Digital holographic microscopy provides the ability to observe throughout a large volume without refocusing. This capability enables simultaneous observations of large numbers of microorganisms swimming in an essentially unconstrained fashion. However, computational tools for tracking large 4D datasets remain lacking. In this paper, we examine the errors introduced by tracking bacterial motion as 2D projections vs. 3D volumes under different circumstances: bacteria free in liquid media and bacteria near a glass surface. We find that while XYZ speeds are generally equal to or larger than XY speeds, they are still within empirical uncertainties. Additionally, when studying dynamic surface behavior, the Z coordinate cannot be neglected.
Citation: Jacqueline Acres, Jay Nadeau. 2D vs 3D tracking in bacterial motility analysis[J]. AIMS Biophysics, 2021, 8(4): 385-399. doi: 10.3934/biophy.2021030
[1] | Qun Dai, Shidong Liu . Stability of the mixed Caputo fractional integro-differential equation by means of weighted space method. AIMS Mathematics, 2022, 7(2): 2498-2511. doi: 10.3934/math.2022140 |
[2] | Thabet Abdeljawad, Sabri T. M. Thabet, Imed Kedim, Miguel Vivas-Cortez . On a new structure of multi-term Hilfer fractional impulsive neutral Levin-Nohel integrodifferential system with variable time delay. AIMS Mathematics, 2024, 9(3): 7372-7395. doi: 10.3934/math.2024357 |
[3] | Choukri Derbazi, Zidane Baitiche, Mohammed S. Abdo, Thabet Abdeljawad . Qualitative analysis of fractional relaxation equation and coupled system with Ψ-Caputo fractional derivative in Banach spaces. AIMS Mathematics, 2021, 6(3): 2486-2509. doi: 10.3934/math.2021151 |
[4] | J. Vanterler da C. Sousa, E. Capelas de Oliveira, F. G. Rodrigues . Ulam-Hyers stabilities of fractional functional differential equations. AIMS Mathematics, 2020, 5(2): 1346-1358. doi: 10.3934/math.2020092 |
[5] | Kaihong Zhao, Shuang Ma . Ulam-Hyers-Rassias stability for a class of nonlinear implicit Hadamard fractional integral boundary value problem with impulses. AIMS Mathematics, 2022, 7(2): 3169-3185. doi: 10.3934/math.2022175 |
[6] | Jiqiang Zhang, Siraj Ul Haq, Akbar Zada, Ioan-Lucian Popa . Stieltjes integral boundary value problem involving a nonlinear multi-term Caputo-type sequential fractional integro-differential equation. AIMS Mathematics, 2023, 8(12): 28413-28434. doi: 10.3934/math.20231454 |
[7] | Hasanen A. Hammad, Hassen Aydi, Hüseyin Işık, Manuel De la Sen . Existence and stability results for a coupled system of impulsive fractional differential equations with Hadamard fractional derivatives. AIMS Mathematics, 2023, 8(3): 6913-6941. doi: 10.3934/math.2023350 |
[8] | Dongming Nie, Usman Riaz, Sumbel Begum, Akbar Zada . A coupled system of p-Laplacian implicit fractional differential equations depending on boundary conditions of integral type. AIMS Mathematics, 2023, 8(7): 16417-16445. doi: 10.3934/math.2023839 |
[9] | Thanin Sitthiwirattham, Rozi Gul, Kamal Shah, Ibrahim Mahariq, Jarunee Soontharanon, Khursheed J. Ansari . Study of implicit-impulsive differential equations involving Caputo-Fabrizio fractional derivative. AIMS Mathematics, 2022, 7(3): 4017-4037. doi: 10.3934/math.2022222 |
[10] | Subramanian Muthaiah, Dumitru Baleanu, Nandha Gopal Thangaraj . Existence and Hyers-Ulam type stability results for nonlinear coupled system of Caputo-Hadamard type fractional differential equations. AIMS Mathematics, 2021, 6(1): 168-194. doi: 10.3934/math.2021012 |
Digital holographic microscopy provides the ability to observe throughout a large volume without refocusing. This capability enables simultaneous observations of large numbers of microorganisms swimming in an essentially unconstrained fashion. However, computational tools for tracking large 4D datasets remain lacking. In this paper, we examine the errors introduced by tracking bacterial motion as 2D projections vs. 3D volumes under different circumstances: bacteria free in liquid media and bacteria near a glass surface. We find that while XYZ speeds are generally equal to or larger than XY speeds, they are still within empirical uncertainties. Additionally, when studying dynamic surface behavior, the Z coordinate cannot be neglected.
Fractional differential equations have played an important role and have presented valuable tools in the modeling of many phenomena in various fields of science and engineering [6,7,8,9,10,11,12,13,14,15,16]. There has been a significant development in fractional differential equations in recent decades [2,3,4,5,26,23,33,37]. On the other hand, many authors studied the stability of functional equations and established some types of Ulam stability [1,17,18,19,20,21,22,24,27,28,29,30,31,32,33,34,35,36,37] and references there in. Moreover, many authors discussed local and global attractivity [8,9,10,11,34].
Benchohra et al. [13] established some types of Ulam-Hyers stability for an implicit fractional-order differential equation.
A. Baliki et al. [11] have given sufficient conditions for existence and attractivity of mild solutions for second order semi-linear functional evolution equation in Banach spaces using Schauder's fixed point theorem.
Benchohra et al. [15] studied the existence of mild solutions for a class of impulsive semilinear fractional differential equations with infinite delay and non-instantaneous impulses in Banach spaces. This results are obtained using the technique of measures of noncompactness.
Motivated by these works, in this paper, we investigate the following initial value problem for an implicit fractional-order differential equation
{CDα[x(t)−h(t,x(t))]=g1(t,x(t),Iβg2(t,x(t)))t∈J,1<α≤2,α≥β,(x(t)−h(t,x(t)))|t=0=0andddt[x(t)−h(t,x(t))]t=0=0 | (1.1) |
where CDα is the Caputo fractional derivative, h:J×R⟶R,g1:J×R×R⟶R and g2:J×R⟶R are given functions satisfy some conditions and J=[0,T].
we give sufficient conditions for the existence of solutions for a class of initial value problem for an neutral differential equation involving Caputo fractional derivatives. Also, we establish some types of Ulam-Hyers stability for this class of implicit fractional-order differential equation and some applications and particular cases are presented.
Finally, existence of at least one mild solution for this class of implicit fractional-order differential equation on an infinite interval J=[0,+∞), by applying Schauder fixed point theorem and proving the attractivity of these mild solutions.
By a solution of the Eq (1.1) we mean that a function x∈C2(J,R) such that
(i) the function t→[x(t)−h(t,x(t))]∈C2(J,R) and
(ii) x satisfies the equation in (1.1).
Definition 1. [23] The Riemann-Liouville fractional integral of the function f∈L1([a,b]) of order α∈R+ is defined by
Iαaf(t)=∫ta(t−s)α−1Γ(α)f(s)ds. |
and when a=0, we have Iαf(t)=Iα0f(t).
