2 | 4 | 6 | 8 | |
Cor |
||||
Th |
2 | 2 | 2 | 2 |
The objective of this study was to provide an overview of Decision Support Systems (DSS) applied in healthcare used for diagnosis, monitoring, prediction and recommendation in medicine.
We conducted a systematic review using PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analysis) guidelines of articles published until September 2022 from PubMed, Cochrane, Scopus and web of science databases. We used KH coder to analyze included research. Then we categorized decision support systems based on their types and medical applications.
The search strategy provided a total of 1605 articles in the studied period. Of these, 231 articles were included in this qualitative review. This research was classified into 4 categories based on the DSS type used in healthcare: Alert Systems, Monitoring Systems, Recommendation Systems and Prediction Systems. Under each category, domain applications were specified according to the disease the system was applied to.
In this systematic review, we collected CDSS studies that use ML techniques to provide insights into different CDSS types. We highlighted the importance of ML to support physicians in clinical decision-making and improving healthcare according to their purposes.
Citation: Houssem Ben Khalfallah, Mariem Jelassi, Jacques Demongeot, Narjès Bellamine Ben Saoud. Decision support systems in healthcare: systematic review, meta-analysis and prediction, with example of COVID-19[J]. AIMS Bioengineering, 2023, 10(1): 27-52. doi: 10.3934/bioeng.2023004
[1] | Xiaoyong Chen, Yating Li, Liang Liu, Yaqiang Wang . Infinity norm upper bounds for the inverse of SDD1 matrices. AIMS Mathematics, 2022, 7(5): 8847-8860. doi: 10.3934/math.2022493 |
[2] | Lanlan Liu, Yuxue Zhu, Feng Wang, Yuanjie Geng . Infinity norm bounds for the inverse of SDD+1 matrices with applications. AIMS Mathematics, 2024, 9(8): 21294-21320. doi: 10.3934/math.20241034 |
[3] | Dizhen Ao, Yan Liu, Feng Wang, Lanlan Liu . Schur complement-based infinity norm bounds for the inverse of S-Sparse Ostrowski Brauer matrices. AIMS Mathematics, 2023, 8(11): 25815-25844. doi: 10.3934/math.20231317 |
[4] | Yingxia Zhao, Lanlan Liu, Feng Wang . Error bounds for linear complementarity problems of SDD1 matrices and SDD1-B matrices. AIMS Mathematics, 2022, 7(7): 11862-11878. doi: 10.3934/math.2022662 |
[5] | Xinnian Song, Lei Gao . CKV-type B-matrices and error bounds for linear complementarity problems. AIMS Mathematics, 2021, 6(10): 10846-10860. doi: 10.3934/math.2021630 |
[6] | Fatih Yılmaz, Aybüke Ertaş, Samet Arpacı . Some results on circulant matrices involving Fibonacci polynomials. AIMS Mathematics, 2025, 10(4): 9256-9273. doi: 10.3934/math.2025425 |
[7] | Man Chen, Huaifeng Chen . On ideal matrices whose entries are the generalized k−Horadam numbers. AIMS Mathematics, 2025, 10(2): 1981-1997. doi: 10.3934/math.2025093 |
[8] | Yuanjie Geng, Deshu Sun . Error bounds for linear complementarity problems of strong SDD1 matrices and strong SDD1-B matrices. AIMS Mathematics, 2023, 8(11): 27052-27064. doi: 10.3934/math.20231384 |
[9] | Baijuan Shi . A particular matrix with exponential form, its inversion and some norms. AIMS Mathematics, 2022, 7(5): 8224-8234. doi: 10.3934/math.2022458 |
[10] | Lanlan Liu, Pan Han, Feng Wang . New error bound for linear complementarity problem of S-SDDS-B matrices. AIMS Mathematics, 2022, 7(2): 3239-3249. doi: 10.3934/math.2022179 |
The objective of this study was to provide an overview of Decision Support Systems (DSS) applied in healthcare used for diagnosis, monitoring, prediction and recommendation in medicine.
We conducted a systematic review using PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analysis) guidelines of articles published until September 2022 from PubMed, Cochrane, Scopus and web of science databases. We used KH coder to analyze included research. Then we categorized decision support systems based on their types and medical applications.
The search strategy provided a total of 1605 articles in the studied period. Of these, 231 articles were included in this qualitative review. This research was classified into 4 categories based on the DSS type used in healthcare: Alert Systems, Monitoring Systems, Recommendation Systems and Prediction Systems. Under each category, domain applications were specified according to the disease the system was applied to.
In this systematic review, we collected CDSS studies that use ML techniques to provide insights into different CDSS types. We highlighted the importance of ML to support physicians in clinical decision-making and improving healthcare according to their purposes.
Decision-making support systems;
decision support systems;
Artificial Intelligence;
Intelligent decision support systems;
electronic health records;
machine learning;
artificial neural network;
logistic regression;
support vector machines;
naive Bayes;
k-nearest neighbors;
linear discriminant analysis;
decision trees
Let n be an integer number, N={1,2,…,n}, and let Cn×n be the set of all complex matrices of order n. A matrix M=(mij)∈Cn×n(n≥2) is called a strictly diagonally dominant (SDD) matrix [1] if
|mii|>ri(M)=n∑j=1,j≠i|mij|, ∀i∈N. |
It was shown that an SDD matrix is an H-matrix [1], where matrix M=(mij)∈Cn×n(n≥2) is called an H-matrix [1, 2, 3] if and only if there exists a positive diagonal matrix X such that MX is an SDD matrix [1, 2, 4]. H-matrices are widely applied in many fields, such as computational mathematics, economics, mathematical physics and dynamical system theory, see [1, 4, 5, 6]. Meanwhile, upper bounds for the infinity norm of the inverse matrices of H-matrices can be used in the convergence analysis of matrix splitting and matrix multi-splitting iterative methods for solving the large sparse of linear equations [7], as well as linear complementarity problems. Moreover, upper bounds of the infinity norm of the inverse for different classes of matrices have been widely studied, such as CKV-type matrices [8], S-SDDS matrices [9], DZ and DZ-type matrices [10, 11], Nekrasov matrices [12, 13, 14, 15], S-Nekrasov matrices [16], Q-Nekrasov matrices [17], GSDD1 matrices [18] and so on.
In 2011, Peňa [19] proposed a new subclass of H-matrices called SDD1 matrices, whose definition is listed below. A matrix M=(mij)∈Cn×n(n≥2) is called an SDD1 matrix if
|mii|>pi(M),∀i∈N1(M), |
where
pi(M)=∑j∈N1(M)∖{i}|mij|+∑j∈N2(M)∖{i}rj(M)|mjj||mij|,N1(M)={i||mii|≤ri(M)}, N2(M)={i||mii|>ri(M)}. |
In 2023, Dai et al. [18] gave a new subclass of H-matrices named generalized SDD1 (GSDD1) matrices, which extends the class of SDD1 matrices. Here, a matrix M=(mij)∈Cn×n(n≥2) is said a GSDD1 matrix if
ri(M)−pN2(M)i(M)>0,∀i∈N2(M), |
and
(ri(M)−pN2(M)i(M))(|ajj|−pN1(M)j(M))>pN1(M)i(M)pN2(M)j(M),∀i∈N2(M),∀j∈N1(M), |
where
pN2(M)i(M)=∑j∈N2(M)∖{i}rj(M)|mjj||mij|,pN1(M)i(M)=∑j∈N1(M)∖{i}|mij|,i∈N. |
Subsequently, some upper bounds for the infinite norm of the inverse matrices of SDD matrices, SDD1 matrices and GSDD1 matrices are presented, see [18, 20, 21]. For example, the following results that will be used later are listed.
