Tmax≤4p‖u0‖2H10(p−1)2(p+1)(d−J(u0)). | (32) |
Remark 5. There are two remarks.
(1) If
(2) The sets
f(s)=J(sϕ)=s22‖∇ϕ‖2L2−sp+1p+1‖ϕ‖p+1Lp+1σ,g(s)=I(sϕ)=s2‖∇ϕ‖2L2−sp+1‖ϕ‖p+1Lp+1σ. |
Then (see Fig. 2)
(a)
maxs∈[0,∞)f(s)=f(s∗3)=p−12(p+1)(‖∇ϕ‖L2‖ϕ‖Lp+1σ)2(p+1)p−1≤d⏟By (14) since s∗3ϕ∈N, | (33) |
(b)
maxs∈[0,∞)g(s)=g(s∗1)=p−1p+1(2p+1)2p−1(‖∇ϕ‖L2‖ϕ‖Lp+1σ)2(p+1)p−1, |
(c)
f(s∗2)=g(s∗2)=p−12p(p+12p)2p−1(‖∇ϕ‖L2‖ϕ‖Lp+1σ)2(p+1)p−1, |
where
s∗1:=(2‖∇ϕ‖2L2(p+1)‖ϕ‖p+1Lp+1σ)1p−1<s∗2:=((p+1)‖∇ϕ‖2L22p‖ϕ‖p+1Lp+1σ)1p−1<s∗3:=(‖∇ϕ‖2L2‖ϕ‖p+1Lp+1σ)1p−1<s∗4:=((p+1)‖∇ϕ‖2L22‖ϕ‖p+1Lp+1σ)1p−1. |
So,
Theorem 2.6. Assume (3) holds and
G:={ϕ∈H10(Ω):J(ϕ)=d,I(ϕ)=0}. | (34) |
Remark 6. There are two remarks on the above theorem.
(1) Unlike Remark 5, it is not easy to show
(2) To prove the above Theorem, we only need to show
Theorem 2.7. Assume (3) holds and let
Secondly, we consider the case
Theorem 2.8. Assume (3) holds and the initial value
(i): If
(ii): If
Here
Next, we show the solution of the problem (1) can blow up at arbitrary initial energy level (Theorem 2.10). To this end, we firstly introduce the following theorem.
Theorem 2.9. Assume (3) holds and
Tmax≤8p‖u0‖2H10(p−1)2(λ1(p−1)λ1+1‖u0‖2H10−2(p+1)J(u0)) | (35) |
and
limt↑Tmax∫t0‖u(⋅,s)‖2H10ds=∞, |
where
ˆW:={ϕ∈H10(Ω):J(ϕ)<λ1(p−1)2(λ1+1)(p+1)‖ϕ‖2H10}. | (36) |
and
By using the above theorem, we get the following theorem.
Theorem 2.10. For any
The following lemma can be found in [11].
Lemma 3.1. Suppose that
F″(t)F(t)−(1+γ)(F′(t))2≥0 |
for some constant
T≤F(0)γF′(0)<∞ |
and
Theorem 3.2. Assume
Proof. Since
We divide the proof into three cases. We will use the notation
Case 1.
H10(Ω)↪Lp+1(Ω) continuously and compactly. | (37) |
Then we have, for any
‖u‖p+1Lp+1σ=∫Ω|x|σ|u|p+1dx≤Rσ‖u‖p+1Lp+1≲‖u‖p+1H10, |
which, together with (37), implies
Case 2.
H10(Ω)↪L(p+1)rr−1(Ω) continuously and compactly, | (38) |
for any
‖u‖p+1Lp+1σ=∫Ω|x|σ|u|p+1dx≤(∫B(0,R)|x|σrdx)1r(∫Ω|u|(p+1)rr−1dx)r−1r≤{(2σr+1Rσr+1)1r‖u‖p+1L(p+1)rr−1≲‖u‖p+1H10,n=1;(2πσr+2Rσr+2)1r‖u‖p+1L(p+1)rr−1≲‖u‖p+1H10,n=2, |
which, together with (38), implies
Case 3.
