Research article Topical Sections

Vegetation structure of bio-belts as agro-environmentally-climatic measures to support biodiversity on arable land: A case study

  • Received: 16 August 2022 Revised: 19 September 2022 Accepted: 12 October 2022 Published: 02 November 2022
  • Loss of biological diversity is one of the greatest challenges that our civilization must face nowadays. Reaction to the diminishing biodiversity of agricultural landscapes is various measures promoting free-living organisms. The study deals with the vegetation composition and structure of agro-environmental-climatic measures applied on arable land in operating conditions (intensively farmed regions of the Czech Republic). Additional study focus was applied to a popular measure of the feeding bio-belts. Bio-belts are not only hiding places for free-living animals but can provide them a rich food offer in the period from the harvest of main crops until winter. Thanks to the bio-belts, the landscape gains in biodiversity, and sloping sites can be protected from soil erosion. The vegetation of land parts used as bio-belts was assessed using phytocoenological relevés. Dominant plant species sown in the bio-belts were Avena sativa, Panicum miliaceum, Brassica oleracea var. acephala, Fagopyrum esculentum, Phacelia tanacetifolia, and Pisum arvense. Apart from the sown plants, there were also weeds occurring in the bio-belts, of which the most abundant were Chenopodium album, Amaranthus retroflexus, Setaria verticillata, Cirsium arvense, Equisetum arvense, etc. Risks connected with the realization of feeding bio-belts in respect of weeds occurring on arable land are negligible. Weeds from bio-belts have only a limited potential to spread to adjacent arable land. A potential spreading of weeds from the bio-belts to adjacent arable land was not demonstrated. On the contrary, thanks to its composition, the vegetation of bio-belts has the potential to extend the food offer for animals. Thus, bio-belts are useful for supporting biodiversity in regions intensively used for agriculture.

    Citation: Helena Hanusová, Karolína Juřenová, Erika Hurajová, Magdalena Daria Vaverková, Jan Winkler. Vegetation structure of bio-belts as agro-environmentally-climatic measures to support biodiversity on arable land: A case study[J]. AIMS Agriculture and Food, 2022, 7(4): 883-896. doi: 10.3934/agrfood.2022054

    Related Papers:

    [1] Yifeng Wang . Journal summary from Editor in Chief. AIMS Environmental Science, 2024, 11(3): 380-380. doi: 10.3934/environsci.2024018
    [2] Yifeng Wang . Journal summary from Editor in Chief. AIMS Environmental Science, 2025, 12(2): 252-252. doi: 10.3934/environsci.2025011
    [3] Yifeng Wang . Journal summary from Editor in Chief. AIMS Environmental Science, 2021, 8(2): 100-100. doi: 10.3934/environsci.2021007
    [4] Yifeng Wang . Journal summary from Editor in Chief. AIMS Environmental Science, 2022, 9(2): 217-217. doi: 10.3934/environsci.2022014
    [5] Yifeng Wang . Journal summary from Editor in Chief. AIMS Environmental Science, 2023, 10(2): 245-245. doi: 10.3934/environsci.2023014
    [6] Yifeng Wang . Journal summary from Editor in Chief. AIMS Environmental Science, 2018, 5(1): 64-66. doi: 10.3934/environsci.2018.1.64
    [7] Yifeng Wang . Journal summary from Editor in Chief. AIMS Environmental Science, 2016, 3(1): 140-140. doi: 10.3934/environsci.2016.1.140
    [8] Yifeng Wang . Journal summary from Editor in Chief. AIMS Environmental Science, 2020, 7(2): 153-155. doi: 10.3934/environsci.2020009
    [9] Yifeng Wang . Journal summary from Editor in Chief. AIMS Environmental Science, 2017, 4(2): 287-288. doi: 10.3934/environsci.2017.2.287
    [10] Rukhsana Kokkadan, Resha Neznin, Praseeja Cheruparambath, Jerisa Cabilao, Salma Albouchi . A Study of Infaunal Abundance, Diversity and Distribution in Chettuva Mangrove, Kerala, India. AIMS Environmental Science, 2023, 10(1): 82-92. doi: 10.3934/environsci.2023005
  • Loss of biological diversity is one of the greatest challenges that our civilization must face nowadays. Reaction to the diminishing biodiversity of agricultural landscapes is various measures promoting free-living organisms. The study deals with the vegetation composition and structure of agro-environmental-climatic measures applied on arable land in operating conditions (intensively farmed regions of the Czech Republic). Additional study focus was applied to a popular measure of the feeding bio-belts. Bio-belts are not only hiding places for free-living animals but can provide them a rich food offer in the period from the harvest of main crops until winter. Thanks to the bio-belts, the landscape gains in biodiversity, and sloping sites can be protected from soil erosion. The vegetation of land parts used as bio-belts was assessed using phytocoenological relevés. Dominant plant species sown in the bio-belts were Avena sativa, Panicum miliaceum, Brassica oleracea var. acephala, Fagopyrum esculentum, Phacelia tanacetifolia, and Pisum arvense. Apart from the sown plants, there were also weeds occurring in the bio-belts, of which the most abundant were Chenopodium album, Amaranthus retroflexus, Setaria verticillata, Cirsium arvense, Equisetum arvense, etc. Risks connected with the realization of feeding bio-belts in respect of weeds occurring on arable land are negligible. Weeds from bio-belts have only a limited potential to spread to adjacent arable land. A potential spreading of weeds from the bio-belts to adjacent arable land was not demonstrated. On the contrary, thanks to its composition, the vegetation of bio-belts has the potential to extend the food offer for animals. Thus, bio-belts are useful for supporting biodiversity in regions intensively used for agriculture.