Theorem 1. (Varah bound) [21] Let matrix M=(mij)∈Cn×n(n≥2) be an SDD matrix. Then
||M−1||∞≤1min1≤i≤n(|mii|−ri(M)). |
Theorem 2. [20] Let matrix M=(mij)∈Cn×n(n≥2) be an SDD matrix. Then
||M−1||∞≤maxi∈Npi(M)|mii|+εmini∈NZi,0<ε<mini∈N|mii|−pi(M)ri(M), |
where
Zi=ε(|mii|−ri(M))+∑j∈N∖{i}(rj(M)−pj(M)|mjj|)|mij|. |
Theorem 3. [20] Let matrix M=(mij)∈Cn×n(n≥2) be an SDD matrix. If ri(M)>0(∀i∈N), then
||M−1||∞≤maxi∈Npi(M)|mii|mini∈N∑j∈N∖{i}rj(M)−pj(M)|mjj||mij|. |
Theorem 4. [18] Let M=(mij)∈Cn×n be a GSDD1 matrix. Then
||M−1||∞≤max{ε,maxi∈N2(M)ri(M)|mii|}min{mini∈N2(M)ϕi,mini∈N1(M)ψi}, |
where
ϕi=ri(M)−∑j∈N2(M)∖{i}rj(M)|mjj||mij|−∑j∈N1(M)∖{i}|mij|ε,ψi=|mii|ε−∑j∈N1(M)∖{i}|mij|ε+∑j∈N2(M)∖{i}rj(M)|mjj||mij|, |
and
maxi∈N1(M)pN2(M)i(M)|mii|−pN1(M)i(M)<ε<minj∈N2(M)rj(M)−pN2(M)j(M)pN1(M)j(M). |
On the basis of the above articles, we continue to study special structured matrices and introduce a new subclass of H-matrices called SDDk matrices, and provide some new upper bounds for the infinite norm of the inverse matrices for SDD matrices and SDDk matrices, which improve the previous results. The remainder of this paper is organized as follows: In Section 2, we propose a new subclass of H-matrices called SDDk matrices, which include SDD matrices and SDD1 matrices, and derive some properties of SDDk matrices. In Section 3, we present some upper bounds for the infinity norm of the inverse matrices for SDD matrices and SDDk matrices, and provide some comparisons with the well-known Varah bound. Moreover, some numerical examples are given to illustrate the corresponding results.
In this section, we propose a new subclass of H-matrices called SDDk matrices, which include SDD matrices and SDD1 matrices, and derive some new properties.
Definition 1. A matrix M=(mij)∈Cn×n(n≥2) is called an SDDk matrix if there exists k∈N such that
|mii|>p(k−1)i(M),∀i∈N1(M), |
where
p(k)i(M)=∑j∈N1(M)∖{i}|mij|+∑j∈N2(M)∖{i}p(k−1)j(M)|mjj||mij|,p(0)i(M)=∑j∈N1(M)∖{i}|mij|+∑j∈N2(M)∖{i}rj(M)|mjj||mij|. |
Immediately, we know that SDDk matrices contain SDD matrices and SDD1 matrices, so
{SDD}⊆{SDD1}⊆{SDD2}⊆⋯⊆{SDDk}. |
Lemma 1. A matrix M=(mij)∈Cn×n(n≥2) is an SDDk(k≥2) matrix if and only if for ∀i∈N, |mii|>p(k−1)i(M).
Proof. For ∀i∈N1(M), from Definition 1, it holds that |mii|>p(k−1)i(M).
For ∀i∈N2(M), we have that |mii|>ri(M). When k=2, it follows that
|mii|>ri(M)≥∑j∈N1(M)∖{i}|mij|+∑j∈N2(M)∖{i}rj(M)|mjj||mij|=p(0)i(M)≥∑j∈N1(M)∖{i}|mij|+∑j∈N2(M)∖{i}p(0)j(M)|mjj||mij|=p(1)i(M). |
Suppose that |mii|>p(k−1)i(M)(k≤l,l>2) holds for ∀i∈N2(M). When k=l+1, we have
|mii|>ri(M)≥∑j∈N1(M)∖{i}|mij|+∑j∈N2(M)∖{i}p(l−2)j(M)|mjj||mij|=p(l−1)i(M)≥∑j∈N1(M)∖{i}|mij|+∑j∈N2(M)∖{i}p(l−1)j(M)|mjj||mij|=p(l)i(M). |
By induction, we obtain that for ∀i∈N2(M), |mii|>p(k−1)i(M). Consequently, it holds that matrix M is an SDDk matrix if and only if |mii|>p(k−1)i(M) for ∀i∈N. The proof is completed.
Lemma 2. If M=(mij)∈Cn×n(n≥2) is an SDDk(k≥2) matrix, then M is an H-matrix.
Proof. Let X be the diagonal matrix diag{x1,x2,⋯,xn}, where
(0<) xj={1,j∈N1(M),p(k−1)j(M)|mjj|+ε,j∈N2(M), |
and
0<ε<mini∈N|mii|−p(k−1)i(M)∑j∈N2(M)∖{i}|mij|. |
If ∑j∈N2(M)∖{i}|mij|=0, then the corresponding fraction is defined to be ∞. Next we consider the following two cases.
Case 1: For each i∈N1(M), it is not difficult to see that |(MX)ii|=|mii|, and
ri(MX)=∑j=1,j≠i|mij|xj=∑j∈N1(M)∖{i}|mij|+∑j∈N2(M)∖{i}(p(k−1)j(M)|mjj|+ε)|mij|≤∑j∈N1(M)∖{i}|mij|+∑j∈N2(M)∖{i}(p(k−2)j(M)|mjj|+ε)|mij|=∑j∈N1(M)∖{i}|mij|+∑j∈N2(M)∖{i}p(k−2)j(M)|mjj||mij|+∑j∈N2(M)∖{i}ε|mij|=p(k−1)i(M)+ε∑j∈N2(M)∖{i}|mij|<p(k−1)i(M)+|mii|−p(k−1)i(M)=|mii|=|(MX)ii|. |
Case 2: For each i∈N2(M), we can obtain that
|(MX)ii|=|mii|(pk−1i(M)|mii|+ε)=p(k−1)i(M)+ε|mii|, |
and
ri(MX)=∑j=1,j≠i|mij|xj=∑j∈N1(M)∖{i}|mij|+∑j∈N2(M)∖{i}(p(k−1)j(M)|mjj|+ε)|mij|≤∑j∈N1(M)∖{i}|mij|+∑j∈N2(M)∖{i}(p(k−2)j(M)|mjj|+ε)|mij|=∑j∈N1(M)∖{i}|mij|+∑j∈N2(M)∖{i}p(k−2)j(M)|mjj||mij|+∑j∈N2(M)∖{i}ε|mij|=p(k−1)i(M)+ε∑j∈N2(A)∖{i}|mij|<p(k−1)i(M)+ε|mii|=|(MX)ii|. |
Based on Cases 1 and 2, we have that MX is an SDD matrix, and consequently, M is an H-matrix. The proof is completed.
According to the definition of SDDk matrix and Lemma 1, we obtain some properties of SDDk matrices as follows:
Theorem 5. If M=(mij)∈Cn×n(n≥2) is an SDDk matrix and N1(M)≠∅, then for ∀i∈N1(M), ∑j≠i,j∈N2(M)|mij|>0.
Proof. Suppose that for ∀i∈N1(M), ∑j≠i,j∈N2(M)|mij|=0. By Definition 1, we have that p(k−1)i(M)=ri(M), ∀i∈N1(M). Thus, it is easy to verify that |mii|>p(k−1)i(M)=ri(M)≥|mii|, which is a contradiction. Thus for ∀i∈N1(M), ∑j≠i,j∈N2(M)|mij|>0. The proof is completed.
Theorem 6. Let M=(mij)∈Cn×n(n≥2) be an SDDk(k≥2) matrix. It holds that ∑j≠i,j∈N2(M)|mij|>0, ∀i∈N2(M). Then
|mii|>p(k−2)i(M)>p(k−1)i(M)>0,∀i∈N2(M), |
and
|mii|>p(k−1)i(M)>0,∀i∈N. |
Proof. By Lemma 1 and the known conditions that for ∀i∈N2(M), ∑j≠i,j∈N2(M)|mij|>0, it holds that
|mii|>p(k−2)i(M)>p(k−1)i(M)>0,∀i∈N2(M), |
and
|mii|>p(k−1)i(M),∀i∈N. |
We now prove that |mii|>p(k−1)i(M)>0(∀i∈N) and consider the following two cases.
Case 1: If N1(M)=∅, then M is an SDD matrix. It is easy to verify that |mii|>p(k−1)i(M)>0, ∀i∈N2(M)=N.
Case 2: If N1(M)≠∅, by Theorem 5 and the known condition that for ∀i∈N2(M), ∑j≠i,j∈N2(M)|mij|>0, then it is easy to obtain that |mii|>p(k−1)i(M)>0(∀i∈N).
From Cases 1 and 2, we have that |mii|>p(k−1)i(M)>0(∀i∈N). The proof is completed.
Theorem 7. Let M=(mij)∈Cn×n(n≥2) be an SDDk(k≥2) matrix and for ∀i∈N2(M), ∑j≠i,j∈N2(M)|mij|>0. Then there exists a diagonal matrix X=diag{x1,x2,⋯,xn} such that MX is an SDD matrix. Elements x1,x2,…,xn are determined by
xi=p(k−1)i(M)|mii|,∀i∈N. |
Proof. We need to prove that matrix MX satisfies the following inequalities:
|(MX)ii|>ri(MX),∀i∈N. |
From Theorem 6 and the known condition that for ∀i∈N2(M), ∑j≠i,j∈N2(M)|mij|>0, it is easy to verify that
0<p(k−1)i(M)|mii|<p(k−2)i(M)|mii|<1,∀i∈N2(M). |
For each i∈N, we have that |(MX)ii|=p(k−1)i(M) and
ri(MX)=∑j=1,j≠i|mij|xj=∑j∈N1(M)∖{i}p(k−1)j(M)|mjj||mij|+∑j∈N2(M)∖{i}p(k−1)j(M)|mjj||mij|<∑j∈N1(M)∖{i}|mij|+∑j∈N2(M)∖{i}p(k−2)j(M)|mjj||mij|=p(k−1)i(M)=|(MX)ii|, |
that is,
|(MX)ii|>ri(MX). |
Therefore, MX is an SDD matrix. The proof is completed.