Definition 2. [23] For a function f:[a,b]→R the Caputo fractional-order derivative of f, is defined by
CDαh(t)=1Γ(n−α)∫tah(n)(s)(t−s)n−α−1ds, |
where where n=[α]+1 and [α] denotes the integer part of the real number α.
Lemma 1. [23]. Let α≥0 and n=[α]+1. Then
Iα(CDαf(t))=f(t)−n−1∑k=0fk(0)k!tk |
Lemma 2. Let f∈L1([a,b]) and α∈(0,1], then
(i) CDαIαf(t)=f(t).
(ii) The operator Iα maps L1([a,b]) into itself continuously.
(iii) For γ,β>0, then
IβaIγaf(t)=IγaIβaf(t)=Iγ+βaf(t), |
For further properties of fractional operators (see [23,25,26]).
Consider the initial value problem for the implicit fractional-order differential Eq (1.1) under the following assumptions:
(i) h:J×R⟶R is a continuous function and there exists a positive constant K1 such that:
∣h(t,x)−h(t,y)∣⩽K1∣x−y∣ for each t∈J and x,y∈R. |
(ii) g1:J×R×R⟶R is a continuous function and there exist two positive constants K,H such that:
∣g1(t,x,y)−∣g1(t,˜x,˜y)∣⩽K∣x−˜x∣+H∣y−˜y∣ for each t∈J and x,˜x,y,˜y∈R |
(iii) g2:J×R⟶R is a continuous function and there exists a positive constant K2 such that:
∣g2(t,x)−g2(t,y)∣⩽K2∣x−y∣ for each t∈J andx,y∈R. |
Lemma 3. Let assumptions (i)-(iii) be satisfied. If a function x∈C2(J,R) is a solution of initial value problem for implicit fractional-order differential equation (1.1), then it is a solution of the following nonlinear fractional integral equation
x(t)=h(t,x(t))+1Γ(α)∫t0(t−s)α−1g1(s,x(s),1Γ(β)∫s0(s−θ)β−1g2(θ,x(θ))dθ)ds | (3.1) |
Proof. Assume first that x is a solution of the initial value problem (1.1). From definition of Caputo derivative, we have
I2−αD2(x(t)−h(t,x(t)))=g1(t,x(t),Iβg2(t,x(t))). |
Operating by Iα−1 on both sides and using Lemma 2, we get
I1D2(x(t)−h(t,x(t)))=Iα−1g1(t,x(t),Iβg2(t,x(t))). |
Then
ddt(x(t)−h(t,x(t)))−ddt(x(t)−h(t,x(t)))|t=0=Iα−1g1(t,x(t),Iβg2(t,x(t))). |
Using initial conditions, we have
ddt(x(t)−h(t,x(t)))=Iα−1g1(t,x(t),Iβg2(t,x(t))). |
Integrating both sides of (1.1), we obtain
(x(t)−h(t,x(t)))−(x(t)−h(t,x(t)))|t=0=Iαg1(t,x(t),Iβg2(t,x(t))). |
Then
x(t)=h(t,x(t))+1Γ(α)∫t0(t−s)α−1g1(s,x(s),1Γ(β)∫s0(s−θ)β−1g2(θ,x(θ))dθ)ds |
Conversely, assume that x satisfies the nonlinear integral Eq (3.1). Then operating by CDα on both sides of Eq (3.1) and using Lemma 2, we obtain
CDα(x(t)−h(t,x(t)))=CDαIαg1(t,x(t),Iβg2(t,x(t)))=g1(t,x(t),Iβg2(t,x(t))). |
Putting t=0 in (3.1) and since g1 is a continuous function, then we obtain
(x(t)−h(t,x(t)))|t=0=Iαg1(t,x(t),Iβg2(t,x(t)))|t=0=0. |
Also,
ddt(x(t)−h(t,x(t)))=Iα−1g1(t,x(t),Iβg2(t,x(t))). |
Then we have
ddt(x(t)−h(t,x(t)))|t=0=Iα−1g1(t,x(t),Iβg2(t,x(t)))|t=0=0. |
Hence the equivalence between the initial value problem (1.1) and the integral Eq (3.1) is proved. Then the proof is completed.
Definition 3. The Eq (1.1) is Ulam-Hyers stable if there exists a real number cf>0 such that for each ϵ>0 and for each solution z∈C2(J,R) of the inequality
∣CDα[z(t)−h(t,z(t))]−g1(t,z(t),Iβg2(t,z(t)))∣⩽ϵ,t∈J, |
there exists a solution y∈C2(J,R) of Eq (1.1) with
∣z(t)−y(t)|⩽cfϵ,t∈J. |
Definition 4. The Eq (1.1) is generalized Ulam-Hyers stable if there exists ψf∈C(R+,R+),ψf(0)=0, such that for each solution z∈C2(J,R) of the inequality
∣CDα[z(t)−h(t,z(t))]−g1(t,z(t),Iβg2(t,z(t)))∣⩽ϵ,t∈J, |
there exists a solution y∈C2(J,R)of Eq (1.1) with
∣z(t)−y(t)|⩽ψf(ϵ),t∈J. |
Definition 5. The Eq (1.1) is Ulam-Hyers-Rassias stable with respect to φ∈C(J,R+) if there exists a real number cf>0 such that for each ϵ>0 and for each solution z∈C2(J,R) of the inequality
∣CDα[z(t)−h(t,z(t))]−g1(t,z(t),Iβg2(t,z(t)))∣⩽ϵφ(t),t∈J, |
there exists a solution y∈C2(J,R) of Eq (1.1) with
∣z(t)−y(t)|⩽cfϵφ(t),t∈J. |
Definition 6. The Eq (1.1) is generalized Ulam-Hyers-Rassias stable with respect to φ∈C(J,R+) if there exists a real number cf,φ>0 such that for each solution z∈C2(J,R) of the inequality
∣CDα[z(t)−h(t,z(t))]−g1(t,z(t),Iβg2(t,z(t)))∣⩽φ(t),t∈J, |
there exists a solution y∈C2(J,R) of Eq (1.1) with
∣z(t)−y(t)|⩽cf,φφ(t),t∈J. |
Now, our aim is to investigate the existence of unique solution for (1.1). This existence result will be based on the contraction mapping principle.
Theorem 1. Let assumptions (i)-(iii) be satisfied. If K1+KTαΓ(α+1)+K2HTα+βΓ(β+1)Γ(α+1)<1, then there exists a unique solution for the nonlinear neutral differential equation of fractional order.
Proof. Define the operator N by:
Nx(t)=h(t,x(t))+1Γ(α)∫t0(t−s)α−1g1(s,x(s),1Γ(β)∫s0(s−θ)β−1g2(θ,x(θ))dθ)ds,t∈J. |
In view of assumptions (i)-(iii), then N:C2(J,R)→C2(J,R) is continuous operator.