    Dear Editorial Board Members,

    It is my pleasure to share with you the year-end report for AIMS Environmental Science. The journal went through a challenging year in the fifth year (2018). We have received 57 submissions with 27 published online (Figure 1). The most downloaded and cited papers are listed in Tables 1 and 2. The top read article received more than 4332 downloads.

    Figure 1.  Manuscript statistics.
    Table 1.  The top 10 articles with most pdf download: (By December 31th 2018).
    Title Usages
    Quantifying the local-scale ecosystem services provided by urban treed streetscapes in Bolzano, Italy 4332
    Low temperature selective catalytic reduction of NOover Mn-based catalyst: A review 1417
    Remote sensing of agricultural drought monitoring: A state of art review 1307
    Feasibility study of a solar photovoltaic water pumping system for rural Ethiopia 1278
    Biophilic architecture: a review of the rationale and outcomes 1234
    Nitrate pollution of groundwater by pit latrines in developing countries 1177
    Urban agriculture in the transition to low carbon cities through urban greening 1136
    Climate change and land management impact rangeland condition and sage-grouse habitat in southeastern Oregon 1097
    A state-and-transition simulation modeling approach for estimating the historical range of variability 1080
    Effects of urban green areas on air temperature in a medium-sized Argentinian city 1033

     | Show Table
    DownLoad: CSV
    Table 2.  The top 10 articles with most cited: (By December 31th 2018).
    Title Number
    Traffic-related air pollution and brain development 14
    Biophilic architecture: a review of the rationale and outcomes 11
    An integrated approach to modeling changes in land use, land cover, and disturbance and their impact on ecosystem carbon dynamics: a case study in the Sierra Nevada Mountains of California 9
    Nitrate pollution of groundwater by pit latrines in developing countries 9
    The mechanism of kaolin clay flocculation by a cation-independent bioflocculant produced by Chryseobacterium daeguense W6 9
    Enhancing water flux of thin-film nanocomposite (TFN) membrane by incorporation of bimodal silica nanoparticles 9
    Linking state-and-transition simulation and timber supply models for forest biomass production scenarios 8
    Climate change and land management impact rangeland condition and sage-grouse habitat in southeastern Oregon 8
    Quantifying the local-scale ecosystem services provided by urban treed streetscapes in Bolzano, Italy 8
    Combining state-and-transition simulations and species distribution models to anticipate the effects of climate change 8

     | Show Table
    DownLoad: CSV

    I would like to thank all the board members for serving on the Editorial Board and their dedication and contribution to the journal AIMS Environmental Science. The goal in 2019 is to solicit more papers and increase paper citations. We will try our best to reduce the processing time and supply with a better experience for publication. To recognize the contribution of the Editorial Board members and authors during the years, we will offer that (1) for authors invited, the article processing charge (APC) is automatically waived; (2) each editorial board member is entitled for some waivers. I am looking forward to continuing working with you to make the AIMS Environmental Science a sustainable and impactful journal. Please don't hesitate to send me e-mails if you have new ideas and suggestions to help us to achieve this goal.