In this section, by Lemma 2 and Theorem 7, we provide some new upper bounds of the infinity norm of the inverse matrices for SDDk matrices and SDD matrices, respectively. We also present some comparisons with the Varah bound. Some numerical examples are presented to illustrate the corresponding results. Specially, when the involved matrices are SDD1 matrices as subclass of SDDk matrices, these new bounds are in line with that provided by Chen et al. [20].
Theorem 8. Let M=(mij)∈Cn×n(n≥2) be an SDDk(k≥2) matrix. Then
||M−1||∞≤max{1,maxi∈N2(M)p(k−1)i(M)|mii|+ε}min{mini∈N1(M)Ui,mini∈N2(M)Vi}, |
where
Ui=|mii|−∑j∈N1(M)∖{i}|mij|−∑j∈N2(M)∖{i}(p(k−1)j(M)|mjj|+ε)|mij|,Vi=ε(|mii|−∑j∈N2(M)∖{i}|mij|)+∑j∈N2(M)∖{i}(p(k−2)j(M)−p(k−1)j(M)|mjj|)|mij|, |
and
0<ε<mini∈N|mii|−p(k−1)i(M)∑j∈N2(M)∖{i}|mij|. |
Proof. By Lemma 2, we have that there exists a positive diagonal matrix X such that MX is an SDD matrix, where X is defined as Lemma 2. Thus,
||M−1||∞=||X(X−1M−1)||∞=||X(MX)−1||∞≤||X||∞||(MX)−1||∞, |
and
||X||∞=max1≤i≤nxi=max{1,maxi∈N2(M)p(k−1)i(M)|mii|+ε}. |
Notice that MX is an SDD matrix. Hence, by Theorem 1, we have
||(MX)−1||∞≤1min1≤i≤n(|(MX)ii|−ri(MX)). |
Thus, for any i∈N1(M), it holds that
|(MX)ii|−ri(MX)=|mii|−∑j∈N1(M)∖{i}|mij|−∑j∈N2(M)∖{i}(p(k−1)j(M)|mjj|+ε)|mij|=Ui. |
For any i∈N2(M), it holds that
|(MX)ii|−ri(MX)=p(k−1)i(M)+ε|mii|−∑j∈N1(M)∖{i}|mij|−∑j∈N2(M)∖{i}(p(k−1)j(M)|mjj|+ε)|mij|=∑j∈N1(M)∖{i}|mij|+∑j∈N2(M)∖{i}p(k−2)j(M)|mjj||mij|+ε|mii|−∑j∈N1(M)∖{i}|mij|−∑j∈N2(M)∖{i}(p(k−1)j(M)|mjj|+ε)|mij|=ε(|mii|−∑j∈N2(M)∖{i}|mij|)+∑j∈N2(M)∖{i}(p(k−2)j(M)−p(k−1)j(M)|mjj|)|mij|=Vi. |
Therefore, we get
||M−1||∞≤max{1,maxi∈N2(M)p(k−1)i(M)|mii|+ε}min{mini∈N1(M)Xi,mini∈N2(M)Yi}. |
The proof is completed.
From Theorem 8, it is easy to obtain the following result.
Corollary 1. Let M=(mij)∈Cn×n(n≥2) be an SDD matrix. Then
||M−1||∞≤maxi∈Np(k−1)i(M)|mii|+εmini∈NZi, |
where k≥2,
Zi=ε(|mii|−ri(M))+∑j∈N∖{i}(p(k−2)j(M)−p(k−1)j(M)|mjj|)|mij|, |
and
0<ε<mini∈N|mii|−p(k−1)i(M)ri(M). |
Example 1. Consider the n×n matrix:
M=(421.51.542482482⋱⋱⋱4824824823.54). |
Take that n=20. It is easy to verify that M is an SDD matrix.
By calculations, we have that for k=2,
maxi∈Np(1)i(M)|mii|+ε1=0.5859+ε1,mini∈NZi=0.4414+0.5ε1,0<ε1<0.4732. |
For k=4,
maxi∈Np(3)i(M)|aii|+ε2=0.3845+ε2,mini∈NZi=0.2959+0.5ε2,0<ε2<0.7034. |
For k=6,
maxi∈Np(5)i(M)|mii|+ε3=0.2504+ε3,mini∈NZi=0.1733+0.5ε3,0<ε3<0.8567. |
For k=8,
maxi∈Np(7)i(M)|mii|+ε4=0.1624+ε4,mini∈NZi=0.0990+0.5ε4,0<ε4<0.9572. |
So, when k=2,4,6,8, by Corollary 1 and Theorem 1, we can get the upper bounds for ||M−1||∞, see Table 1. Thus,
||M−1||∞≤0.5859+ε10.4414+0.5ε1<2,||M−1||∞≤0.3845+ε20.2959+0.5ε2<2, |
2 | 4 | 6 | 8 | |
Cor |
||||
Th |
2 | 2 | 2 | 2 |
and
||M−1||∞≤0.2504+ε30.1733+0.5ε3<2,||M−1||∞≤0.1624+ε40.0990+0.5ε4<2. |
Moreover, when k=1, by Theorem 2, we have
||M−1||∞≤0.7188+ε50.4844+0.5ε5,0<ε5<0.3214. |
The following Theorem 9 shows that the bound in Corollary 1 is better than that in Theorem 1 of [20] in some cases.
Theorem 9. Let matrix M=(mij)∈Cn×n(n≥2) be an SDD matrix. If there exists k≥2 such that
maxi∈Np(k−1)i(M)|mii|mini∈N(|mii|−ri(M))≤mini∈N∑j∈N∖{i}p(k−2)j(M)−p(k−1)j(M)|mjj||mij|, |
then
||M−1||∞≤maxi∈Np(k−1)i(M)|mii|+εmini∈NZi≤1min1≤i≤n(|mii|−ri(M)), |
where Zi and ε are defined as in Corollary 1, respectively.
Proof. From the given condition, we have that there exists k≥2 such that
maxi∈Np(k−1)i(M)|mii|mini∈N(|mii|−ri(M))≤mini∈N∑j∈N∖{i}p(k−2)j(M)−p(k−1)j(M)|mjj||mij|, |
then
maxi∈Np(k−1)i(M)|mii|mini∈N(|mii|−ri(M))+εmini∈N(|mii|−ri(M))≤mini∈N∑j∈N∖{i}p(k−2)j(M)−p(k−1)j(M)|mjj||mij|+εmini∈N(|mii|−ri(M)). |
Thus, we get
(maxi∈Np(k−1)i(M)|mii|+ε)mini∈N(|mii|−ri(M))≤mini∈N∑j∈N∖{i}p(k−2)j(M)−p(k−1)j(M)|mjj||mij|+εmini∈N(|mii|−ri(M))=mini∈N∑j∈N∖{i}p(k−2)j(M)−p(k−1)j(M)|mjj||mij|+mini∈N(ε(|mii|−ri(M)))≤mini∈N(ε(|mii|−ri(M))+∑j∈N∖{i}p(k−2)j(M)−p(k−1)j(M)|mjj||mij|)=mini∈NZi. |
Since M is an SDD matrix, then
|mii|>ri(M),Zi>0,∀i∈N. |
It's easy to verify that
maxi∈Np(k−1)i(M)|mii|+εmini∈NZi≤1min1≤i≤n(|mii|−ri(M)). |
Thus, by Corollary 1, it holds that
||M−1||∞≤maxi∈Np(k−1)i(M)|mii|+εmini∈NZi≤1min1≤i≤n(|mii|−ri(M)). |
The proof is completed.
We illustrate Theorem 9 by the following Example 2.
Example 2. This is the previous Example 1. For k=4, we have
maxi∈Np(3)i(M)|mii|mini∈N(|mii|−ri(M))=0.1923<0.2959=mini∈N∑j∈N∖{i}p(2)j(M)−p(3)j(M)|mjj||mij|. |
Thus, by Theorem 8, we obtain that for each 0<ε2<0.7034,
||M−1||∞≤0.3845+ε20.2959+0.5ε2<2=1min1≤i≤n(|mii|−ri(M)). |
However, we find that the upper bounds in Theorems 8 and 9 contain the parameter ε. Next, based on Theorem 7, we will provide new upper bounds for the infinity norm of the inverse matrices of SDDk matrices, which only depend on the elements of the given matrices.