Now, let x and ,˜x∈C2(J,R), be two solutions of (1.1)then
∣Nx(t)−N˜x(t)∣=|h(t,x(t))+1Γ(α)∫t0(t−s)α−1g1(s,x(s),1Γ(β)∫s0(s−θ)β−1g2(θ,x(θ))dθ)ds−h(t,˜x(t))−1Γ(α)∫t0(t−s)α−1g1(s,˜x(s),1Γ(β)∫s0(s−θ)β−1g2(θ,˜x(θ))dθ)ds|⩽K1|x(t)−˜x(t)|+1Γ(α)∫t0(t−s)α−1|g1(s,x(s),1Γ(β)∫s0(s−θ)β−1g2(θ,x(θ))dθ)−g1(s,˜x(s),1Γ(β)∫s0(s−θ)β−1g2(θ,˜x(θ))dθ)|ds⩽K1|x(t)−˜x(t)|+1Γ(α)∫t0(t−s)α−1K∣x(s)−˜x(s)|ds+H1Γ(α)∫t0(t−s)α−11Γ(β)∫s0(s−θ)β−1∣g2(θ,x(θ))−g2(θ,˜x(θ))|dθds⩽K1|x(t)−˜x(t)|+KΓ(α)∫t0(t−s)α−1∣x(s)−˜x(s)|ds+HΓ(α)∫t0(t−s)α−1K2Γ(β)∫s0(s−θ)β−1∣x(θ)−˜x(θ)|dθds. |
Then
||Nx(t)−N˜x(t)||⩽K1||x−˜x||+K||x−˜x||Γ(α)∫t0(t−s)α−1ds+||x−˜x||HΓ(α)∫t0(t−s)α−1K2Γ(β)∫s0(s−θ)β−1dθds⩽K1||x−˜x||+K||x−˜x||TαΓ(α+1)+||x−˜x||K2TβΓ(β+1)HΓ(α)∫t0(t−s)α−1ds⩽K1||x−˜x||+K||x−˜x||TαΓ(α+1)+||x−˜x||K2TβΓ(β+1)HTαΓ(α+1)≤[K1+KTαΓ(α+1)+K2HTα+βΓ(β+1)Γ(α+1)]||x−˜x|| |
Since K1+KTαΓ(α+1)+K2HTα+βΓ(β+1)Γ(α+1)<1. It follows that N has a unique fixed point which is a solution of the initial value problem (1.1) in C2(J,R).
Theorem 2. Let assumptions of Theorem 1 be satisfied. Then the fractional order differential Eq (1.1) is Ulam-Hyers stable.
Proof. Let y∈C2(J,R) be a solution of the inequality
∣CDα[y(t)−h(t,y(t))]−g1(t,y(t),Iβg2(t,y(t)))∣⩽ϵ,ϵ>0,t∈J. | (4.1) |
Let x∈C2(J,R) be the unique solution of the initial value problem for implicit fractional-order differential Eq (1.1). By using Lemma 3, The Cauchy problem (1.1) is equivalent to
x(t)=h(t,x(t))+1Γ(α)∫t0(t−s)α−1g1(s,x(s),1Γ(β)∫s0(s−θ)β−1g2(θ,x(θ))dθ)ds. |
Operating by Iα−1 on both sides of (4.1) and then integrating, we get
|y(t)−h(t,y(t))−1Γ(α)∫t0(t−s)α−1g1(s,y(s),1Γ(β)∫s0(s−θ)β−1g2(θ,y(θ))dθ)ds|⩽1Γ(α)∫t0(t−s)α−1ϵds,≤ϵTαΓ(α+1). |
Also, we have
|y(t)−x(t)|=|y(t)−h(t,x(t))−1Γ(α)∫t0(t−s)α−1g1(s,x(s),1Γ(β)∫s0(s−θ)β−1g2(θ,x(θ))dθ)ds|=|y(t)−h(t,x(t))−1Γ(α)∫t0(t−s)α−1g1(s,x(s),1Γ(β)∫s0(s−θ)β−1g2(θ,x(θ))dθ)ds+h(t,y(t))+1Γ(α)∫t0(t−s)α−1g1(s,y(s),1Γ(β)∫s0(s−θ)β−1g2(θ,y(θ))dθ)ds−h(t,y(t))−1Γ(α)∫t0(t−s)α−1g1(s,y(s),1Γ(β)∫s0(s−θ)β−1g2(θ,y(θ))dθ)ds|≤|y(t)−h(t,y(t))−1Γ(α)∫t0(t−s)α−1g1(s,y(s),1Γ(β)∫s0(s−θ)β−1g2(θ,y(θ))dθ)ds|+|h(t,y(t))−h(t,x(t))|+1Γ(α)∫t0(t−s)α−1|g1(s,y(s),1Γ(β)∫s0(s−θ)β−1g2(θ,y(θ))dθ)−g1(s,x(s),1Γ(β)∫s0(s−θ)β−1g2(θ,x(θ))dθ)|ds≤ϵTαΓ(α+1)+K1|y(t)−x(t)|+1Γ(α)∫t0(t−s)α−1[K|y(t)−x(t)|+HΓ(β)∫s0(s−θ)β−1|g2(θ,y(θ))−g2(θ,x(θ))|dθ]ds |
||y−x||≤ϵTαΓ(α+1)+K1||y−x||+1Γ(α)∫t0(t−s)α−1[K||y−x||+HK2||x−y||TβΓ(β+1)]ds≤ϵTαΓ(α+1)+K1||y−x||+KTα||y−x||Γ(α+1)+HK2Tβ+α||x−y||Γ(β+1)Γ(α+1). |
Then
||y−x||≤ϵTαΓ(α+1)[1−(K1+KTαΓ(α+1)+HK2Tβ+αΓ(β+1)Γ(α+1))]−1=cϵ, |
thus the intial value problem (1.1) is Ulam-Heyers stable, and hence the proof is completed. By putting ψ(ε)=cε,ψ(0)=0 yields that the Eq (1.1) is generalized Ulam-Heyers stable.
Theorem 3. Let assumptions of Theorem 1 be satisfied, there exists an increasing function φ∈C(J,R) and there exists λφ>0 such that for any t∈J, we have
Iαφ(t)⩽λφφ(t), |
then the Eq (1.1) is Ulam-Heyers-Rassias stable.