    Yifeng Wang, Ph.D.

    Editor in Chief, AIMS Environmental Science



    [1] Andreasen C, Stryhn H, Streibig JC (1996) Decline of the flora of Dutch arable fields. J Appl Ecol 33: 619–626. https://doi.org/10.2307/2404990 doi: 10.2307/2404990
    [2] Sutcliffe OL, Kay QON (2000) Changes in the arable flora of central southern England since the 1960s. Biol Conserv 93: 1–8. https://doi.org/10.1016/S0006-3207(99)00119-6 doi: 10.1016/S0006-3207(99)00119-6
    [3] Fried G, Petit S, Dessaint F, et al. (2009) Arable weed decline in Northern France: Crop edges as refugia for weed conservation? Biol Conserv 142: 238–243. https://doi.org/10.1016/j.biocon.2008.09.029 doi: 10.1016/j.biocon.2008.09.029
    [4] Wilson S, Mitchell GW, Pasher J, et al. (2017) Influence of crop type, heterogeneity and woody structure on avian biodiversity in agricultural landscapes. Ecol Indic 83: 218–226. http://dx.doi.org/10.1016/j.ecolind.2017.07.059 doi: 10.1016/j.ecolind.2017.07.059
    [5] Lomba A, da Costa JF, Ramil-Rego P, et al. (2022) Assessing the link between farming systems and biodiversity in agricultural landscapes: Insights from Galicia (Spain). J Environ Manage 317: 115335. https://doi.org/10.1016/j.jenvman.2022.115335 doi: 10.1016/j.jenvman.2022.115335
    [6] Thomine E, Mumford J, Rusch A, et al. (2022) Using crop diversity to lower pesticide use: Socio-ecological approaches. Sci Total Environ 804: 150156. https://doi.org/10.1016/j.scitotenv.2021.150156 doi: 10.1016/j.scitotenv.2021.150156
    [7] Singh A (2017) Managing the environmental problems of irrigated agriculture through the appraisal of groundwater recharge. Ecol Indic 92: 388–393. https://doi.org/10.1016/j.ecolind.2017.11.065 doi: 10.1016/j.ecolind.2017.11.065
    [8] Marshall EJP, Brown VK, Boatman ND, et al. (2003) The role of weeds in supporting biological diversity within crop fields. Weed Res 43: 7–89. https://doi.org/10.1046/j.1365-3180.2003.00326.x doi: 10.1046/j.1365-3180.2003.00326.x
    [9] Nagy GG, Ladányi M, Arany I, et al. (2017) Birds and plants: Comparing biodiversity indicators in eight lowland agricultural mosaic landscapes in Hungary. Ecol Indic 73: 566–573. https://doi.org/10.1016/j.ecolind.2016.09.053 doi: 10.1016/j.ecolind.2016.09.053
    [10] Yvoz S, Cordeau S, Ploteau A, et al. (2021a) A framework to estimate the contribution of weeds to the delivery of ecosystem (dis) services in agricultural landscapes. Ecol Indic 132: 108321. https://doi.org/10.1016/j.ecolind.2021.108321 doi: 10.1016/j.ecolind.2021.108321
    [11] Chancellor RJ (1985) Changes in the weed flora of an arable cultivated field for 20 years. J Appl Ecol 22: 491–501. https://doi.org/10.2307/2403180 doi: 10.2307/2403180
    [12] Hald AB (1999) The impact of changing the season in which cereals are sown on the diversity of the weed flora in rotational fields in Denmark. J Appl Ecol 36: 24–32. https://doi.org/10.1046/j.1365-2664.1999.00364.x doi: 10.1046/j.1365-2664.1999.00364.x
    [13] Krähmer H, Andreasen C, Economou-Antonaka G, et al. (2020) Weed surveys and weed mapping in Europe: State of the art and future tasks. Crop Prot 129: 105010. https://doi.org/10.1016/j.cropro.2019.105010 doi: 10.1016/j.cropro.2019.105010
    [14] Preston CD, Pearman DA, Dines T (2002) New Atlas of the British and Irish Flora. Oxford University Press, Oxford.