Theorem 10. Let M=(mij)∈Cn×n(n≥2) be an SDDk(k≥2) matrix and for each i∈N2(M), ∑j≠i,j∈N2(M)|mij|>0. Then
||M−1||∞≤maxi∈Np(k−1)i(M)|mii|mini∈N(p(k−1)i(M)−∑j∈N∖{i}p(k−1)j(M)|mjj||mij|). |
Proof. By Theorems 7 and 8, we have that there exists a positive diagonal matrix X such that MX is an SDD matrix, where X is defined as in Theorem 7. Thus, it holds that
||M−1||∞=||X(X−1M−1)||∞=||X(MX)−1||∞≤||X||∞||(MX)−1||∞, |
and
||X||∞=max1≤i≤nxi=maxi∈Np(k−1)i(M)|mii|. |
Notice that MX is an SDD matrix. Thus, by Theorem 1, we get
||(MX)−1||∞≤1min1≤i≤n(|(MX)ii|−ri(MX))=1min1≤i≤n(|miixi|−ri(MX))=1mini∈N(p(k−1)i(M)−∑j∈N∖{i}p(k−1)j(M)|mjj||mij|). |
Therefore, we have that
||M−1||∞≤maxi∈Np(k−1)i(M)|mii|mini∈N(p(k−1)i(M)−∑j∈N∖{i}p(k−1)j(M)|mjj||mij|). |
The proof is completed.
Since SDD matrices are a subclass of SDDk matrices, by Theorem 10, we can obtain the following result.
Corollary 2. Let M=(mij)∈Cn×n(n≥2) be an SDD matrix. If ri(M)>0(∀i∈N), then there exists k≥2 such that
||M−1||∞≤maxi∈Np(k−1)i(M)|mii|mini∈N∑j∈N∖{i}p(k−2)j(M)−p(k−1)j(M)|mjj||mij|. |
Two examples are given to show the advantage of the bound in Theorem 10.
Example 3. Consider the following matrix:
M=(40−1−2−1−2010−4.1−4−6−20−233−4−80−4−620−2−30−4−2040). |
It is easy to verify that M is not an SDD matrix, an SDD1 matrix, a GSDD1 matrix, an S-SDD matrix, nor a CKV-type matrix. Therefore, we cannot use the error bounds in [1, 8, 9, 18, 20] to estimate ||M−1||∞. But, M is an SDD2 matrix. So by the bound in Theorem 10, we have that ‖M−1‖∞≤0.5820.
Example 4. Consider the tri-diagonal matrix M∈Rn×n arising from the finite difference method for free boundary problems [18], where
M=(b+αsin(1n)c0⋯0ab+αsin(2n)c⋯0⋱⋱⋱0⋯ab+αsin(n−1n)c0⋯0ab+αsin(1)). |
Take that n=4, a=1, b=0, c=3.7 and α=10. It is easy to verify that M is neither an SDD matrix nor an SDD1 matrix. However, we can get that M is a GSDD1 matrix and an SDD3 matrix. By the bound in Theorem 10, we have
‖M−1‖∞≤8.2630, |
while by the bound in Theorem 4, it holds that
‖M−1‖∞≤εmin{2.1488−ε,0.3105,2.474ε−3.6272},ε∈(1.4661,2.1488). |
The following two theorems show that the bound in Corollary 2 is better than that in Theorem 1 in some cases.
Theorem 11. Let M=(mij)∈Cn×n(n≥2) be an SDD matrix. If ri(M)>0(∀i∈N) and there exists k≥2 such that
mini∈N∑j∈N∖{i}p(k−2)j(M)−p(k−1)j(M)|mjj||mij|≥mini∈N(|mii|−ri(M)), |
then
||M−1||∞≤maxi∈Np(k−1)i(M)|mii|mini∈N∑j∈N∖{i}p(k−2)j(M)−p(k−1)j(M)|mjj||mij|<1min1≤i≤n(|mii|−ri(M)). |
Proof. Since M is an SDD matrix, then N1(M)=∅ and M is an SDDk matrix. By the given condition that ri(M)>0(∀i∈N), it holds that
|mii|>ri(M)>∑j∈N∖{i}rj(M)|mjj||mij|=p(0)i(M)>0,∀i∈N,p(0)i(M)=∑j∈N∖{i}rj(M)|mjj||mij|>∑j∈N∖{i}p(0)j(M)|mjj||mij|=p(1)i(M)>0,∀i∈N. |
Similarly, we can obtain that
|mii|>ri(M)>p(0)i(M)>⋯>p(k−1)i(M)>0,∀i∈N, |
that is,
maxi∈Np(k−1)i(M)|mii|<1. |
Since there exists k≥2 such that
mini∈N∑j∈N∖{i}p(k−2)j(M)−p(k−1)j(M)|mjj||mij|≥mini∈N(|mii|−ri(M)), |
then we have
maxi∈Np(k−1)i(M)|mii|mini∈N∑j∈N∖{i}p(k−2)j(M)−p(k−1)j(M)|mjj||mij|<1min1≤i≤n(|mii|−ri(M)). |
Thus, from Corollary 2, we get
||M−1||∞≤maxi∈Np(k−1)i(M)|mii|mini∈N∑j∈N∖{i}p(k−2)j(M)−p(k−1)j(M)|mjj||mij|<1min1≤i≤n(|mii|−ri(M)). |
The proof is completed.
We illustrate the Theorem 11 by following Example 5.
Example 5. Consider the matrix M=(mij)∈Cn×n(n≥2), where
M=(430.9162252252⋱⋱⋱2522521620.934). |
Take that n=20. It is easy to check that M is an SDD matrix. Let
lk=mini∈N∑j∈N∖{i}p(k−2)j(M)−p(k−1)j(M)|mjj||mij|,m=mini∈N(|mii|−ri(M)). |
By calculations, we have
l2=0.2692>0.1=m,l3=0.2567>0.1=m,l4=0.1788>0.1=m,l5=0.1513>0.1=m,l6=0.1037>0.1=m. |
Thus, when k=2,3,4,5,6, the matrix M satisfies the conditions of Theorem 11. By Theorems 1 and 11, we can derive the upper bounds for ||M−1||∞, see Table 2. Meanwhile, when k=1, by Theorem 3, we get that ||M−1||∞≤1.6976.
2 | 3 | 4 | 5 | 6 | |
Th 11 | 1.9022 | 1.5959 | 1.8332 | 1.7324 | 2.0214 |
Th 1 | 10 | 10 | 10 | 10 | 10 |
From Table 2, we can see that the bounds in Theorem 11 are better than that in Theorems 1 and 3 in some cases.
Theorem 12. Let M=(mij)∈Cn×n(n≥2) be an SDD matrix. If ri(M)>0(∀i∈N) and there exists k≥2 such that
maxi∈Np(k−1)i(M)|mii|mini∈N(|mii|−ri(M))≤mini∈N∑j∈N∖{i}p(k−2)j(M)−p(k−1)j(M)|mjj||mij|<mini∈N(|mii|−ri(M)), |
then
||M−1||∞≤maxi∈Np(k−1)i(M)|mii|mini∈N∑j∈N∖{i}p(k−2)j(M)−p(k−1)j(M)|mjj||mij|≤1min1≤i≤n(|mii|−ri(M)). |
Proof. By Theorem 7 and the given condition that ri(M)>0(∀i∈N), it is easy to get that
∑j∈N∖{i}p(k−2)j(M)−p(k−1)j(M)|mjj||mij|>0,∀i∈N. |
From the condition that there exists k≥2 such that
maxi∈Np(k−1)i(M)|mii|mini∈N(|mii|−ri(M))≤mini∈N∑j∈N∖{i}p(k−2)j(M)−p(k−1)j(M)|mjj||mij|, |
we have
maxi∈Np(k−1)i(M)|mii|mini∈N∑j∈N∖{i}p(k−2)j(M)−p(k−1)j(M)|mjj||mij|≤1min1≤i≤n(|mii|−ri(M)). |
Thus, from Corollary 2, it holds that
||M−1||∞≤maxi∈Np(k−1)i(M)|mii|mini∈N∑j∈N∖{i}p(k−2)j(M)−p(k−1)j(M)|mjj||mij|≤1min1≤i≤n(|mii|−ri(M)). |
The proof is completed.
Next, we illustrate Theorem 12 by the following Example 6.
Example 6. Consider the tri-diagonal matrix M=(mij)∈Cn×n(n≥2), where
M=(3−2.5−1.24−2−2.85−1−2.85−1⋱⋱⋱−2.85−1−2.85−1−1.24−2−2.53). |
Take that n=20. It is easy to verify that M is an SDD matrix.