−σn<1r<1−(p+1)(n−2)2n. |
By the second inequality of the above inequalities, we have
(p+1)rr−1=p+11−1r<p+1(p+1)(n−2)2n=2nn−2. |
So,
H10(Ω)↪L(p+1)rr−1(Ω) continuously and compactly. | (39) |
Then by Hölder's inequality, for any
‖u‖p+1Lp+1σ=∫Ω|x|σ|u|p+1dx≤(∫B(0,R)|x|σrdx)1r(∫Ω|u|(p+1)rr−1dx)r−1r≤(ωn−1σr+nRσr+n)1r‖u‖p+1L(p+1)rr−1≲‖u‖p+1H10, |
which, together with (39), implies
Theorem 3.3. Assume
d=p−12(p+1)C2(p+1)p−1pσ, |
where
Proof. Firstly, we show
infϕ∈NJ(ϕ)=minϕ∈H10(Ω)∖{0}J(s∗ϕϕ), | (40) |
where
s∗ϕ:=(‖∇ϕ‖2L2‖ϕ‖p+1Lp+1σ)1p−1. | (41) |
By the definition of
On one hand, since
minϕ∈H10(Ω)∖{0}J(s∗ϕϕ)≤minϕ∈NJ(s∗ϕϕ)=minϕ∈NJ(ϕ). |
On the other hand, since
infϕ∈NJ(ϕ)≤infϕ∈H10(Ω)∖{0}J(s∗ϕϕ). |
Then (40) follows from the above two inequalities.
By (40), the definition of
d=minϕ∈H10(Ω)∖{0}J(s∗ϕϕ)=p−12(p+1)minϕ∈H10(Ω)∖{0}(‖∇ϕ‖L2‖ϕ‖Lp+1σ)2(p+1)p−1=p−12(p+1)C−2(p+1)p−1pσ. |
Theorem 3.4. Assume (3) holds. Let
√2(p+1)dp−1≤λρ≤Λρ≤√2(p+1)(λ1+1)ρλ1(p−1). | (42) |
Proof. Let
λρ≤Λρ. | (43) |
Since
d=infϕ∈NJ(ϕ)=p−12(p+1)infϕ∈N‖∇ϕ‖2L2≤p−12(p+1)infϕ∈Nρ‖ϕ‖2H10=p−12(p+1)λ2ρ, |
which implies
λρ≥√2(p+1)dp−1 |
On the other hand, by (8) and (18), we have
Λρ=supϕ∈Nρ‖ϕ‖H10≤√λ1+1λ1supϕ∈Nρ‖∇ϕ‖L2≤√λ1+1λ1√2(p+1)ρp−1. |
Combining the above two inequalities with (43), we get (42), the proof is complete.
Theorem 3.5. Assume (3) holds and
Proof. We only prove the invariance of
For any
‖∇ϕ‖2L2<‖ϕ‖p+1Lp+1σ≤Cp+1pσ‖∇ϕ‖p+1L2, |
which implies
‖∇ϕ‖L2>C−p+1p−1pσ. | (44) |
Let
I(u(⋅,t))<0,t∈[0,ε]. | (45) |
Then by (24),
J(u(⋅,t))<d for t∈(0,ε]. | (46) |
We argument by contradiction. Since
J(u(⋅,t0))<d | (47) |
(note (25) and (46),
‖∇u(⋅,t0)‖L2≥C−p+1p−1pσ>0, |
which, together with
J(u(⋅,t0))≥d, |
which contradicts (47). So the conclusion holds.
Theorem 3.6. Assume (3) holds and
‖∇u(⋅,t)‖2L2≥2(p+1)p−1d,0≤t<Tmax, | (48) |
where
Proof. Let
By the proof in Theorem 3.3,
d=minϕ∈H10(Ω)∖{0}J(s∗ϕϕ)≤minϕ∈N−J(s∗ϕϕ)≤J(s∗uu(⋅,t))=(s∗u)22‖∇u(⋅,t)‖2L2−(s∗u)p+1p+1‖u(⋅,t)‖p+1Lp+1σ≤((s∗u)22−(s∗u)p+1p+1)‖∇u(⋅,t)‖2L2, |
where we have used
d=minϕ∈H10(Ω)∖{0}J(s∗ϕϕ)≤minϕ∈N−J(s∗ϕϕ)≤J(s∗uu(⋅,t))=(s∗u)22‖∇u(⋅,t)‖2L2−(s∗u)p+1p+1‖u(⋅,t)‖p+1Lp+1σ≤((s∗u)22−(s∗u)p+1p+1)‖∇u(⋅,t)‖2L2, |
Then
d≤max0≤s≤1(s22−sp+1p+1)‖∇u(⋅,t)‖2L2=(s22−sp+1p+1)s=1‖∇u(⋅,t)‖2L2=p−12(p+1)‖∇u(⋅,t)‖2L2, |
and (48) follows from the above inequality.