Proof. Let y∈C2(J,R) be a solution of the inequality
∣CDα[y(t)−h(t,y(t))]−g1(t,y(t),Iβg2(t,y(t)))∣⩽ϵφ(t),ϵ>0,t∈J. | (4.2) |
Let x∈C2(J,R) be the unique solution of the initial value problem for implicit fractional-order differential Eq (1.1). By using Lemma 3, The Cauchy problem (1.1) is equivalent to
x(t)=h(t,x(t))+1Γ(α)∫t0(t−s)α−1g1(s,x(s),1Γ(β)∫s0(s−θ)β−1g2(θ,x(θ))dθ)ds. |
Operating by Iα−1 on both sides of (4.2) and then integrating, we get
|y(t)−h(t,y(t))−1Γ(α)∫t0(t−s)α−1g1(s,y(s),1Γ(β)∫s0(s−θ)β−1g2(θ,y(θ))dθ)ds|⩽ϵΓ(α)∫t0(t−s)α−1φ(s)ds,≤ϵIαφ(t)≤ϵλφφ(t). |
Also, we have
|y(t)−x(t)|=|y(t)−h(t,x(t))−1Γ(α)∫t0(t−s)α−1g1(s,x(s),1Γ(β)∫s0(s−θ)β−1g2(θ,x(θ))dθ)ds|=|y(t)−h(t,x(t))−1Γ(α)∫t0(t−s)α−1g1(s,x(s),1Γ(β)∫s0(s−θ)β−1g2(θ,x(θ))dθ)ds+h(t,y(t))+1Γ(α)∫t0(t−s)α−1g1(s,y(s),1Γ(β)∫s0(s−θ)β−1g2(θ,y(θ))dθ)ds−h(t,y(t))−1Γ(α)∫t0(t−s)α−1g1(s,y(s),1Γ(β)∫s0(s−θ)β−1g2(θ,y(θ))dθ)ds|≤|y(t)−h(t,y(t))−1Γ(α)∫t0(t−s)α−1g1(s,y(s),1Γ(β)∫s0(s−θ)β−1g2(θ,y(θ))dθ)ds|+|h(t,y(t))−h(t,x(t))|+1Γ(α)∫t0(t−s)α−1|g1(s,y(s),1Γ(β)∫s0(s−θ)β−1g2(θ,y(θ))dθ)−g1(s,x(s),1Γ(β)∫s0(s−θ)β−1g2(θ,x(θ))dθ)|ds≤ϵλφφ(t)+K1|y(t)−x(t)|+1Γ(α)∫t0(t−s)α−1[K|y(t)−x(t)|+HΓ(β)∫s0(s−θ)β−1|g2(θ,y(θ))−g2(θ,x(θ))|dθ]ds |
||y−x||≤ϵλφφ(t)+K1||y−x||+1Γ(α)∫t0(t−s)α−1[K||y(t)−x(t)||+HK2||x−y||TβΓ(β+1)]ds≤ϵλφφ(t)+K1||y−x||+KTα||y−x||Γ(α+1)+HK2Tβ+α||x−y||Γ(β+1)Γ(α+1). |
Then
||y−x||≤ϵλφφ(t)[1−(K1+KTαΓ(α+1)+HK2Tβ+αΓ(β+1)Γ(α+1))]−1=cϵφ(t), |
then the initial problem (1.1) is Ulam-Heyers-Rassias stable, and hence the proof is completed.
In this section, we prove some results on the existence of mild solutions and attractivity for the neutral fractional differential equation (1.1) by applying Schauder fixed point theorem. Denote BC=BC(J),J=[0,+∞) and consider the following assumptions:
(I) h:J×R⟶R is a continuous function and there exists a continuous function Kh(t) such that:
∣h(t,x)−h(t,y)∣⩽Kh(t)∣x−y∣ for each t∈J and x,y∈R, |
where K∗h=supt≥0Kh(t)<1,limt→∞Kh(t)=0, and limt→∞h(t,0)=0.
(II) g1:J×R×R⟶R satisfies Carathéodory condition and there exist an integrable function a1:R+⟶R+ and a positive constant b such that:
∣g1(t,x,y)∣≤a1(t)1+|x|+b|y| for eacht∈J and x,y∈R. |
(III) g2:J×R⟶R satisfies Carathéodory condition and there exists an integrable function
a2:R+⟶R+ such that:
∣g2(t,x)∣≤a2(t)1+|x| for eacht∈J and x∈R. |
(IV) Let
limt→∞∫t0(t−s)α−1Γ(α)a1(s)ds=0a∗1=supt∈J∫t0(t−s)α−1Γ(α)a1(s)dslimt→∞∫t0(t−s)α+β−1Γ(α+β)a2(s)ds=0a∗2=supt∈J∫t0(t−s)α+β−1Γ(α+β)a2(s)ds |
By a mild solution of the Eq (1.1) we mean that a function x∈C(J,R) such that x satisfies the equation in (3.1).
Theorem 4. Let assumptions (I)-(IV) be satisfied. Then there exists at least one mild solution for the nonlinear implicit neutral differential equation of fractional order (1.1). Moreover, mild solutions of IVP (1.1) are locally attractive.
Proof. For any x∈BC, define the operator A by
Ax(t)=h(t,x(t))+1Γ(α)∫t0(t−s)α−1g1(s,x(s),1Γ(β)∫s0(s−θ)β−1g2(θ,x(θ))dθ)ds. |
The operator A is well defined and maps BC into BC. Obviously, the map A(x) is continuous on J for any x∈BC and for each t∈J, we have
|Ax(t)|≤|h(t,x(t))|+1Γ(α)∫t0(t−s)α−1|g1(s,x(s),1Γ(β)∫s0(s−θ)β−1g2(θ,x(θ))dθ)|ds≤|h(t,x(t))−h(t,0)|+|h(t,0)|+1Γ(α)∫t0(t−s)α−1[a1(s)1+|x(s)|+b1Γ(β)∫s0(s−θ)β−1|g2(θ,x(θ))|dθ]ds≤Kh(t)|x(t)|+|h(t,0)|+1Γ(α)∫t0(t−s)α−1[a1(s)+b1Γ(β)∫s0(s−θ)β−1a2(θ)1+|x(θ)|dθ]ds≤K∗h|x(t)|+|h(t,0)|+a∗1+b1Γ(α+β)∫t0(t−s)α+β−1a2(θ)1+|x(θ)|dθ≤K∗hM+|h(t,0)|+a∗1+b1Γ(α+β)∫t0(t−s)α+β−1a2(θ)dθ≤K∗hM+|h(t,0)|+a∗1+ba∗2≤M. |
Then
||Ax(t)||BC≤M,M=(|h(t,0)|+a∗1+ba∗2)(1−K∗h)−1. | (5.1) |
Thus A(x)∈BC. This clarifies that operator A maps BC into itself.
Finding the solutions of IVP (1.1) is reduced to find solutions of the operator equation A(x)=x. Eq (5.1) implies that A maps the ball BM:=B(0,M)={x∈BC:||x(t)||BC≤M} into itself. Now, our proof will be established in the following steps:
Step 1: A is continuous.
Let {xn}n∈N be a sequence such that xn→x in BM. Then, for each t∈J, we have
∣Axn(t)−Ax(t)∣=|h(t,xn(t))+1Γ(α)∫t0(t−s)α−1g1(s,xn(s),1Γ(β)∫s0(s−θ)β−1g2(θ,xn(θ))dθ)ds−h(t,x(t))−1Γ(α)∫t0(t−s)α−1g1(s,x(s),1Γ(β)∫s0(s−θ)β−1g2(θ,x(θ))dθ)ds|⩽Kh(t)|xn(t)−x(t)|+1Γ(α)∫t0(t−s)α−1|g1(s,xn(s),1Γ(β)∫s0(s−θ)β−1g2(θ,xn(θ))dθ)−g1(s,x(s),1Γ(β)∫s0(s−θ)β−1g2(θ,x(θ))dθ)|ds⩽K∗h|xn(t)−x(t)|+1Γ(α)∫t0(t−s)α−1|g1(s,xn(s),1Γ(β)∫s0(s−θ)β−1g2(θ,xn(θ))dθ)−g1(s,x(s),1Γ(β)∫s0(s−θ)β−1g2(θ,x(θ))dθ)|ds |
Assumptions (II) and (III) implies that:
g1(t,xn,Iβg2(t,xn))→g1(t,x,Iβg2(t,x))\; as \; n→∞. |
Using Lebesgue dominated convergence theorem, we have
||Axn(t)−Ax(t)||BC→0 asn→∞. |
Step 2: A(BM) is uniformly bounded.