By calculations, we have that for k=2,
maxi∈Np(1)i(M)|mii|mini∈N(|mii|−ri(M))=0.2686<mini∈N∑j∈N∖{i}p(0)j(M)−p(1)j(M)|mjj||mij|=0.3250<0.5=mini∈N(|mii|−ri(M)). |
For k=5, we get
maxi∈Np(4)i(M)|mii|mini∈N(|mii|−ri(M))=0.1319<mini∈N∑j∈N∖{i}p(3)j(M)−p(4)j(M)|mjj||mij|=0.1685<0.5=mini∈N(|mii|−ri(M)). |
For k=10, it holds that
maxi∈Np(9)i(M)|mii|mini∈N(|mii|−ri(M))=0.0386<mini∈N∑j∈N∖{i}p(8)j(M)−p(9)j(M)|mjj||mij|=0.0485<0.5=mini∈N(|mii|−ri(M)). |
Thus, for k=2,5,10, the matrix M satisfies the conditions of Theorem 12. Thus, from Theorems 12 and 1, we get the upper bounds for ||M−1||∞, see Table 3. Meanwhile, when k=1, by Theorem 3, we have that ||M−1||∞≤1.7170.
2 | 5 | 10 | |
Th |
1.6530 | 1.5656 | 1.5925 |
Th |
2 | 2 | 2 |
From Table 3, we can see that the bound in Theorem 12 is sharper than that in Theorems 1 and 3 in some cases.
SDDk matrices as a new subclass of H-matrices are proposed, which include SDD matrices and SDD1 matrices, and some properties of SDDk matrices are obtained. Meanwhile, some new upper bounds of the infinity norm of the inverse matrices for SDD matrices and SDDk matrices are presented. Furthermore, we prove that the new bounds are better than some existing bounds in some cases. Some numerical examples are also provided to show the validity of new results. In the future, based on the proposed infinity norm bound, we will explore the computable error bounds of the linear complementarity problems for SDDk matrices.
The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.
This research is supported by Guizhou Provincial Science and Technology Projects (20191161), and the Natural Science Research Project of Department of Education of Guizhou Province (QJJ2023062, QJJ2023063).
The authors declare that they have no competing interests.
[1] | Gupta JN, Forgionne GA, Mora M (2007) Intelligent decision-making support systems: foundations, applications and challenges. Germany: Springer Science & Business Media. |
[2] | Merkert J, Mueller M, Hubl M A Survey of the Application of Machine Learning in Decision Support Systems (2015). |
[3] |
Proudlove NC, Vadera S, Kobbacy KAH (1998) Intelligent management systems in operations: A review. J Oper Res Soc 49: 682-699. https://doi.org/10.1057/palgrave.jors.2600519 ![]() |
[4] |
Gottinger HW, Weimann P (1992) Intelligent decision support systems. Decis Support Syst 8: 317-332. https://doi.org/10.1016/0167-9236(92)90053-R ![]() |
[5] |
Elam JJ, Konsynski B (1987) Using artificial intelligence techniques to enhance the capabilities of model management systems. Decision Sci 18: 487-502. https://doi.org/10.1111/j.1540-5915.1987.tb01537.x ![]() |
[6] |
Kawamoto K, Houlihan CA, Balas EA, et al. (2005) Improving clinical practice using clinical decision support systems: a systematic review of trials to identify features critical to success. BMJ 330: 765. https://doi.org/10.1136/bmj.38398.500764.8F ![]() |
[7] |
Islam MdM, Haque MdR, Iqbal H, et al. (2020) Breast cancer prediction: A comparative study using machine learning techniques. SN Computer Science 1: 290. https://doi.org/10.1007/s42979-020-00305-w ![]() |
[8] |
Islam Ayon S, Milon Islam Md (2019) Diabetes prediction: a deep learning approach. IJIEEB 11: 21-27. https://doi.org/10.5815/ijieeb.2019.02.03 ![]() |
[9] | Akter L, Islam MM (2021) Hepatocellular carcinoma patient's survival prediction using oversampling and machine learning techniques. 2nd International Conference on Robotics Electrical and Signal Processing Techniques (ICREST) 2021: 445-450. |
[10] |
Akter L, Al Islam F, Islam M, et al. (2021) Prediction of cervical cancer from behavior risk using machine learning techniques. SN Computer Science 2: 177. https://doi.org/10.1007/s42979-021-00551-6 ![]() |
[11] |
Wiens J, Shenoy ES (2018) Machine learning for healthcare: on the verge of a major shift in healthcare epidemiology. Clin Infect Dis 66: 149-153. https://doi.org/10.1093/cid/cix731 ![]() |
[12] |
Clausen CE, Leventhal BL, Nytrø Ø, et al. (2021) Clinical decision support systems: An innovative approach to enhancing child and adolescent mental health services. J Am Acad Child Adolesc Psychiatry 60: 562-565. https://doi.org/10.1016/j.jaac.2020.09.018 ![]() |
[13] |
Pombo N, Araújo P, Viana J (2014) Knowledge discovery in clinical decision support systems for pain management: a systematic review. Artif Intell Med 60: 1-11. https://doi.org/10.1016/j.artmed.2013.11.005 ![]() |
[14] | Campbell RJ (2013) The five rights of clinical decision support: CDS tools helpful for meeting meaningful use (web version updated February 2016). J AHIMA 84: 42-47. |
[15] |
Chadaga K, Prabhu S, Vivekananda BK, et al. (2021) Battling COVID-19 using machine learning: A review. Cogent Eng 8: 1958666. https://doi.org/10.1080/23311916.2021.1958666 ![]() |
[16] |
Syeda HB, Syed M, Sexton KW, et al. (2021) Role of machine learning techniques to tackle the COVID-19 crisis: systematic review. JMIR Med Inf 9: e23811. https://doi.org/10.2196/23811 ![]() |
[17] |
Kaur B, Goyal B, Daniel E (2022) A survey on machine learning based medical assistive systems in current oncological sciences. Curr Med Imaging 18: 445-459. https://doi.org/10.2174/1573405617666210217154446 ![]() |
[18] | Kreuzberger N, Damen JA, Trivella M, et al. Prognostic models for newly-diagnosed chronic lymphocytic leukaemia in adults: a systematic review and meta-analysis (2020). https://doi.org/10.1002/14651858.CD012022.pub2 |
[19] |
Hassan N, Slight R, Weiand D, et al. (2021) Preventing sepsis; how can artificial intelligence inform the clinical decision-making process? A systematic review. Int J Med Inform 150: 104457. https://doi.org/10.1016/j.ijmedinf.2021.104457 ![]() |
[20] |
Wulff A, Montag S, Marschollek M, et al. (2019) Clinical decision-support systems for detection of systemic inflammatory response syndrome, sepsis, and septic shock in critically ill patients: a systematic review. Methods Inf Med 58: e43-e57. https://doi.org/10.1055/s-0039-1695717 ![]() |
[21] |
Mouazer A, Tsopra R, Sedki K, et al. (2022) Decision-support systems for managing polypharmacy in the elderly: A scoping review. J Biomedl Inform 130: 104074. https://doi.org/10.1016/j.jbi.2022.104074 ![]() |
[22] |
Nazari E, Biviji R, Roshandel D, et al. (2022) Decision fusion in healthcare and medicine: a narrative review. Mhealth 8: 8. https://doi.org/10.21037/mhealth-21-15 ![]() |
[23] |
Wei Y, Zhou J, Wang Y, et al. (2020) A review of algorithm & hardware design for AI-based biomedical applications. IEEE T Biomed Circ S 14: 145-163. https://doi.org/10.1109/TBCAS.2020.2974154 ![]() |
[24] | Chalmers I, Altman DG (1995) Systematic Reviews. London: BMJ Publications. |
[25] |
Needleman I, Moles DR, Worthington H (2005) Evidence-based periodontology, systematic reviews and research quality. Periodontology 2000 37: 12-28. https://doi.org/10.1111/j.1600-0757.2004.37100.x ![]() |
[26] |
Moher D, Liberati A, Tetzlaff J, et al. (2009) Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Ann Intern Med 151: 264-269. https://doi.org/10.7326/0003-4819-151-4-200908180-00135 ![]() |
[27] | Higuchi K (2016) KH Coder 3 reference manual. Kioto (Japan): Ritsumeikan University. |
[28] |
Casal-Guisande M, Comesaña-Campos A, Dutra I, et al. (2022) Design and development of an intelligent clinical decision support system applied to the evaluation of breast cancer risk. J Pers Med 12: 169. https://doi.org/10.3390/jpm12020169 ![]() |
[29] | Vishwanath M, Jafarlou S, Shin I, et al. (2021) Investigation of machine learning and deep learning approaches for detection of mild traumatic brain injury from human sleep electroencephalogram. 43rd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC) 2021: 6134-6137. https://doi.org/10.1109/EMBC46164.2021.9630423 |
[30] |
Patel D, Msosa YJ, Wang T, et al. (2022) An implementation framework and a feasibility evaluation of a clinical decision support system for diabetes management in secondary mental healthcare using CogStack. BMC Med Inform Decis Mak 22: 100. https://doi.org/10.1186/s12911-022-01842-5 ![]() |
[31] |
Yoo J, Lee J, Rhee P-L, et al. (2020) Alert override patterns with a medication clinical decision support system in an academic emergency department: retrospective descriptive study. JMIR Med Inf 8: e23351. https://doi.org/10.2196/23351 ![]() |
[32] |
Beldhuis IE, Marapin RS, Jiang YY, et al. (2021) Cognitive biases, environmental, patient and personal factors associated with critical care decision making: a scoping review. J Crit Care 64: 144-153. https://doi.org/10.1016/j.jcrc.2021.04.012 ![]() |
[33] |
Kanwal S, Khan F, Alamri S, et al. (2022) COVID-opt-aiNet: A clinical decision support system for COVID-19 detection. Int J Imag Syst Tech 32: 444-461. https://doi.org/10.1002/ima.22695 ![]() |
[34] |
Bratic JS, Cunningham RM, Belleza-Bascon B, et al. (2019) Longitudinal evaluation of clinical decision support to improve influenza vaccine uptake in an integrated pediatric health care delivery system, Houston, Texas. Appl Clin Inform 10: 944-951. https://doi.org/10.1055/s-0039-3400748 ![]() |
[35] |
Potier A, Dufay E, Dony A, et al. (2022) Pharmaceutical algorithms set in a real time clinical decision support targeting high-alert medications applied to pharmaceutical analysis. Int J Med Inf 160: 104708. https://doi.org/10.1016/j.ijmedinf.2022.104708 ![]() |
[36] |
Rittel AG, Highland KB, Maneval MS, et al. (2022) Development, implementation, and evaluation of a clinical decision support tool to improve naloxone coprescription within Military Health System pharmacies. Am J Health-Syst Ph 79: e58-e64. https://doi.org/10.1093/ajhp/zxab206 ![]() |
[37] | Al-Jazairi A, AlQadheeb E, Alshammari L, et al. (2019) Clinical validity assessment of integrated dose range checking tool in a tertiary care hospital using an electronic health information system. Hosp Pharm 56: 95-101. https://doi.org/10.1177/0018578719867663 |
[38] |
Hammar T, Hamqvist S, Zetterholm M, et al. (2021) Current knowledge about providing drug-drug interaction services for patients—a scoping review. Pharmacy 9: 69. https://doi.org/10.3390/pharmacy9020069 ![]() |
[39] | Robert L, Rousseliere C, Beuscart J-B, et al. (2021) Integration of explicit criteria in a clinical decision support system through evaluation of acute kidney injury events. Pub Health Inform 281: 640-644. https://doi.org/10.3233/SHTI210249 |
[40] |
Arasi S, Castelli S, Di Fraia M, et al. (2021) @IT2020: An innovative algorithm for allergen immunotherapy prescription in seasonal allergic rhinitis. Clin Exp Allergy 51: 821-828. https://doi.org/10.1111/cea.13867 ![]() |
[41] |
Chien S-C, Chen Y-L, Chien C-H, et al. (2022) Alerts in clinical decision support systems (CDSS): a bibliometric review and content analysis. Healthcare 10: 601. https://doi.org/10.3390/healthcare10040601 ![]() |
[42] |
Bradshaw RL, Kawamoto K, Kaphingst KA, et al. (2022) GARDE: a standards-based clinical decision support platform for identifying population health management cohorts. J Am Med Inform Assn 29: 928-936. https://doi.org/10.1093/jamia/ocac028 ![]() |
[43] | Agarwal S, Glenton C, Tamrat T, et al. (2021) Decision-support tools via mobile devices to improve quality of care in primary healthcare settings. Cochrane DB Syst Rev 7: CD012944. https://doi.org/10.1002/14651858.CD012944.pub2 |
[44] |
Ru X, Zhu L, Ma Y, et al. (2022) Effect of an artificial intelligence-assisted tool on non-valvular atrial fibrillation anticoagulation management in primary care: protocol for a cluster randomized controlled trial. Trials 23: 1-12. https://doi.org/10.1186/s13063-022-06250-8 ![]() |
[45] |
Premalatha G, Bai VT (2022) Wireless IoT and cyber-physical system for health monitoring using honey badger optimized least-squares support-vector machine. Wireless Pers Commun 124: 3013-3034. https://doi.org/10.1007/s11277-022-09500-9 ![]() |
[46] |
Xiao X, Xue L, Ye L, et al. (2021) Health care cost and benefits of artificial intelligence-assisted population-based glaucoma screening for the elderly in remote areas of China: a cost-offset analysis. BMC Public Health 21: 1065. https://doi.org/10.1186/s12889-021-11097-w ![]() |
[47] |
Damoiseaux-Volman BA, van der Velde N, Ruige SG, et al. (2021) Effect of interventions with a clinical decision support system for hospitalized older patients: systematic review mapping implementation and design factors. JMIR Med Inform 9: e28023. https://doi.org/10.2196/28023 ![]() |
[48] |
Zolnoori M, McDonald MV, Barrón Y, et al. (2021) Improving patient prioritization during hospital-homecare transition: protocol for a mixed methods study of a clinical decision support tool implementation. JMIR Res Protoc 10: e20184. https://doi.org/10.2196/20184 ![]() |
[49] |
Abiodun TN, Okunbor D, Osamor VC (2022) Remote health monitoring in clinical trial using machine learning techniques: a conceptual framework. Health Technol 12: 359-364. https://doi.org/10.1007/s12553-022-00652-z ![]() |
[50] |
Malche T, Tharewal S, Tiwari PK, et al. (2022) Artificial intelligence of things- (AIoT-) based patient activity tracking system for remote patient monitoring. J Healthc Eng 2022: 8732213. https://doi.org/10.1155/2022/8732213 ![]() |
[51] |
Ramasamy LK, Khan F, Shah M, et al. (2022) Secure smart wearable computing through artificial intelligence-enabled internet of things and cyber-physical systems for health monitoring. Sensors 22: 1076. https://doi.org/10.3390/s22031076 ![]() |
[52] |
Jacobsohn GC, Leaf M, Liao F, et al. (2022) Collaborative design and implementation of a clinical decision support system for automated fall-risk identification and referrals in emergency departments. Healthcare 10: 100598. https://doi.org/10.1016/j.hjdsi.2021.100598 ![]() |
[53] | Capan M, Schubel LC, Pradhan I, et al. Display and perception of risk: Analysis of decision support system display and its impact on perceived clinical risk of sepsis-induced health deterioration (2022). https://doi.org/10.1177/14604582211073075 |
[54] |
Parente L, Falvo E, Castagnetti C, et al. (2022) Image-based monitoring of cracks: Effectiveness analysis of an open-source machine learning-assisted procedure. J Imaging 8: 22. https://doi.org/10.3390/jimaging8020022 ![]() |
[55] |
Shimizu T (2022) System 2 diagnostic process for the next generation of physicians: “inside” and “outside” brain—the interplay between human and machine. Diagnostics 12: 356. https://doi.org/10.3390/diagnostics12020356 ![]() |
[56] |
Tan YH, Liao Y, Tan Z, et al. (2021) Application of a machine learning algorithms in a wrist-wearable sensor for patient health monitoring during autonomous hospital bed transport. Sensors 21: 5711. https://doi.org/10.3390/s21175711 ![]() |
[57] | Wu X, Liu C, Wang L, et al. Internet of things-enabled real-time health monitoring system using deep learning (2021). https://doi.org/10.1007/s00521-021-06440-6 |
[58] | Klatte K, Pauli-Magnus C, Love SB, et al. (2021) Monitoring strategies for clinical intervention studies. Cochrane DB Syst Rev 12: MR000051. https://doi.org/10.1002/14651858.MR000051.pub2 |
[59] |
Zaman SB, Evans RG, Singh R, et al. (2021) Feasibility of community health workers using a clinical decision support system to screen and monitor non-communicable diseases in resource-poor settings: study protocol. Mhealth 7: 15. https://doi.org/10.21037/mhealth-19-258 ![]() |
[60] |
Madar R, Ugon A, Ivanković D, et al. (2021) A web interface for antibiotic prescription recommendations in primary care: user-centered design approach. J Med Internet Res 23: e25741. https://doi.org/10.2196/25741 ![]() |
[61] | Lau L, Bagri H, Legal M, et al. (2021) Comparison of clinical importance of drug interactions identified by hospital pharmacists and a local clinical decision support system. Can J Hosp Pharm 74: 203-210. https://doi.org/10.4212/cjhp.v74i3.3147 |
[62] |
Islam MdM, Poly TN, Yang H-C, et al. (2021) Deep into laboratory: An artificial intelligence approach to recommend laboratory tests. Diagnostics 11: 990. https://doi.org/10.3390/diagnostics11060990 ![]() |
[63] | Mouazer A, Leguillon R, Leroy B, et al. (2022) ABiMed: towards an innovative clinical decision support system for medication reviews and polypharmacy management. Inform Technol Clin Care Pub Heal 289: 61-64. https://doi.org/10.3233/SHTI210859 |
[64] |
Alcalá-Rmz V, Galván-Tejada CE, García-Hernández A, et al. (2021) Identification of people with diabetes treatment through lipids profile using machine learning algorithms. Healthcare 9: 422. https://doi.org/10.3390/healthcare9040422 ![]() |
[65] |
Decherchi S, Pedrini E, Mordenti M, et al. (2021) Opportunities and challenges for machine learning in rare diseases. Front Med 8: 747612. https://doi.org/10.3389/fmed.2021.747612 ![]() |
[66] | Mogaveera D, Mathur V, Waghela S (2021) e-Health monitoring system with diet and fitness recommendation using machine learning. 6th International Conference on Inventive Computation Technologies (ICICT) 2021: 694-700. https://doi.org/10.1109/ICICT50816.2021.9358605 |
[67] |
Denecke K, Gabarron E, Petersen C, et al. (2021) Defining participatory health informatics-a scoping review. Inform Health Soc Ca 46: 234-243. https://doi.org/10.1080/17538157.2021.1883028 ![]() |
[68] |
Zhang Q, Bai C, Yang LT, et al. (2021) A unified smart chinese medicine framework for healthcare and medical services. IEEE/ACM Trans Comput Biol Bioinf 18: 882-890. https://doi.org/10.1109/TCBB.2019.2914447 ![]() |
[69] |
Herter WE, Khuc J, Cinà G, et al. (2022) Impact of a machine learning-based decision support system for urinary tract infections: prospective observational study in 36 primary care practices. JMIR Med Inform 10: e27795. https://doi.org/10.2196/27795 ![]() |
[70] |
Papandreou P, Gioxari A, Nimee F, et al. (2021) Application of clinical decision support system to assist breast cancer patients with lifestyle modifications during the COVID-19 pandemic: a randomised controlled trial. Nutrients 13: 2115. https://doi.org/10.3390/nu13062115 ![]() |
[71] |
Mlakar I, Lin S, Aleksandraviča I, et al. (2021) Patients-centered survivorShIp care plan after cancer treatments based on big data and artificial intelligence technologies (PERSIST): a multicenter study protocol to evaluate efficacy of digital tools supporting cancer survivors. BMC Med Inform Decis Making 21: 243. https://doi.org/10.1186/s12911-021-01603-w ![]() |
[72] | Asghari P (2021) A diagnostic prediction model for colorectal cancer in elderlies via internet of medical things. Int J Inf Tech 13: 1423-1429. https://doi.org/10.1007/s41870-021-00663-5 |
[73] |
Emani S, Rui A, Rocha HAL, et al. (2022) Physicians' perceptions of and satisfaction with artificial intelligence in cancer treatment: A clinical decision support system experience and implications for low-middle-income countries. JMIR Cancer 8: e31461. https://doi.org/10.2196/31461 ![]() |
[74] |
Haddad T, Helgeson JM, Pomerleau KE, et al. (2021) Accuracy of an artificial intelligence system for cancer clinical trial eligibility screening: retrospective pilot study. JMIR Med Inform 9: e27767. https://doi.org/10.2196/27767 ![]() |
[75] |
Karthikeyan A, Garg A, Vinod PK, et al. (2021) Machine learning based clinical decision support system for early COVID-19 mortality rediction. Front Public Health 9: 626697. https://doi.org/10.3389/fpubh.2021.626697 ![]() |
[76] |
Nayak SR, Nayak DR, Sinha U, et al. (2021) Application of deep learning techniques for detection of COVID-19 cases using chest X-ray images: a comprehensive study. Biomed Signal Process Control 64: 102365. https://doi.org/10.1016/j.bspc.2020.102365 ![]() |
[77] |
Shanbehzadeh M, Nopour R, Kazemi-Arpanahi H (2022) Developing an artificial neural network for detecting COVID-19 disease. J Educ Health Promot 11: 153. https://doi.org/10.4103/jehp.jehp_1017_21 ![]() |
[78] |
Dugdale CM, Rubins DM, Lee H, et al. (2021) Coronavirus disease 2019 (COVID-19) diagnostic clinical decision support: A pre-post implementation study of CORAL (COvid Risk cALculator). Clin Infect Dis 73: 2248-2256. https://doi.org/10.1093/cid/ciab111 ![]() |
[79] |
Romeo L, Frontoni E (2022) A unified hierarchical XGBoost model for classifying priorities for COVID-19 vaccination campaign. Pattern Recogn 121: 108197. https://doi.org/10.1016/j.patcog.2021.108197 ![]() |
[80] |
Hatmal MM, Al-Hatamleh MAI, Olaimat AN, et al. (2022) Reported adverse effects and attitudes among Arab populations following COVID-19 vaccination: A large-scale multinational study implementing machine learning tools in predicting post-vaccination adverse effects based on predisposing factors. Vaccines 10: 366. https://doi.org/10.3390/vaccines10030366 ![]() |
[81] |
Çelik Ertuğrul D, Çelik Ulusoy D (2022) A knowledge-based self-pre-diagnosis system to predict Covid-19 in smartphone users using personal data and observed symptoms. Expert Syst 39: e12716. https://doi.org/10.1111/exsy.12716 ![]() |
[82] | Jiang W, Zeng G, Wang S, et al. (2022) Application of deep learning in lung cancer imaging diagnosis. J Healthc Eng 2022: 6107940. https://doi.org/10.1155/2022/6107940 |
[83] | Agaba A, Abdullahi M, Junaidu S, et al. (2022) Improved multi-classification of breast cancer histopathological images using handcrafted features and deep neural network (dense layer). Intelligent Syst Appl 14: 200066. https://doi.org/10.1016/j.iswa.2022.200066 |
[84] |
Hussain T, Nugent C, Moore A, et al. (2021) A risk-based IoT decision-making framework based on literature review with human activity recognition case studies. Sensors 21: 4504. https://doi.org/10.3390/s21134504 ![]() |
[85] |
Nguyen M, Corbin CK, Eulalio T, et al. (2021) Developing machine learning models to personalize care levels among emergency room patients for hospital admission. J Am Med Inform Assoc 28: 2423-2432. https://doi.org/10.1093/jamia/ocab118 ![]() |
[86] |
Misra D, Avula V, Wolk DM, et al. (2021) Early detection of septic shock onset using interpretable machine learners. JCM 10: 301. https://doi.org/10.3390/jcm10020301 ![]() |
[87] |
Tarumi S, Takeuchi W, Chalkidis G, et al. (2021) Leveraging artificial intelligence to improve chronic disease care: Methods and application to pharmacotherapy decision support for type-2 diabetes mellitus. Methods Inf Med 60: e32-e43. https://doi.org/10.1055/s-0041-1728757 ![]() |
[88] |
De Ramón Fernández A, Ruiz Fernández D, Prieto Sánchez MT (2022) Prediction of the mode of delivery using artificial intelligence algorithms. Comput Meth Prog Biomed 219: 106740. https://doi.org/10.1016/j.cmpb.2022.106740 ![]() |
[89] |
Paviglianiti A, Randazzo V, Villata S, et al. (2022) A comparison of deep learning techniques for arterial blood pressure prediction. Cogn Comput 14: 1689-1710. https://doi.org/10.1007/s12559-021-09910-0 ![]() |
[90] |
Ningrum DNA, Kung W-M, Tzeng I-S, et al. (2021) A deep learning model to predict knee osteoarthritis based on nonimage longitudinal medical record. J Multidiscip Healthc 14: 2477-2485. https://doi.org/10.2147/JMDH.S325179 ![]() |
[91] |
Hasan MM, Young GJ, Shi J, et al. (2021) A machine learning based two-stage clinical decision support system for predicting patients' discontinuation from opioid use disorder treatment: retrospective observational study. BMC Med Inform Decis Mak 21: 331. https://doi.org/10.1186/s12911-021-01692-7 ![]() |
[92] |
Zohra FT (2020) Prediction of different diseases and development of a clinical decision support system using naïve bayes classifier. IJRASET 8: 8-13. https://doi.org/10.22214/ijraset.2020.5002 ![]() |
[93] |
Andrianto B, Suprapto YK, Pratomo I, et al. (2019) Clinical decision support system for typhoid fever disease using classification techniques. International Seminar on Intelligent Technology and Its Applications (ISITIA) IEEE, 2019: 248-252. https://doi.org/10.1109/ISITIA.2019.8937286 ![]() |
[94] |
Sarkar D, Bali R, Sharma T (2018) Practical Machine Learning with Python. CA: Apress Berkeley. https://doi.org/10.1007/978-1-4842-3207-1 ![]() |
[95] |
Cypko MA, Stoehr M (2019) Digital patient models based on Bayesian networks for clinical treatment decision support. Minim Invasiv Ther 28: 105-119. https://doi.org/10.1080/13645706.2019.1584572 ![]() |
[96] | Laxmi P, Gupta D, Gopalapillai R, et al. (2021) A scalable multi-disease modeled CDSS based on Bayesian network approach for commonly occurring diseases with a NLP-Based GUI. Intelligent Systems, Technologies and Applications: Proceedings of Sixth ISTA 2020, India . Singapor: Springer 161-171. https://doi.org/10.1007/978-981-16-0730-1_11 |
[97] |
Edye EO, Kurucz JF, Lois L, et al. (2021) Applying Bayesian networks to help physicians diagnose respiratory diseases in the context of COVID-19 pandemic. IEEE URUCON 2021: 368-371. https://doi.org/10.1109/URUCON53396.2021.9647280 ![]() |
[98] |
Gupta A, Liu T, Shepherd S (2020) Clinical decision support system to assess the risk of sepsis using tree augmented Bayesian networks and electronic medical record data. Health Inform J 26: 841-861. https://doi.org/10.1177/1460458219852872 ![]() |
[99] |
Subasi A (2020) Machine learning techniques. Practical Machine Learning for Data Analysis Using Python . Elsevier: Academic Press 91-202. https://doi.org/10.1016/B978-0-12-821379-7.00003-5 ![]() |
[100] |
Araz OM, Olson D, Ramirez-Nafarrate A (2019) Predictive analytics for hospital admissions from the emergency department using triage information. Int J Prod Econ 208: 199-207. https://doi.org/10.1016/j.ijpe.2018.11.024 ![]() |
[101] | Bruce P, Bruce A, Gedeck P (2020) Practical statistics for data scientists: 50+ essential concepts using R and Python. USA: O'Reilly Media. |
[102] |
Sraitih M, Jabrane Y, Hajjam El Hassani A (2021) An automated system for ECG arrhythmia detection using machine learning techniques. J Clin Med 10: 5450. https://doi.org/10.3390/jcm10225450 ![]() |
[103] |
Wu X, Kumar V, Ross Quinlan J, et al. (2008) Top 10 algorithms in data mining. Knowl Inf Syst 14: 1-37. https://doi.org/10.1007/s10115-007-0114-2 ![]() |
[104] |
Mukherjee R, Sadhu S, Kundu A (2022) Heart disease detection using feature selection based KNN classifier. Proceedings of Data Analytics and Management . Singapore: Springer 577-585. https://doi.org/10.1007/978-981-16-6289-8_48 ![]() |
[105] | Kannan S (2022) An automated clinical decision support system for predicting cardiovascular disease using ensemble learning approach. Concurrency Comput Pract Exp 34: e7007. https://doi.org/10.1002/cpe.7007 |
[106] |
Sharma SK, Vijayakumar K, Kadam VJ, et al. (2022) Breast cancer prediction from microRNA profiling using random subspace ensemble of LDA classifiers via Bayesian optimization. Multimed Tools Appl 81: 41785-41805. https://doi.org/10.1007/s11042-021-11653-x ![]() |
[107] |
Yang S, Bian J, Sun Z, et al. (2018) Early detection of disease using electronic health records and Fisher's Wishart discriminant analysis. Procedia Comput Sci 140: 393-402. https://doi.org/10.1016/j.procs.2018.10.299 ![]() |
[108] | De Andres J, Ten-Esteve A, Harutyunyan A, et al. (2021) Predictive clinical decision support system using machine learning and imaging biomarkers in patients with neurostimulation therapy: a pilot study. Pain Physician 24: E1279-E1290. |
[109] |
Fernandes M, Vieira SM, Leite F, et al. (2020) Clinical decision support systems for triage in the emergency department using intelligent systems: a review. Artif Intell Med 102: 101762. https://doi.org/10.1016/j.artmed.2019.101762 ![]() |
[110] |
Dreiseitl S, Ohno-Machado L (2002) Logistic regression and artificial neural network classification models: a methodology review. J Biomed Inform 35: 352-359. https://doi.org/10.1016/S1532-0464(03)00034-0 ![]() |
[111] |
Ehn M, Derneborg M, Revenäs Å, et al. (2021) User-centered requirements engineering to manage the fuzzy front-end of open innovation in e-health: A study on support systems for seniors' physical activity. Int J Med Inform 154: 104547. https://doi.org/10.1016/j.ijmedinf.2021.104547 ![]() |
[112] |
Ylenia C, Chiara DL, Giovanni I, et al. (2021) A clinical decision support system based on fuzzy rules and classification algorithms for monitoring the physiological parameters of type-2 diabetic patients. MBE 18: 2654-2674. https://doi.org/10.3934/mbe.2021135 ![]() |
[113] |
Hamedan F, Orooji A, Sanadgol H, et al. (2020) Clinical decision support system to predict chronic kidney disease: A fuzzy expert system approach. Int J Med Inform 138: 104134. https://doi.org/10.1016/j.ijmedinf.2020.104134 ![]() |
[114] | Shafi I, Ansari S, Din S, et al. (2021) Artificial neural networks as clinical decision support systems. Concurrency Comput Pract Exp 33: e6342. https://doi.org/10.1002/cpe.6342 |
[115] |
Pappada SM, Owais MH, Cameron BD, et al. (2020) An artificial neural network-based predictive model to support optimization of inpatient glycemic control. Diabetes Technol Ther 22: 383-394. https://doi.org/10.1089/dia.2019.0252 ![]() |
[116] |
Jin Y, Qin C, Huang Y, et al. (2020) Multi-domain modeling of atrial fibrillation detection with twin attentional convolutional long short-term memory neural networks. Knowl-Based Syst 193: 105460. https://doi.org/10.1016/j.knosys.2019.105460 ![]() |
[117] |
Faust O, Acharya UR (2021) Automated classification of five arrhythmias and normal sinus rhythm based on RR interval signals. Expert Syst Appl 181: 115031. https://doi.org/10.1016/j.eswa.2021.115031 ![]() |
[118] | Haque MdR, Islam MdM, Iqbal H, et al. (2018) Performance evaluation of random forests and artificial neural networks for the classification of liver disorder. International Conference on Computer, Communication, Chemical, Material and Electronic Engineering (IC4ME2) . Rajshahi: IEEE 1-5. https://doi.org/10.1109/IC4ME2.2018.8465658 |
[119] |
Lyu J, Zhang J (2019) BP neural network prediction model for suicide attempt among Chinese rural residents. J Affect Disorders 246: 465-473. https://doi.org/10.1016/j.jad.2018.12.111 ![]() |
[120] |
Sutton RT, Pincock D, Baumgart DC, et al. (2020) An overview of clinical decision support systems: benefits, risks, and strategies for success. Npj Digital Medicine 3: 17. https://doi.org/10.1038/s41746-020-0221-y ![]() |
[121] |
Antoniadi AM, Du Y, Guendouz Y, et al. (2021) Current challenges and future opportunities for XAI in machine learning-based clinical decision support systems: a systematic review. Appl Sci 11: 5088. https://doi.org/10.3390/app11115088 ![]() |
1. | Qin Li, Wenwen Ran, Feng Wang, Infinity norm bounds for the inverse of generalized SDD2 matrices with applications, 2024, 41, 0916-7005, 1477, 10.1007/s13160-024-00658-2 | |
2. | Qin Li, Wenwen Ran, Feng Wang, Infinity norm bounds for the inverse of Quasi-SDDk matrices with applications, 2024, 1017-1398, 10.1007/s11075-024-01949-y | |
3. | Wenwen Ran, Feng Wang, Extended SDD\dag1 matrices and error bounds for linear complementarity problems, 2024, 0916-7005, 10.1007/s13160-024-00685-z | |
4. | Yuanjie Geng, Yuxue Zhu, Fude Zhang, Feng Wang, Infinity Norm Bounds for the Inverse of SDD1-Type Matrices with Applications, 2025, 2096-6385, 10.1007/s42967-024-00457-z | |
5. | L. Yu. Kolotilina, SSDD Matrices and Relations with Other Subclasses of the Nonsingular ℋ-Matrices, 2025, 1072-3374, 10.1007/s10958-025-07711-6 |
2 | 4 | 6 | 8 | |
Cor |
||||
Th |
2 | 2 | 2 | 2 |
2 | 3 | 4 | 5 | 6 | |
Th 11 | 1.9022 | 1.5959 | 1.8332 | 1.7324 | 2.0214 |
Th 1 | 10 | 10 | 10 | 10 | 10 |
2 | 5 | 10 | |
Th |
1.6530 | 1.5656 | 1.5925 |
Th |
2 | 2 | 2 |