Theorem 3.7. Assume (3) holds and
Proof. Firstly, we show
12‖∇u0‖2L2−1p+1‖u0‖p+1Lp+1σ=J(u0)<λ1(p−1)2(λ1+1)(p+1)‖u0‖2H10≤p−12(p+1)‖∇u0‖2L2, |
which implies
I(u0)=‖∇u0‖2L2−‖u0‖p+1Lp+1σ<0. |
Secondly, we prove
J(u0)<λ1(p−1)2(λ1+1)(p+1)‖u0‖2H10<λ1(p−1)2(λ1+1)(p+1)‖u(⋅,t0)‖2H10≤p−12(p+1)‖∇u(⋅,t0)‖2L2. | (49) |
On the other hand, by (24), (12), (13) and
J(u0)≥J(u(⋅,t0))=p−12(p+1)‖∇u(⋅,t0)‖2L2, |
which contradicts (49). The proof is complete.
Proof of Theorem 2.4. Let
J(u0)≥J(u(⋅,t))≥p−12(p+1)‖∇u(⋅,t)‖2L2,0≤t<Tmax, |
which implies
‖∇u(⋅,t)‖L2≤√2(p+1)J(u0)p−1,0≤t<∞. | (50) |
Next, we prove
ddt(‖u(⋅,t)‖2H10)=−2I(u(⋅,t))=−2(‖∇u(⋅,t)‖2L2−‖u(⋅,t)‖p+1Lp+1σ)≤−2(1−Cp+1pσ‖∇u(⋅,t)‖p−1L2)‖∇u(⋅,t)‖2L2≤−2(1−Cp+1pσ(√2(p+1)J(u0)p−1)p−1)‖∇u(⋅,t)‖2L2=−2(1−(J(u0)d)p−12)‖∇u(⋅,t)‖2L2≤−2λ1λ1+1(1−(J(u0)d)p−12)‖u(⋅,t)‖2H10, |
which leads to
‖u(⋅,t)‖2H10≤‖u0‖2H10exp[−2λ1λ1+1(1−(J(u0)d)p−12)t]. |
The proof is complete.
Proof of Theorem 2.5. Let
Firstly, we consider the case
ξ(t):=(∫t0‖u(⋅,s)‖2H10ds)12,η(t):=(∫t0‖us(⋅,s)‖2H10ds)12,0≤t<Tmax. | (51) |
For any
F(t):=ξ2(t)+(T∗−t)‖u0‖2H10+β(t+α)2,0≤t≤T∗. | (52) |
Then
F(0)=T∗‖u0‖2H10+βα2>0, | (53) |
F′(t)=‖u(⋅,t)‖2H10−‖u0‖2H10+2β(t+α)=2(12∫t0dds‖u(⋅,s)‖2H10ds+β(t+α)),0≤t≤T∗, | (54) |
and (by (24), (12), (13), (48), (25))
F″(t)=−2I(u(⋅,t))+2β=(p−1)‖∇u(⋅,t)‖2L2−2(p+1)J(u(⋅,t))+2β≥2(p+1)(d−J(u0))+2(p+1)η2(t)+2β,0≤t≤T∗. | (55) |
Since
F′(t)≥2β(t+α). |
Then
F(t)=F(0)+∫t0F′(s)ds≥T∗‖u0‖2H10+βα2+2αβt+βt2,0≤t≤T∗. | (56) |
By (6), Schwartz's inequality and Hölder's inequality, we have
12∫t0dds‖u(⋅,s)‖2H10ds=∫t0(u(⋅,s),us(⋅,s))H10ds≤∫t0‖u(⋅,s)‖H10‖us(⋅,s)‖H10ds≤ξ(t)η(t),0≤t≤T∗, |
which, together with the definition of
(F(t)−(T∗−t)‖u0‖2H10)(η2(t)+β)=(ξ2(t)+β(t+α)2)(η2(t)+β)=ξ2(t)η2(t)+βξ2(t)+β(t+α)2η2(t)+β2(t+α)2≥ξ2(t)η2(t)+2ξ(t)η(t)β(t+α)+β2(t+α)2≥(ξ(t)η(t)+β(t+α))2≥(12∫t0dds‖u(⋅,s)‖2H10ds+β(t+α))2,0≤t≤T∗. |
Then it follows from (54) and the above inequality that
(F′(t))2=4(12t∫0dds‖u(s)‖2H10ds+β(t+α))2≤4F(t)(η2(t)+β),0≤t≤T∗. | (57) |
In view of (55), (56), and (57), we have
F(t)F″(t)−p+12(F′(t))2≥F(t)(2(p+1)(d−J(u0))−2pβ),0≤t≤T∗. |