    [15] Hyvönen T, Ketoja E, Salonen J, et al. (2003) Weed species diversity and community composition in organic and conventional cropping of spring cereals. Agric, Ecosyst Environ 97: 131–149. https://doi.org/10.1016/S0167-8809(03)00117-8 doi: 10.1016/S0167-8809(03)00117-8
    [16] Wilson PJ, Aebischer NJ (1995) The distribution of dicotyledonous arable weeds in relation to distance from the field edge. J Appl Ecol 32: 295–310. https://doi.org/10.2307/2405097 doi: 10.2307/2405097
    [17] Kleijn D, van der Voort LAC (1997) Conservation headlands for rare arable weeds: The effects of fertiliser application and light penetration on plant growth. Biol Conserv 81: 57–67. https://doi.org/10.1016/S0006-3207(96)00153-X doi: 10.1016/S0006-3207(96)00153-X
    [18] Solé-Senan XO, Juárez-Escario A, Conesa JA, et al. (2014) Plant diversity in Mediterranean cereal fields: Unraveling the effect of landscape complexity on rare arable plants. Agric, Ecosyst Environ 185: 221–230. https://doi.org/10.1007/s10661-019-8042-7 doi: 10.1007/s10661-019-8042-7
    [19] Yvoz S, Cordeau S, Zuccolo C, et al. (2020) Crop type and within-field location as sources of intraspecific variations in the phenology and the production of floral and fruit resources by weeds. Agric, Ecosyst Environ 302: 107082. https://doi.org/10.1016/j.agee.2020.107082 doi: 10.1016/j.agee.2020.107082
    [20] Critchley CNR, Allen DS, Fowbert JA, et al. (2004) Habitat establishment on arable land: assessment of an agri-environment scheme in England, UK. Biol Conserv 119: 429–442. https://doi.org/10.1016/j.biocon.2004.01.004 doi: 10.1016/j.biocon.2004.01.004
    [21] Sotherton NW (1991) Conservation headlands: A practical combination of intensive cereal farming and conservation. In: Firbank LG, Carter N, Darbyshire JF, et al. (Eds.), The Ecology of Temperate Cereal Fields, Blackwell, London, 373–397.
    [22] Yvoz S, Petit S, Cadet E, et al. (2021b) Taxonomic and functional characteristics of field edge weed communities along a gradient of crop management intensity. Basic Appl Ecol 57: 14–27. https://doi.org/10.1016/j.baae.2021.10.001 doi: 10.1016/j.baae.2021.10.001
    [23] Firbank LG, Smart SM, Crabb J, et al. (2003) Agronomic and ecological costs and benefits of set-aside in England, Agric, Ecosyst Environ 95: 73–85. https://doi.org/10.1016/S0167-8809(02)00169-X doi: 10.1016/S0167-8809(02)00169-X
    [24] Kleijn D, Joenje W, Le Coeur D, et al. (1998) Similarities in vegetation development of newly established herbaceous strips along contrasting European field boundaries. Agric, Ecosyst Environ 68: 13–26. https://doi.org/10.1016/S0167-8809(97)00098-4 doi: 10.1016/S0167-8809(97)00098-4
    [25] Critchley CNR, Fowbert JA (2000) Development of vegetation on set-aside land for up to nine years from a national perspective. Agric, Ecosyst Environ 79: 159–173. https://doi.org/10.1016/S0167-8809(99)00155-3 doi: 10.1016/S0167-8809(99)00155-3
    [26] Ryspekov T, Jandák J, Balkozha M, et al. (2021) Vegetation of abandoned fields on soil types of kastanozems in Northern Kazakhstan (Kostanay Region). J Ecol Eng. 22: 176–184. https://doi.org/10.12911/22998993/142188 doi: 10.12911/22998993/142188
    [27] Weibull AC, Ostman O, Granqvist A (2003) Richness in agroecosystems: The effect of landscape, habitat and farm management. Biodivers Conserv 12: 1335–1355. https://www.jstor.org/stable/3838497