It is obvious since A(BM)⊂BM and BM is bounded.
Step 3: A(BM) is equicontinuous on every compact subset [0,T] of J,T>0 and t1,t2∈[0,T],t2>t1 (without loss of generality), we get
∣Ax(t2)−Ax(t1)∣≤|h(t2,x(t2))+1Γ(α)∫t20(t2−s)α−1g1(s,x(s),1Γ(β)∫s0(s−θ)β−1g2(θ,x(θ))dθ)ds−h(t1,x(t1))+1Γ(α)∫t10(t1−s)α−1g1(s,x(s),1Γ(β)∫s0(s−θ)β−1g2(θ,x(θ))dθ)ds|≤∣h(t2,x(t2))−h(t1,x(t1))| |
+1Γ(α)|∫t20(t2−s)α−1g1(s,x(s),1Γ(β)∫s0(s−θ)β−1g2(θ,x(θ))dθ)ds−∫t10(t1−s)α−1g1(s,x(s),1Γ(β)∫s0(s−θ)β−1g2(θ,x(θ))dθ)ds|≤∣h(t2,x(t2))−h(t1,x(t1))+h(t2,x(t1))−h(t2,x(t1))|+1Γ(α)|∫t10(t2−s)α−1g1(s,x(s),1Γ(β)∫s0(s−θ)β−1g2(θ,x(θ))dθ)ds+1Γ(α)∫t2t1(t2−s)α−1g1(s,x(s),1Γ(β)∫s0(s−θ)β−1g2(θ,x(θ))dθ)ds−∫t10(t1−s)α−1g1(s,x(s),1Γ(β)∫s0(s−θ)β−1g2(θ,x(θ))dθ)ds|≤Kh(t)∣x(t2)−x(t1)∣+|h(t2,x(t1))−h(t1,x(t1))|+1Γ(α)|∫t10(t1−s)α−1g1(s,x(s),1Γ(β)∫s0(s−θ)β−1g2(θ,x(θ))dθ)ds+1Γ(α)∫t2t1(t2−s)α−1g1(s,x(s),1Γ(β)∫s0(s−θ)β−1g2(θ,x(θ))dθ)ds−∫t10(t1−s)α−1g1(s,x(s),1Γ(β)∫s0(s−θ)β−1g2(θ,x(θ))dθ)ds|≤Kh(t)∣x(t2)−x(t1)∣+|h(t2,x(t1))−h(t1,x(t1))|+1Γ(α)∫t2t1(t2−s)α−1|g1(s,x(s),1Γ(β)∫s0(s−θ)β−1g2(θ,x(θ))dθ)|ds≤Kh(t)∣x(t2)−x(t1)∣+|h(t2,x(t1))−h(t1,x(t1))|+1Γ(α)∫t2t1(t2−s)α−1[a1(s)1+|x(s)|+b1Γ(β)∫s0(s−θ)β−1|g2(θ,x(θ))|dθ]ds≤K∗h∣x(t2)−x(t1)∣+|h(t2,x(t1))−h(t1,x(t1))|+1Γ(α)∫t2t1(t2−s)α−1[a1(s)+b1Γ(β)∫s0(s−θ)β−1a2(θ)1+|x(θ)|dθ]ds≤K∗h∣x(t2)−x(t1)∣+|h(t2,x(t1))−h(t1,x(t1))|+1Γ(α)∫t2t1(t2−s)α−1[a1(s)+b1Γ(β)∫s0(s−θ)β−1a2(θ)dθ]ds. |
Thus, for ai=supt∈[0,T]ai,i=1,2 and from the continuity of the functions ai we obtain
∣Ax(t2)−Ax(t1)∣≤K∗h∣x(t2)−x(t1)∣+|h(t2,x(t1))−h(t1,x(t1))|+1Γ(α)∫t2t1(t2−s)α−1[a1(s)+ba2Γ(β+1)sβ]ds.≤K∗h∣x(t2)−x(t1)∣+|h(t2,x(t1))−h(t1,x(t1))|+a1Γ(α+1)(t2−t1)α+ba2Γ(α+β+1)(t2−t1)α+β. |
Continuity of h implies that
|(Ax)(t2)−(Ax)(t1)|→0ast2→t1. |
Step 4: A(BM) is equiconvergent.
Let t∈J and x∈BM then we have
|Ax(t)|≤|h(t,x(t))−h(t,0)|+|h(t,0)|+1Γ(α)∫t0(t−s)α−1|g1(s,x(s),1Γ(β)∫s0(s−θ)β−1g2(θ,x(θ))dθ)|ds≤Kh(t)|x(t)|+|h(t,0)|+1Γ(α)∫t0(t−s)α−1[a1(s)1+|x(s)|+b1Γ(β)∫s0(s−θ)β−1|g2(θ,x(θ))|dθ]ds≤Kh(t)|x(t)|+|h(t,0)|+1Γ(α)∫t0(t−s)α−1[a1(s)+b1Γ(β)∫s0(s−θ)β−1a2(θ)1+|x(θ)|dθ]ds≤Kh(t)|x(t)|+|h(t,0)|+1Γ(α)∫t0(t−s)α−1a1(s)ds+b1Γ(α+β)∫t0(t−s)α+β−1a2(s)ds. |
In view of assumptions (I) and (IV), we obtain
|Ax(t)|→0 as t→∞. |
Then A has a fixed point x which is a solution of IVP (1.1) on J.
Step 5: Local attactivity of mild solutions. Let x∗ be a mild solution of IVP (1.1). Taking x∈B(x∗,2M), we have
|Ax(t)−x∗(t)|=|Ax(t)−Ax∗(t)|≤∣h(t,x(t))−h(t,x∗(t))∣+1Γ(α)∫t0(t−s)α−1|g1(s,x(s),1Γ(β)∫s0(s−θ)β−1g2(θ,x(θ))dθ)−g1(s,x∗(s),1Γ(β)∫s0(s−θ)β−1g2(θ,x∗(θ))dθ)|ds≤Kh(t)∣x(t)−x∗(t)∣+1Γ(α)∫t0(t−s)α−1[|g1(s,x(s),1Γ(β)∫s0(s−θ)β−1g2(θ,x(θ))dθ)|+|g1(s,x∗(s),1Γ(β)∫s0(s−θ)β−1g2(θ,x∗(θ))dθ)|]ds≤K∗h∣x(t)−x∗(t)∣+2Γ(α)∫t0(t−s)α−1|a1(s)+bΓ(β)∫s0(s−θ)β−1a2(θ)dθ|ds≤K∗h∣x(t)−x∗(t)∣+2a∗1+2b1Γ(β+α)∫s0(s−θ)α+β−1a2(θ)dθ≤2(K∗h∣x(t)∣+|h(t,0)|+a∗1+ba∗2)≤2(K∗hM+|h(t,0)|+a∗1+ba∗2)≤2M. |
We have
||Ax(t)−x∗(t)||BC≤2M. |
Hence A is a continuous function such that A(B(x∗,2M))⊂B(x∗,2M).