If we take
0<β≤p+1p(d−J(u0)), | (58) |
then
T∗≤F(0)(p+12−1)F′(0)=T∗‖u0‖2H10+βα2(p−1)αβ. |
Then for
α∈(‖u0‖2H10(p−1)β,∞), | (59) |
we get
T∗≤βα2(p−1)αβ−‖u0‖2H10. |
Minimizing the above inequality for
T∗≤βα2(p−1)αβ−‖u0‖2H10|α=2‖u0‖2H10(p−1)β=4‖u0‖2H10(p−1)2β. |
Minimizing the above inequality for
T∗≤4p‖u0‖2H10(p−1)2(p+1)(d−J(u0)). |
By the arbitrariness of
Tmax≤4p‖u0‖2H10(p−1)2(p+1)(d−J(u0)). |
Secondly, we consider the case
Proof of Theorems 2.6 and 2.7. Since Theorem 2.6 follows from Theorem 2.7 directly, we only need to prove Theorem 2.7.
Firstly, we show
d=infϕ∈NJ(ϕ)=p−12(p+1)infϕ∈N‖∇ϕ‖2L2. |
Then a minimizing sequence
limk↑∞J(ϕk)=p−12(p+1)limk↑∞‖∇ϕk‖2L2=d, | (60) |
which implies
(1)
(2)
Now, in view of
limk↑∞J(ϕk)=p−12(p+1)limk↑∞‖∇ϕk‖2L2=d, | (60) |
We claim
‖∇φ‖2L2=‖φ‖p+1Lp+1σ i.e. I(φ)=0. | (62) |
In fact, if the claim is not true, then by (61),
‖∇φ‖2L2<‖φ‖p+1Lp+1σ. |
By the proof of Theorem 3.3, we know that
J(s∗φφ)≥d, | (63) |
where
J(s∗φφ)≥d, | (63) |
On the other hand, since
J(s∗φφ)=p−12(p+1)(s∗φ)2‖∇φ‖2L2<p−12(p+1)‖∇φ‖2L2≤p−12(p+1)lim infk↑∞‖∇ϕk‖2L2=d, |
which contradicts to (63). So the claim is true, i.e.
limk↑∞‖∇ϕk‖2L2=‖φ‖p+1Lp+1σ, |
which, together with
Second, we prove
limk↑∞‖∇ϕk‖2L2=‖φ‖p+1Lp+1σ, |
Then
A:={τ(s)(φ+sv):s∈(−ε,ε)} |
is a curve on
A:={τ(s)(φ+sv):s∈(−ε,ε)} |
where
ξ:=2∫Ω∇(φ+sv)⋅∇vdx‖φ+sv‖p+1Lp+1σ,η:=(p+1)∫Ω|x|σ|φ+sv|p−1(φ+sv)vdx‖∇(φ+sv)‖2L2. |
Since (62), we get
τ′(0)=1(p−1)‖φ‖p+1Lp+1σ(2∫Ω∇φ∇vdx−(p+1)∫Ω|x|σ|φ|p−1φvdx). | (65) |
Let
ϱ(s):=J(τ(s)(φ+sv))=τ2(s)2‖∇(φ+sv)‖2L2−τp+1(s)p+1‖φ+sv‖p+1Lp+1σ,s∈(−ε,ε). |
Since
0=ϱ′(0)=τ(s)τ′(s)‖∇(φ+sv)‖2L2+τ2(s)∫Ω∇(φ+sv)⋅∇vdx|s=0−τp(s)τ′(s)‖φ+sv‖p+1Lp+1σ−τp+1(s)∫Ω|x|σ|φ+sv|p−1(φ+sv)vdx|s=0=∫Ω∇φ⋅∇vdx−∫Ω|x|σ|φ|p−1φvdx. |
So,
Finally, in view of Definition 2.3 and
d=infϕ∈Φ∖{0}J(ϕ). | (66) |
In fact, by the above proof and (27), we have
d=infϕ∈NJ(ϕ) |
and
Proof of Theorem 2.8. Let
ω(u0)=∩t≥0¯{u(⋅,s):s≥t}H10(Ω) |
the
(i) Assume
v(x,t)={u(x,t), if 0≤t≤t0;0, if t>t0 |
is a global weak solution of problem (1), and the proof is complete.