    [28] Burel F, Butet A, Delettre YR, et al. (2004) Differential response of selected taxa to landscape context and agricultural intensification. Landscape Urban Plann 67: 195–204. http://dx.doi.org/10.1016/S0169-2046(03)00039-2 doi: 10.1016/S0169-2046(03)00039-2
    [29] Bianchi FJJA, Booijand CJH, Tscharntke T (2006) Sustainable pest regulation in agricultural landscapes: a review on landscape composition, biodiversity and natural pest control. Proc R Soc B 273: 1715–1727. https://doi.org/10.1098/rspb.2006.3530 doi: 10.1098/rspb.2006.3530
    [30] Geiger F, Waeckers FL, Bianchi FJJA (2009) Hibernation of predatory arthropods in semi-natural habitats. Biocontrol 54: 529–535. https://doi.org/10.1007/s10526-008-9206-5 doi: 10.1007/s10526-008-9206-5
    [31] Rusch A, Valantin-Morison M, Sarthou JP, et al. (2010) Biological control of insect pests in agroecosystems: Effects of crop management, farming systems, and semi-natural habitats at the landscape scale: A review. Adv Agric 109: 19–259. https://doi.org/10.1016/B978-0-12-385040-9.00006-2 doi: 10.1016/B978-0-12-385040-9.00006-2
    [32] Storkey J (2006) Afunctional groupapproachto themanagement of UK arable weeds to support biological diversity. Weed Res 46: 513–522. https://doi.org/10.1111/j.1365-3180.2006.00528.x doi: 10.1111/j.1365-3180.2006.00528.x
    [33] Bastiaans L, Kropff MJ, Goudriaan J, et al. (2000) Design of weed management systems with a reduced reliance on herbicides poses new challenges and prerequisites for modeling crop—weed interactions. Field Crops Res 67: 161–179. https://doi.org/10.1016/S0378-4290(00)00091-5 doi: 10.1016/S0378-4290(00)00091-5
    [34] Marshall EJP, Brown VK, Boatman ND, et al. (2003) The role of weeds in supporting biological diversity within crop fields. Weed Res 43: 77–89. https://doi.org/10.1046/j.1365-3180.2003.00326.x doi: 10.1046/j.1365-3180.2003.00326.x
    [35] Petit S, Boursault A, Le Guilloux M, et al. (2011) Weeds in agricultural landscapes: A review. Agron Sustain Dev 31: 309–317. https://doi.org/10.1051/agro/2010020 doi: 10.1051/agro/2010020
    [36] Gaba S, Fried G, Kazakou E, et al. (2014) Agroecological weed control using a functional approach: A review of cropping systems diversity. Agron Sustainable Dev 34: 103–119. https://doi.org/10.1007/s13593-013-0166-5 doi: 10.1007/s13593-013-0166-5
    [37] Schumacher M, Dieterich M, Gerhards R (2020) Effects of weed biodiversity on the ecosystem service of weed seed predation along a farming intensity gradient. Global Ecol Conserv 24: e01316. https://doi.org/10.1016/j.gecco.2020.e01316 doi: 10.1016/j.gecco.2020.e01316
    [38] Dieleman JA, Mortensen DA (1999) Characterizing the spatial pattern of Abutilon theophrasti seedling patches. Weed Res 39: 455–467. https://doi.org/10.1046/j.1365-3180.1999.00160.x doi: 10.1046/j.1365-3180.1999.00160.x
    [39] Marshall EJP (1988) Field-scale estimates of grass weed populations in arable land. Weed Res 28: 191–198. https://doi.org/10.1111/j.1365-3180.1988.tb01606.x doi: 10.1111/j.1365-3180.1988.tb01606.x
    [40] Rew LJ, Cussans GW, Mugglestone MA, et al. (1996) A technique for mapping the spatial distribution of Elymus repens, with estimates of the potential reduction in herbicide usage from patch spraying. Weed Res 36: 283–292. https://doi.org/10.1111/j.1365-3180.1996.tb01658.x doi: 10.1111/j.1365-3180.1996.tb01658.x