Moreover, if x is a mild solution of IVP (1.1), then
|x(t)−x∗(t)|=|Ax(t)−Ax∗(t)|≤∣h(t,x(t))−h(t,x∗(t))∣+1Γ(α)∫t0(t−s)α−1|g1(s,x(s),1Γ(β)∫s0(s−θ)β−1g2(θ,x(θ))dθ)−g1(s,x∗(s),1Γ(β)∫s0(s−θ)β−1g2(θ,x∗(θ))dθ)|ds≤Kh(t)∣x(t)−x∗(t)∣+1Γ(α)∫t0(t−s)α−1[|g1(s,x(s),1Γ(β)∫s0(s−θ)β−1g2(θ,x(θ))dθ)|+|g1(s,x∗(s),1Γ(β)∫s0(s−θ)β−1g2(θ,x∗(θ))dθ)|]ds≤K∗h∣x(t)−x∗(t)∣+2Γ(α)∫t0(t−s)α−1a1(s)ds+2bΓ(α+β)∫t0(t−θ)α+β−1a2(θ)dθ. |
Then
|x(t)−x∗(t)|≤(1−K∗h)−1[2Γ(α)∫t0(t−s)α−1a1(s)ds+2bΓ(α+β)∫t0(t−θ)α+β−1a2(θ)dθ]. | (5.2) |
In view of assumption of (IV) and estimation (5.2), we get
limt→∞|x(t)−x∗(t)|=0. |
Then, all mild solutions of IVP (1.1) are locally attractive.
As particular cases of the IVP (1.1), we have
● Taking g1(t,x,y)=g1(t,x), we obtain the initial value problem
{CDα[x(t)−h(t,x(t))]=g1(t,x(t))t∈J,1<α≤2,(x(t)−h(t,x(t)))|t=0=0andddt[x(t)−h(t,x(t))]t=0=0 |
● Letting α→2,β→1, as a particular case of Theorem 1 we can deduce an existence result for the initial value problem for implicit second-order differe-integral equation
{d2dt2(x(t)−h(t,x(t)))=g1(t,x(t),∫t0g2(s,x(s))ds)t∈J,(x(t)−h(t,x(t)))|t=0=0andddt[x(t)−h(t,x(t))]t=0=0 |
As particular cases we can deduce existence results for some initial value problem of second order differential equations (when h=0) and α→2, we get:
● Taking g1(t,x,y)=−λ2x(t),λ∈R+, then we obtain a second order differential equation of simple harmonic oscillator
{d2x(t)dt2=−λ2x(t)t∈J,x(0)=0andx′(0)=0 |
● Taking g1(t,x,y)=(t2−kt2)x+q(x),k∈R where q(x) is continuous function, then we obtain Riccati differential equation of second order
{t2d2x(t)dt2−(t2−k)x(t)=t2q(x(t))t∈J,x(0)=0andx′(0)=0 |
● Taking g1(t,x,y)=−(t2−2lt−k)x+q(x),k∈R where q(x) is continuous function and l is fixed, then we obtain Coulomb wave differential equation of second order
{d2x(t)dt2+(t2−2lt−k)x=q(x(t))t∈J,x(0)=0andx′(0)=0 |
● Taking g1(t,x,y)=(−8π2mℏ2)(Ex−kt22x)+q(x),k∈R where q(x) is continuous function and ℏ is the Planket's constant and E,k are positive real numbers, then we obtain of Schrödinger wave differential equation for simple harmonic oscillator
{d2x(t)dt2=(−8π2mℏ2)(Ex(t)−kt22x(t))+q(x(t))t∈J,x(0)=0andx′(0)=0. |
Sufficient conditions for the existence of solutions for a class of neutral integro-differential equations of fractional order (1.1) are discussed which involved many key functional differential equations that appear in applications of nonlinear analysis. Also, some types of Ulam stability for this class of implicit fractional differential equation are established. Some applications and particular cases are presented. Finally, the existence of at least one mild solution for this class of equations on an infinite interval by applying Schauder fixed point theorem and the local attractivity of solutions are proved.
The authors express their thanks to the anonymous referees for their valuable comments and remarks.
The authors declare that they have no competing interests.
[1] |
Armitage JP (1997) Three hundred years of bacterial motility. Found Mod Biochem 3: 107-171. doi: 10.1016/S1874-5660(97)80007-X
![]() |
[2] |
Belas R, Zhulin IB, Yang Z (2008) Bacterial signaling and motility: sure bets. J Bacteriol 190: 1849-1856. doi: 10.1128/JB.01943-07
![]() |
[3] |
Holscher T, Bartels B, Lin YC, et al. (2015) Motility, chemotaxis and aerotaxis contribute to competitiveness during bacterial pellicle biofilm development. J Mol Biol 427: 3695-3708. doi: 10.1016/j.jmb.2015.06.014
![]() |
[4] |
Mitchell JG, Kogure K (2006) Bacterial motility: links to the environment and a driving force for microbial physics. FEMS Microbiol Ecol 55: 3-16. doi: 10.1111/j.1574-6941.2005.00003.x
![]() |
[5] |
Velho Rodrigues MF, Lisicki M, Lauga E (2021) The bank of swimming organisms at the micron scale (BOSO-Micro). Plos One 16: e0252291. doi: 10.1371/journal.pone.0252291
![]() |
[6] |
Vaituzis Z, Doetsch RN (1969) Motility tracks: technique for quantitative study of bacterial movement. Appl Microbiol 17: 584-588. doi: 10.1128/am.17.4.584-588.1969
![]() |
[7] |
Barnkob R, Rossi M (2020) General defocusing particle tracking: fundamentals and uncertainty assessment. Exp Fluids 61: 1-14. doi: 10.1007/s00348-020-2937-5
![]() |
[8] |
de Anda J, Lee EY, Lee CK, et al. (2017) High-speed “4D” computational microscopy of bacterial surface motility. Acs Nano 11: 9340-9351. doi: 10.1021/acsnano.7b04738
![]() |
[9] |
Lofroth M, Avci E (2018) Auto-focusing approach on multiple micro objects using the prewitt operator. Int J Intell Robot Appl 2: 413-424. doi: 10.1007/s41315-018-0070-x
![]() |
[10] |
Taute KM, Gude S, Tans SJ, et al. (2015) High-throughput 3D tracking of bacteria on a standard phase contrast microscope. Nat Commun 6: 8776. doi: 10.1038/ncomms9776
![]() |
[11] |
Qi M, Gong X, Wu B, et al. (2017) Landing dynamics of swimming bacteria on a polymeric surface: Effect of surface properties. Langmuir 33: 3525-3533. doi: 10.1021/acs.langmuir.7b00439
![]() |
[12] |
Yuan S, Qi M, Peng Q, et al. (2021) Adaptive behaviors of planktonic Pseudomonas aeruginosa in response to the surface-deposited dead siblings. Colloid Surface B 197: 111408. doi: 10.1016/j.colsurfb.2020.111408
![]() |
[13] |
Cheong FC, Wong CC, Gao YF, et al. (2015) Rapid, high-throughput tracking of bacterial motility in 3D via phase-contrast holographic video microscopy. Biophys J 108: 1248-1256. doi: 10.1016/j.bpj.2015.01.018
![]() |
[14] |
Farthing NE, Findlay RC, Jikeli JF, et al. (2017) Simultaneous two-color imaging in digital holographic microscopy. Opt Express 25: 28489-28500. doi: 10.1364/OE.25.028489
![]() |
[15] |
Flewellen JL, Zaid IM, Berry RM (2019) A multi-mode digital holographic microscope. Rev Sci Instrum 90: 023705. doi: 10.1063/1.5066556
![]() |
[16] | Hook AL, Flewellen JL, Dubern JF, et al. (2019) Simultaneous tracking of Pseudomonas aeruginosa motility in liquid and at the solid-liquid interface reveals differential roles for the flagellar stators. Msystems 4: e00390-19. |
[17] |
Huang G, Tian WZ, Qi M, et al. (2018) Improving axial resolution for holographic tracking of colloids and bacteria over a wide depth of field by optimizing different factors. Opt Express 26: 9920-9930. doi: 10.1364/OE.26.009920
![]() |
[18] |
Rieu M, Vieille T, Radou G, et al. (2021) Parallel, linear, and subnanometric 3D tracking of microparticles with Stereo Darkfield Interferometry. Sci Adv 7: eabe3902. doi: 10.1126/sciadv.abe3902
![]() |
[19] |
Yamato K, Chiba H, Oku H (2020) High speed three dimensional tracking of swimming cell by synchronous modulation between tece camera and tag lens. IEEE Robot Autom Lett 5: 1907-1914. doi: 10.1109/LRA.2020.2969911
![]() |
[20] |
Bedrossian M, El-Kholy M, Neamati D, et al. (2018) A machine learning algorithm for identifying and tracking bacteria in three dimensions using Digital Holographic Microscopy. AIMS Biophys 5: 36-49. doi: 10.3934/biophy.2018.1.36
![]() |
[21] |
Cerda M, Navarro CA, Silva J, et al. (2018) A high-speed tracking algorithm for dense granular media. Comput Phys Commun 227: 8-16. doi: 10.1016/j.cpc.2018.02.010
![]() |
[22] |
Shao S, Mallery K, Kumar SS, et al. (2020) Machine learning holography for 3D particle field imaging. Opt Express 28: 2987-2999. doi: 10.1364/OE.379480
![]() |
[23] |
Wang GC, Huang G, Gong XJ, et al. (2020) Method for 3D tracking behaviors of interplaying bacteria individuals. Opt Express 28: 28060-28071. doi: 10.1364/OE.401032
![]() |
[24] |
Wang A, Garmann RF, Manoharan VN (2016) Tracking E-coli runs and tumbles with scattering solutions and digital holographic microscopy. Opt Express 24: 23719-23725. doi: 10.1364/OE.24.023719
![]() |
[25] |
Sheng J, Malkiel E, Katz J, et al. (2007) Digital holographic microscopy reveals prey-induced changes in swimming behavior of predatory dinoflagellates. P Natl Acad Sci USA 104: 17512-17517. doi: 10.1073/pnas.0704658104
![]() |
[26] |
Sheng J, Malkiel E, Katz J, et al. (2010) A dinoflagellate exploits toxins to immobilize prey prior to ingestion. P Natl Acad Sci USA 107: 2082-2087. doi: 10.1073/pnas.0912254107
![]() |
[27] |
Molaei M, Sheng J (2014) Imaging bacterial 3D motion using digital in-line holographic microscopy and correlation-based de-noising algorithm. Opt Express 22: 32119-32137. doi: 10.1364/OE.22.032119
![]() |
[28] |
Wang A, Garmann RF, Manoharan VN (2016) Tracking E. coli runs and tumbles with scattering solutions and digital holographic microscopy. Opt Express 24: 23719-23725. doi: 10.1364/OE.24.023719
![]() |
[29] |
Yu X, Hong J, Liu C, et al. (2014) Review of digital holographic microscopy for three-dimensional profiling and tracking. Opt Eng 53: 112306. doi: 10.1117/1.OE.53.11.112306
![]() |
[30] |
Stocker R (2011) Reverse and flick: Hybrid locomotion in bacteria. P Natl Acad Sci USA 108: 2635-2636. doi: 10.1073/pnas.1019199108
![]() |
[31] |
Bubendorfer S, Held S, Windel N, et al. (2012) Specificity of motor components in the dual flagellar system of Shewanella putrefaciens CN-32. Mol Microbiol 83: 335-350. doi: 10.1111/j.1365-2958.2011.07934.x
![]() |
[32] |
Butler SM, Camilli A (2004) Both chemotaxis and net motility greatly influence the infectivity of Vibrio cholerae. P Natl Acad Sci USA 101: 5018-5023. doi: 10.1073/pnas.0308052101
![]() |
[33] |
Butler SM, Camilli A (2005) Going against the grain: chemotaxis and infection in Vibrio cholerae. Nat Rev Microbiol 3: 611-620. doi: 10.1038/nrmicro1207
![]() |
[34] |
Paździor E, Pękala-Safińska A, Wasyl D (2019) Phenotypic diversity and potential virulence factors of the Shewanella putrefaciens group isolated from freshwater fish. J Vet Res 63: 321-332. doi: 10.2478/jvetres-2019-0046
![]() |
[35] |
Pękala A, Kozińska A, Paździor E, et al. (2015) Phenotypical and genotypical characterization of Shewanella putrefaciens strains isolated from diseased freshwater fish. J Fish Dis 38: 283-293. doi: 10.1111/jfd.12231
![]() |
[36] |
Vignier N, Barreau M, Olive C, et al. (2013) Human infection with Shewanella putrefaciens and S. algae: report of 16 cases in Martinique and review of the literature. Am J Trop Med Hyg 89: 151-156. doi: 10.4269/ajtmh.13-0055
![]() |
[37] |
Kühn J, Niraula B, Liewer K, et al. (2014) A Mach-Zender digital holographic microscope with sub-micrometer resolution for imaging and tracking of marine micro-organisms. Rev Sci Instrum 85: 123113. doi: 10.1063/1.4904449
![]() |
[38] |
Nadeau JL, Cho YB, Kühn J, et al. (2016) Improved tracking and resolution of bacteria in holographic microscopy using dye and fluorescent protein labeling. Front Chem 4: 17. doi: 10.3389/fchem.2016.00017
![]() |
[39] | Fregoso SF, Lima F, Wallace JK, et al. (2020) DHMx (Digital holographic microscope experience) software tool, Digital Holography and Three-Dimensional Imaging. Opt Soc Am HF2G.7. |
[40] | Mann CJ, Kim MK (2006) Quantitative phase-contrast microscopy by angular spectrum digital holography, Three-Dimensional and Multidimensional Microscopy: Image Acquisition and Processing XIII. International Society for Optics and Photonics 6090: 60900B. |
[41] |
Cohoe D, Hanczarek I, Wallace JK, et al. (2019) Multiwavelength imaging and unwrapping of protozoa in amplitude and phase using custom Fiji plug-ins. Frontiers Phys 7: 94. doi: 10.3389/fphy.2019.00094
![]() |
[42] |
Colomb T, Kühn J, Charrière F, et al. (2006) Total aberrations compensation in digital holographic microscopy with a reference conjugated hologram. Opt Express 14: 4300-4306. doi: 10.1364/OE.14.004300
![]() |
[43] |
Schindelin J, Arganda-Carreras I, Frise E, et al. (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9: 676-682. doi: 10.1038/nmeth.2019
![]() |
[44] |
Taute KM, Gude S, Tans SJ, et al. (2015) High-throughput 3D tracking of bacteria on a standard phase contrast microscope. Nat Commun 6: 8776. doi: 10.1038/ncomms9776
![]() |
[45] |
Vater SM, Weiße S, Maleschlijski S, et al. (2014) Swimming behavior of Pseudomonas aeruginosa studied by holographic 3D tracking. PLoS One 9: e87765. doi: 10.1371/journal.pone.0087765
![]() |
[46] |
Heydt M, Divós P, Grunze M, et al. (2009) Analysis of holographic microscopy data to quantitatively investigate three-dimensional settlement dynamics of algal zoospores in the vicinity of surfaces. Eur Phys J E 30: 141-148. doi: 10.1140/epje/i2009-10459-9
![]() |
[47] |
Dixon L, Cheong FC, Grier DG (2011) Holographic deconvolution microscopy for high-resolution particle tracking. Opt Express 19: 16410-16417. doi: 10.1364/OE.19.016410
![]() |
[48] |
Latychevskaia T, Fink HW (2014) Holographic time-resolved particle tracking by means of three-dimensional volumetric deconvolution. Opt Express 22: 20994-21003. doi: 10.1364/OE.22.020994
![]() |
[49] |
Goto T, Nakata K, Baba K, et al. (2005) A fluid-dynamic interpretation of the asymmetric motion of singly flagellated bacteria swimming close to a boundary. Biophys J 89: 3771-3779. doi: 10.1529/biophysj.105.067553
![]() |
[50] |
Lauga E, Diluzio WR, Whitesides GM, et al. (2006) Swimming in circles: Motion of bacteria near solid boundaries. Biophys J 90: 400-412. doi: 10.1529/biophysj.105.069401
![]() |
[51] |
Das D, Lauga E (2019) Transition to bound states for bacteria swimming near surfaces. Phys Rev E 100: 043117. doi: 10.1103/PhysRevE.100.043117
![]() |
[52] |
Kudo S, Imai N, Nishitoba M, et al. (2005) Asymmetric swimming pattern of Vibrio alginolyticuscells with single polar flagella. FEMS Microbiol Lett 242: 221-225. doi: 10.1016/j.femsle.2004.11.007
![]() |
[53] |
Chen M, Zhao Z, Yang J, et al. (2017) Length-dependent flagellar growth of Vibrio alginolyticus revealed by real time fluorescent imaging. ELife 6: e22140. doi: 10.7554/eLife.22140
![]() |
[54] |
Molaei M, Barry M, Stocker R, et al. (2014) Failed escape: Solid surfaces prevent tumbling of Escherichia coli. Phys Rev Lett 113: 068103. doi: 10.1103/PhysRevLett.113.068103
![]() |
[55] |
Bianchi S, Saglimbeni F, Frangipane G, et al. (2019) 3D dynamics of bacteria wall entrapment at a water–air interface. Soft Matter 15: 3397-3406. doi: 10.1039/C9SM00077A
![]() |
[56] |
Berg HC (1971) How to track bacteria. Rev Sci Instrum 42: 868-871. doi: 10.1063/1.1685246
![]() |
[57] |
Frymier PD, Ford RM, Berg HC, et al. (1995) Three-dimensional tracking of motile bacteria near a solid planar surface. P Natl Acad Sci USA 92: 6195-6199. doi: 10.1073/pnas.92.13.6195
![]() |
[58] | Bianchi S, Saglimbeni F, Di Leonardo R (2017) Holographic imaging reveals the mechanism of wall entrapment in swimming bacteria. Phys Rev X 7: 011010. |
[59] |
Tokárová V, Perumal AS, Nayak M, et al. (2021) Patterns of bacterial motility in microfluidics-confining environments. P Natl Acad Sci USA 118: e2013925118. doi: 10.1073/pnas.2013925118
![]() |
[60] |
Conrad JC, Poling-Skutvik R (2018) Confined flow: Consequences and implications for bacteria and biofilms. Annu Rev Chem Biomol Eng 9: 175-200. doi: 10.1146/annurev-chembioeng-060817-084006
![]() |
[61] |
Drescher K, Dunkel J, Cisneros LH, et al. (2011) Fluid dynamics and noise in bacterial cell-cell and cell-surface scattering. P Natl Acad Sci USA 108: 10940-10945. doi: 10.1073/pnas.1019079108
![]() |
[62] |
Morse M, Huang A, Li G, et al. (2013) Molecular adsorption steers bacterial swimming at the air/water interface. Biophys J 105: 21-28. doi: 10.1016/j.bpj.2013.05.026
![]() |
[63] |
Mitchell JG, Kogure K (2006) Bacterial motility: links to the environment and a driving force for microbial physics. FEMS Microbiol Ecol 55: 3-16. doi: 10.1111/j.1574-6941.2005.00003.x
![]() |
[64] |
Donlan RM (2002) Biofilms: Microbial life on surfaces. Emerg Infect Dis J 8: 881. doi: 10.3201/eid0809.020063
![]() |
[65] |
Kearns DB (2010) A field guide to bacterial swarming motility. Nat Rev Microbiol 8: 634-644. doi: 10.1038/nrmicro2405
![]() |
[66] |
Guttenplan SB, Kearns DB (2013) Regulation of flagellar motility during biofilm formation. FEMS Microbiol Rev 37: 849-871. doi: 10.1111/1574-6976.12018
![]() |
1. | Xuming Chen, Jianfa Zhu, Liangxiao Li, Chengwen Long, Uniqueness of system integration scheme of artificial intelligence technology in fractional differential mathematical equation, 2022, 0, 2444-8656, 10.2478/amns.2022.2.0104 | |
2. | Abha Singh, Abdul Hamid Ganie, Mashael M. Albaidani, Antonio Scarfone, Some New Inequalities Using Nonintegral Notion of Variables, 2021, 2021, 1687-9139, 1, 10.1155/2021/8045406 | |
3. | Liang Song, Shaodong Chen, Guoxin Wang, Oscillation Analysis Algorithm for Nonlinear Second-Order Neutral Differential Equations, 2023, 11, 2227-7390, 3478, 10.3390/math11163478 |