We claim that
I(u(⋅,t))>0,0≤t<Tmax. | (67) |
Since
I(u(⋅,t))>0,0≤t<t0 | (68) |
and
I(u(⋅,t0))=0, | (69) |
which together with the definition of
‖u(⋅,t0)‖H10≥λρ. | (70) |
On the other hand, it follows from (24), (68) and
‖u(⋅,t)‖H10<‖u0‖H10≤λρ, |
which contradicts (70). So (67) is true. Then by (24) again, we get
‖u(⋅,t)‖H10≤‖u0‖H10,0≤t<Tmax, |
which implies
By (24) and (67),
limt↑∞‖u(⋅,t)‖H10=c. |
Taking
∫∞0I(u(⋅,s))ds≤12(‖u0‖2H10−c)<∞. |
Note that
limn↑∞I(u(⋅,tn))=0. | (71) |
Let
u(⋅,tn)→ω in H10(Ω) as n↑∞. | (72) |
Then by (71), we get
I(ω)=limn↑∞I(u(⋅,tn))=0. | (73) |
As the above, one can easily see
‖ω‖H10<λρ≤λJ(u0),J(ω)<J(u0)⏟⇒ω∈JJ(u0), |
which implies
limt↑∞‖u(⋅,t)‖H10=limn↑∞‖u(⋅,tn)‖H10=‖ω‖H10=0. |
(ⅱ) Assume
I(u(⋅,t))<0,0≤t<Tmax. | (74) |
Since
I(u(⋅,t))<0,0≤t<t0 | (75) |
and
I(u(⋅,t0))=0. | (76) |
Since (75), by (44) and
‖∇u(⋅,t0)‖L2≥C−p+1p−1pσ, |
which, together with the definition of
‖u(⋅,t0)‖H10≤Λρ. | (77) |
On the other hand, it follows from (24), (75) and
which contradicts (77). So (74) is true.
Suppose by contradiction that
Taking
Note
(78) |
Let
(79) |
Since
Then by (78), we get
(80) |
By (24), (25) and (74), one can easily see
which implies
Proof of Theorem 2.9. Let
(81) |
The remain proofs are similar to the proof of Theorem 2.9. For any
(82) |
We also have (56) and (57). Then it follows from (56), (57) and (82) that
If we take
(83) |
then
Then for
(84) |
we get
Minimizing the above inequality for
Minimizing the above inequality for
By the arbitrariness of
Proof of Theorem 2.10. For any
(85) |
For such
(86) |
where (see Remark 5)
(86) |
which can be done since
and
By Remark 5 again,
(87) |
By (87) and (86), we can choose
and (note (85))
Let
[1] |
Chong PLG (2010) Archaebacterial bipolar tetraether lipids: Physico-chemical and membrane properties. Chem Phys Lipids 163: 253-265. https://doi.org/10.1016/j.chemphyslip.2009.12.006 ![]() |
[2] |
Ewald PP (1921) Die berechnung optischer und elektrostatischer gitterpotentiale. Ann Phys-berlin 369: 253-287. https://doi.org/10.1002/andp.19213690304 ![]() |
[3] |
Sugár IP, Thompson TE, Biltonen RL (1999) Monte carlo simulation of two-component bilayers: DMPC/DSPC mixtures. Biophys J 76: 2099-2110. https://doi.org/10.1016/S0006-3495(99)77366-2 ![]() |
[4] |
Almeida PFF (2009) Thermodynamics of lipid interactions in complex bilayers. BBA-Biomembranes 1788: 72-85. https://doi.org/10.1016/j.bbamem.2008.08.007 ![]() |
[5] |
Bohinc K, Špadina M, Reščič J, et al. (2022) Influence of charge lipid head group structures on electric double layer properties. J Chem Theory Comput 18: 448-460. https://doi.org/10.1021/acs.jctc.1c00800 ![]() |
[6] | Newton I (1999) The Principia: Mathematical Principles of Natural Philosophy. Berkeley: University of California Press 590. |
[7] |
Sugár IP (2020) A generalization of the shell theorem. Electric potential of charged spheres and charged vesicles surrounded by electrolyte. AIMS Biophys 7: 76-89. https://doi.org/10.3934/biophy.2020007 ![]() |
[8] | Fetter AL, Walecka JD (2003) Theoretical Mechanics of Particles and Continua. New York: Dover Publications 307-310. |
[9] |