    [41] Winkler J, Lukas V, Smutný V (2015) Analysis of the heterogeneity of weed infestation in cereal stands. Acta Univ Agric Silvic Mendelianae Brun 63: 153–161. http://dx.doi.org/10.11118/actaun201563010153 doi: 10.11118/actaun201563010153
    [42] Bourgeois B, Gaba S, Plumejeaud C, et al. (2020) Weed diversity is driven by complex interplay between multi-scale dispersal and local filtering. Proc R Soc B 287: 20201118. https://doi.org/10.1098/rspb.2020.1118 doi: 10.1098/rspb.2020.1118
    [43] Hussain RI, Brandl M, Maas B, et al. (2021) Re-established grasslands on farmland promote pollinators more than predators. Agric, Ecosyst Environ 319: 107543. https://doi.org/10.1016/j.agee.2021.107543 doi: 10.1016/j.agee.2021.107543
    [44] Šálek M, Zámečník V (2020) Historic overview and conservation perspectives of the Czech grey partridge (Perdix perdix) population. In: The Changing Status of Arable Habitats in Europe, Springer, Cham, 227–243. https://doi.org/10.1007/978-3-030-59875-4_15
    [45] Hejcmanová-Nežerková P, Hejcman M (2006) A canonical correspondence analysis (CCA) of the vegetation–environment relationships in Sudanese savannah, Senegal. S Afr J Bot 72: 256–262. https://doi.org/10.1016/j.sajb.2005.09.002 doi: 10.1016/j.sajb.2005.09.002
    [46] Ter Braak CJF, Šmilauer P (2012) Canoco reference manual and user's guide: Software for ordination (version 5.0). Ithaca: Microcomputer Power, 2012.
    [47] Chytrý M, Danihelka J, Kaplan Z, et al. (2021) Pladias database of the Czech flora and vegetation. Preslia 93: 1–87. https://doi.org/10.23855/preslia.2021.001 doi: 10.23855/preslia.2021.001
    [48] Durka W (2002) Blüten- und Reproduktionsbiologie. In: Klotz S, Kühn I, Durka W (Eds), BIOLFLOR—Eine Datenbank mit biologisch-ökologischen Merkmalen zur Flora von Deutschland, Schriftenreihe für Vegetationskunde, 38: 133–175.
    [49] Sádlo J, Chytrý M, Pergl J, et al. (2018) Plant dispersal strategies: A new classification based on themultiple dispersal modes of individual species. Preslia 90: 1–22. https://doi.org/10.23855/preslia.2018.001 doi: 10.23855/preslia.2018.001
    [50] Šálek M, Hula V, Kipson M, et al. (2018) Bringing diversity back to agriculture: Smaller fields and non-crop elements enhance biodiversity in intensively managed arable farmlands. Ecol Indic 90: 65–73. https://doi.org/10.1016/j.ecolind.2018.03.001 doi: 10.1016/j.ecolind.2018.03.001
    [51] Otieno NE, Jacobs SM, Pryke JS (2022) Small-scale traditional maize farming fosters greater arthropod diversity value than conventional maize farming. J Insect Conserv 26: 477–489. https://doi.org/10.1007/s10841-021-00330-x doi: 10.1007/s10841-021-00330-x
    [52] Tarjuelo R, Benítez-López A, Casas F, et al. (2020) Living in seasonally dynamic farmland: The role of natural and semi-natural habitats in the movements and habitat selection of a declining bird. Biol Conserv 251: 108794. https://doi.org/10.1016/j.biocon.2020.108794 doi: 10.1016/j.biocon.2020.108794
    [53] Jachuła J, Denisow B, Wrzesień M, et al. (2022) The need for weeds: Man-made, non-cropped habitats complement crops and natural habitats in providing honey bees and bumble bees with pollen resources. Sci Total Environ 2022: 156551. https://doi.org/10.1016/j.scitotenv.2022.156551 doi: 10.1016/j.scitotenv.2022.156551