Holtzer AM (1954) The collected papers of Peter JW Debye. Interscience, New York-London, 1954. xxi+ 700 pp., $9.50. J Polym Sci 13: 548. https://doi.org/10.1002/pol.1954.120137203 ![]() |
[10] |
Sugár IP (2021) Electric energies of a charged sphere surrounded by electrolyte. AIMS Biophys 8: 157-164. https://doi.org/10.3934/biophy.2021012 ![]() |
[11] |
Ma Y, Poole K, Goyette J, et al. (2017) Introducing membrane charge and membrane potential to T cell signaling. Front Immunol 8: 1513. https://doi.org/10.3389/fimmu.2017.01513 ![]() |
[12] |
Bar-Shavit Z (2007) The osteoclast: a multinucleated, hematopoietic-origin, bone-resorbing osteoimmune cell. J Cell Biochem 102: 1130-1139. https://doi.org/10.1002/jcb.21553 ![]() |
[13] |
Griffiths DJ (2005) Introduction to electrodynamics. AM J Phys 73: 574. https://doi.org/10.1119/1.4766311 ![]() |
[14] |
Nishino M, Matsuzaki I, Musangile FY, et al. (2020) Measurement and visualization of cell membrane surface charge in fixed cultured cells related with cell morphology. PLoS One 15: e0236373. https://doi.org/10.1371/journal.pone.0236373 ![]() |
[15] |
Trimble WS, Grinstein S (2015) Barriers to free diffusion of proteins and lipids in plasma membrane. J Cell Biol 208: 259-271. https://doi.org/10.1083/jcb.201410071 ![]() |
![]() |
![]() |
1. | Yuxuan Chen, Jiangbo Han, Global existence and nonexistence for a class of finitely degenerate coupled parabolic systems with high initial energy level, 2021, 14, 1937-1632, 4179, 10.3934/dcdss.2021109 | |
2. | Quang-Minh Tran, Hong-Danh Pham, Global existence and blow-up results for a nonlinear model for a dynamic suspension bridge, 2021, 14, 1937-1632, 4521, 10.3934/dcdss.2021135 | |
3. | Jun Zhou, Guangyu Xu, Chunlai Mu, Analysis of a pseudo-parabolic equation by potential wells, 2021, 200, 0373-3114, 2741, 10.1007/s10231-021-01099-1 | |
4. | Le Thi Phuong Ngoc, Khong Thi Thao Uyen, Nguyen Huu Nhan, Nguyen Thanh Long, On a system of nonlinear pseudoparabolic equations with Robin-Dirichlet boundary conditions, 2022, 21, 1534-0392, 585, 10.3934/cpaa.2021190 | |
5. | Jinxing Liu, Xiongrui Wang, Jun Zhou, Huan Zhang, Blow-up phenomena for the sixth-order Boussinesq equation with fourth-order dispersion term and nonlinear source, 2021, 14, 1937-1632, 4321, 10.3934/dcdss.2021108 | |
6. | Peiqun Lin, Chenxing He, Lingshu Zhong, Mingyang Pei, Chuhao Zhou, Yang Liu, Bus timetable optimization model in response to the diverse and uncertain requirements of passengers for travel comfort, 2023, 31, 2688-1594, 2315, 10.3934/era.2023118 | |
7. | Hang Ding, Renhai Wang, Jun Zhou, Infinite time blow‐up of solutions to a class of wave equations with weak and strong damping terms and logarithmic nonlinearity, 2021, 147, 0022-2526, 914, 10.1111/sapm.12405 | |
8. | Le Thi Phuong Ngoc, Nguyen Anh Triet, Phan Thi My Duyen, Nguyen Thanh Long, General Decay and Blow-up Results of a Robin-Dirichlet Problem for a Pseudoparabolic Nonlinear Equation of Kirchhoff-Carrier Type with Viscoelastic Term, 2023, 0251-4184, 10.1007/s40306-023-00496-3 | |
9. | Gang Cheng, Yijie He, Enhancing passenger comfort and operator efficiency through multi-objective bus timetable optimization, 2024, 32, 2688-1594, 565, 10.3934/era.2024028 |