    [54] Ekwealor KU, Echereme CB, Ofobeze TN, et al. (2019) Economic importance of weeds: A review. Asian J Plant Sci 3: 1–11. https://doi.org/10.9734/aprj/2019/v3i230063 doi: 10.9734/aprj/2019/v3i230063
    [55] Tissier ML, Marchandeau S, Habold C, et al. (2019) Weeds as a predominant food source: A review of the diet of common hamsters Cricetus cricetus in farmlands and urban habitats. Mamm Rev 49: 152–170. https://doi.org/10.1111/mam.12149 doi: 10.1111/mam.12149
    [56] Ouvrard P, Jacquemart AL (2018) Agri‐environment schemes targeting farmland bird populations also provide food for pollinating insects. Agric For Entomol 20: 558–574. https://doi.org/10.1111/afe.12289 doi: 10.1111/afe.12289
    [57] Crochard L, Julliard R, Gaba S, et al. (2022) Weeds from non-flowering crops as potential contributors to oilseed rape pollination. Agric, Ecosyst Environ 336: 108026. https://doi.org/10.1016/j.agee.2022.108026 doi: 10.1016/j.agee.2022.108026
    [58] Bretagnolle V, Gaba S (2015) Weeds for bees? A review. Agron Sustainable Dev 35: 891–909. https://doi.org/10.1007/s13593-015-0302-5 doi: 10.1007/s13593-015-0302-5
    [59] Gaba S, Cheviron N, Perrot T, et al. (2020) Weeds enhance multifunctionality in arable lands in south-west of France. Front Sustainable Food Syst 4: 71. https://doi.org/10.3389/fsufs.2020.0007 doi: 10.3389/fsufs.2020.0007
    [60] Kleiman B, Koptur S, Jayachandran K (2021) Beneficial interactions of weeds and pollinators to improve crop production. J Res Weed Sci 4: 151–164.
    [61] Marshall EJP (1989) Distribution patterns of plants associated with arable field edges. J Appl Ecol 26: 247–257. https://doi.org/10.2307/2403665 doi: 10.2307/2403665
    [62] Alignier A, Uroy L, Aviron S (2020) The role of hedgerows in supporting biodiversity and other ecosystem services in intensively managed agricultural landscapes. In Reconciling agricultural production with biodiversity conservation, Burleigh Dodds Science Publishing, 177–204.
    [63] Martín‐Vélez V, van Leeuwen CHM, Sánchez I, et al. (2021) Spatial patterns of weed dispersal by wintering gulls within and beyond an agricultural landscape. J Ecol 109: 1947–1958. https://doi.org/10.1111/1365-2745.13619 doi: 10.1111/1365-2745.13619
    [64] Marshall EJP, Smith BD (1987) Field margin flora and fauna: Interaction with agriculture. In: Way JM, Greig-Smith PW (Eds.), Field Margins, British Crop Protection Council, UK, 23–33.
    [65] Mante J, Gerowitt B (2009) Learning from farmers' needs: Identifying obstacles to the successful implementation of field margin measures in intensive arable regions. Landscape Urban Plann 93: 229–237. https://doi.org/10.1016/j.landurbplan.2009.07.010 doi: 10.1016/j.landurbplan.2009.07.010
    [66] Cordeau S, Reboud X, Chauvel B (2011) Farmers' fears and agro-economic evaluation of sown grass strips in France. Agron Sustain Dev 31: 463–473. https://doi.org/10.1007/s13593-011-0004-6 doi: 10.1007/s13593-011-0004-6
    [67] Pellegrini E, Buccheri M, Martini F, et al. (2021) Agricultural land use curbs exotic invasion but sustains native plant diversity at intermediate levels. Sci Rep 11: 1–10. https://doi.org/10.1038/s41598-021-87806-7 doi: 10.1038/s41598-021-87806-7
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2326) PDF downloads(155) Cited by(3)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog