Review

Implementation of Agent-Based Models to support Life Cycle Assessment: A review focusing on agriculture and land use

  • Agent-Based Models (ABMs) have been adopted to simulate very different kinds of complex systems, from biological systems to complex coupled human-natural systems. In particular, when used to simulate man-managed systems, they have the advantage of allowing human behavioral aspects to be considered in the modelling framework. This paper provides a literature review of the application of ABMs for agricultural and land use modelling. One section is specifically devoted to the coupling of ABMs and Life Cycle Assessment (LCA) models. The aim of the paper is to give a perspective of the different “modelling blocks” one needs to take into account to build an ABM, dealing with general issues that must be considered regardless of the domain of application (such as validity, uncertainty, parameter sensitivity, agent definition, data provision), and providing concrete examples related specifically to ABMs applied to agricultural and land use modelling. The paper highlights the difficulties that the modelers can encounter in dealing with each of these modelling blocks, and presents the solutions that can be envisioned (mentioning those that have been applied in certain cases in the literature). As a general conclusion, we can observe that solutions based on complex systems simulations are starting, to some extent, to be influential in policymaking; however, practical user-friendly tools that allow scenario simulations also to non-expert users are clearly still lacking.

    Citation: Antonino Marvuglia, Tomás Navarrete Gutiérrez, Paul Baustert, Enrico Benetto. Implementation of Agent-Based Models to support Life Cycle Assessment: A review focusing on agriculture and land use[J]. AIMS Agriculture and Food, 2018, 3(4): 535-560. doi: 10.3934/agrfood.2018.4.535

    Related Papers:

    [1] Aman Santoso, Titania Nur Kusumah, Sumari Sumari, Anugrah Ricky Wijaya, Rini Retnosari, Ihsan Budi Rachman, Siti Marfuah, Muhammad Roy Asrori . Synthesis of biodiesel from waste cooking oil using heterogeneous catalyst of Na2O/γ-Al2O3 assisted by ultrasonic wave. AIMS Energy, 2022, 10(5): 1059-1073. doi: 10.3934/energy.2022049
    [2] Hussein A. Mahmood, Ali O. Al-Sulttani, Hayder A. Alrazen, Osam H. Attia . The impact of different compression ratios on emissions, and combustion characteristics of a biodiesel engine. AIMS Energy, 2024, 12(5): 924-945. doi: 10.3934/energy.2024043
    [3] Dejene Beyene, Dejene Bekele, Bezu Abera . Biodiesel from blended microalgae and waste cooking oils: Optimization, characterization, and fuel quality studies. AIMS Energy, 2024, 12(2): 408-438. doi: 10.3934/energy.2024019
    [4] Sunbong Lee, Shaku Tei, Kunio Yoshikawa . Properties of chicken manure pyrolysis bio-oil blended with diesel and its combustion characteristics in RCEM, Rapid Compression and Expansion Machine. AIMS Energy, 2014, 2(3): 210-218. doi: 10.3934/energy.2014.3.210
    [5] Lihao Chen, Hu Wu, Kunio Yoshikawa . Research on upgrading of pyrolysis oil from Japanese cedar by blending with biodiesel. AIMS Energy, 2015, 3(4): 869-883. doi: 10.3934/energy.2015.4.869
    [6] Yadessa Gonfa Keneni, Jorge Mario Marchetti . Oil extraction from plant seeds for biodiesel production. AIMS Energy, 2017, 5(2): 316-340. doi: 10.3934/energy.2017.2.316
    [7] Conrad Omonhinmin, Enameguono Olomukoro, Ayodeji Ayoola, Evans Egwim . Utilization of Moringa oleifera oil for biodiesel production: A systematic review. AIMS Energy, 2020, 8(1): 102-121. doi: 10.3934/energy.2020.1.102
    [8] Sandra M. Damasceno, Vanny Ferraz, David L. Nelson, José D. Fabris . Selective adsorption of fatty acid methyl esters onto a commercial molecular sieve or activated charcoal prepared from the Acrocomia aculeata cake remaining from press-extracting the fruit kernel oil. AIMS Energy, 2018, 6(5): 801-809. doi: 10.3934/energy.2018.5.801
    [9] Husam Al-Mashhadani, Sandun Fernando . Properties, performance, and applications of biofuel blends: a review. AIMS Energy, 2017, 5(4): 735-767. doi: 10.3934/energy.2017.4.735
    [10] A. A. Ayoola, F. K. Hymore, C. A. Omonhinmin, O. Agboola, E. E. Alagbe, D. Oyekunle, M. O. Bello . Biodiesel production from used vegetable oil and CaO catalyst impregnated with KNO3 and NaNO3. AIMS Energy, 2020, 8(3): 527-537. doi: 10.3934/energy.2020.3.527
  • Agent-Based Models (ABMs) have been adopted to simulate very different kinds of complex systems, from biological systems to complex coupled human-natural systems. In particular, when used to simulate man-managed systems, they have the advantage of allowing human behavioral aspects to be considered in the modelling framework. This paper provides a literature review of the application of ABMs for agricultural and land use modelling. One section is specifically devoted to the coupling of ABMs and Life Cycle Assessment (LCA) models. The aim of the paper is to give a perspective of the different “modelling blocks” one needs to take into account to build an ABM, dealing with general issues that must be considered regardless of the domain of application (such as validity, uncertainty, parameter sensitivity, agent definition, data provision), and providing concrete examples related specifically to ABMs applied to agricultural and land use modelling. The paper highlights the difficulties that the modelers can encounter in dealing with each of these modelling blocks, and presents the solutions that can be envisioned (mentioning those that have been applied in certain cases in the literature). As a general conclusion, we can observe that solutions based on complex systems simulations are starting, to some extent, to be influential in policymaking; however, practical user-friendly tools that allow scenario simulations also to non-expert users are clearly still lacking.


    With the rapid growth of mobile devices, it is feasible and urgent-demand to deploy image recognition applications on mobile devices to provide image recognition services. However, since the constraint computing and storage resource, as well as energy resources, it is difficult to perform all image recognition applications on mobile devices. In recent years, a popular solution is to offload the image recognition tasks to the remote cloud servers [1,2]. That is, the image recognition applications deployed on mobile devices, they only responsible for collecting images. Then, the mobile devices upload the images to the cloud servers to perform recognition tasks. Although this solution can save the computing and storage resources, as well as the energy resources of mobile devices. In doing so, mobile devices can provide long-lasting image recognition services for mobile users. However, in 5G networks, if hundreds of thousands of mobile users upload images to the cloud servers at the same time, the core network can be overload and even incurs network congestion, it is very likely resulting in long transmission delays. Therefore, traditional cloud computing solution cannot meet the requirements of real time response.

    Mobile Edge Computing (MEC), as an emerging architecture, it is possible to solve the traditional computing solution problems that cannot meet the users real time demands [3,4,5,6]. In MEC architecture, many small-scale edge servers are deploying at the edge of the network. These edge servers can provide computing and storage resources for image recognition applications. Thus, mobile users can offload the image recognition tasks to the edge servers rather than the cloud servers. Since users close to the edge servers, generally, one hope. Therefore, the transmission delays can be reduced. In traditional cloud computing scheme, running deep neural network models on the cloud servers can achieve good performance. The reason is that cloud servers are regarded as rich computing and storage resources, as well as stored a large number of trainable images. It is well known that using a large number of trainable images to train a very deep neural networks can achieve good performance. However, in MEC architecture, a single edge server has a small range so that it only can collect a small number of images. Therefore, it is inappropriate to use deep neural network models to run the image recognition tasks.

    To address this problem, in this paper, we propose a location-ware feature extraction algorithm for image recognition, called DAGDNEP. In DAGDNEP, we employ DAGDNEP to construct two adjacency graphs to preserve the intra-class information and the inter-class information that make every samples linked to its homogeneous and heterogeneous neighbors respectively and also, we introduce a heat kernel function as weight when construct matrix of the intra-class and inter-class. Thus, DAGDNEP could keep the geometric structure of the given data that find an optimal projection matrix. Experimental results validate the effectiveness of our DAGDNEP in comparison with DAGDNE algorithm.

    The reminder of this paper is organized as follows. Section 2 introduces the related work, which includes mobile edge computing and feature extraction algorithm. In Section 3, we introduce the proposed feature extraction algorithm. In section, we discuss the combination between MEC architecture and the proposed algorithms. The experimental results are presented in Section 4. Finally, we provide the concluding remarks in Section 5.

    Mobile Edge Computing (MEC), which can provide computing and storage resources for image recognition applications by deploying some small-scale servers at the edge of the network [3,4,5,6]. MEC mainly solves the problems of traditional mobile cloud computing that directly upload the raw images to the cloud servers that incurs long response time [7]. With the explosive growth of mobile traffic, if hundreds of thousands of mobile users upload the image data to cloud servers at the same time, it may incur the core network congestion, resulting longer transmission delays and longer response time. The architecture of MEC is as shown in Figure 1, which consists of three layers of components, mobile devices, edge servers and cloud servers.

    Figure 1.  The architecture of MEC.

    Mobile Devices: Mobile devices are the front-end devices, such as smartphone, laptop, iWatch, etc. Mobile devices are utilized to install image recognition applications. Since the constraint computing and storage resources of mobile devices, we only use them to capture images and receive results, as well as show results. Edge Servers: Edge servers are small scale servers deploying at the edge of the network. Edge servers are typically performing single function with limited resources, such as cache servers and specialized servers. Since edge servers close to users, using edge servers to provide computing and storage resources for image recognition applications can reduce the transmission delay. This is because mobile users only require upload the captured image to the edge servers instead of cloud servers. Cloud Servers: Cloud servers are regarded as having rich computing and storage resources. In general, the cloud servers are very far away from users.

    Many feature extraction algorithms are proposed in recent years, such as discriminant neighborhood embedding [8], marginal Fisher analysis [9,10], local features discriminant projection [7], Appropriate points choosing based DAGDNE [11], double adjacency graphs-based discriminant neighborhood embedding [12].

    For example, Zhang et al. [8] proposed discriminant neighborhood embedding, which supposes that multi-class data points in high-dimensional space tend to move due to local intra-class attraction or inter-class repulsion, and the optimal embedding from the point of view of classification is discovered consequently. Yan et al. [9,10] proposed marginal fisher analysis, which adopts two adjacency graphs to preserving the geometric structure. This approach first constructs two adjacency graphs, the intrinsic graph and the penalty graph, of which the intrinsic graph characterizes the intra-class compactness and connects each data point with its neighboring points of the same class, while the penalty graph connects the marginal points and characterizes the inter-class separability. Ding and Zhang [12] proposed double adjacency graphs-based discriminant neighborhood embedding, which let each sample be respectively linked to its homogeneous and heterogeneous neighbors by constructing two adjacency graphs. As a consequence, balance links are produced, neighbors belonging to the same class are compact while neighbors belonging to different classes become separable in the subspace. Thus, DAGDNE could keep the local structure of a given data and find a good projection matrix.

    However, these algorithms ignore the location information. Thus, these algorithms just preserve the local structure but ignore the location information. Nevertheless, in the task of clustering or classification, the location information is very important.

    In this section, we will introduce the location-aware feature extraction algorithm, called DAGDNEP. Let {(xi,yi)}i=1N be a set of training samples, where xiRd and yi{1,2,...,C}. DAGDNEP aims to find a projection matrix P, being able to extract the discriminative features from the raw image data. The extracted discriminative features have the characteristic that images with the same class label are compact, while images with different class labels are separable.

    Similar to DAGDNE algorithm, DAGDNEP requires to construct two adjacency graphs. Let Fw and Fb be the intra-class and inter-class adjacency matrices, respectively. For an image xi, NHkw(xi) and NHkb(xi) denote its K homogeneous set and heterogeneous set, respectively.

    The intra-class adjacency matrix Fw and inter-class adjacency matrix Fb are defined as

    Fijw={exp(||xixj||2β), xiNHkw(xj) or xjNHkw(xi)0 , otherwise (1)
    Fijb={exp(||xixj||2β),, xiNHkb(xj) or xjNHkb(xi)0 , otherwise (2)

    where β(0,1], which controls the scale of weights.

    The intra-class scatter Φ(P) and inter-class scatter Ψ(P) are defined as follows:

    Φ(P)=i,j||PTxiPTxj||2Fijw=2tr{PTX(DwFw)XTP} (3)
    Ψ(P)=i,j||PTxiPTxj||2Fijb=2tr{PTX(DbFb)XTP} (4)

    where Dw and Db are diagonal matrices and their entries are column sum of Fw and Fb, respectively.

    In order to achieve impressive accuracy, the extracted features need to satisfy that features from the same class labels are compact while features from different class labels become separable. To this end, we need to maximize the margin of total inter-class scatter and total intra-class scatter, i.e.,

    Θ(P)=Ψ(P)Φ(P) (5)

    DAGDNEP aims to find a feature extractor P by solving the objective function (5). The complete derivation and theoretical justifications is similar to DAGDNE, so the detail of the derivation and theoretical justification can be tracked back to [12]

    {maxP tr{PTXSXTP}s.t.    PTP=I (6)

    Where S=DbFbDw+Fw. The projection matrix P can be found by solving the generalized eigenvalue problem as follows:

    XSXTP=λP (7)

    Thus, P is composed of the optimal r projection vectors corresponding to the r largest eigenvalues.

    The details of DAGDNEP is given in Algorithm 1.

    Algorithm 1. Location-aware Feature Extraction (DAGDNEP)
    Input: A training image set {(xi,yi)}i=1N, and the number of features r;
    Output: Feature Extractor: P;
    Step 1. Compute the intra-class scatter matrix Fw and the inter-class scatter matrix Fb according to (1) and (2), respectively.
    Step 2. Eigenvalue decomposition of XSXT. Let eigenvalues be λi, i=1,...,d and their corresponding eigenvectors be pi(i=1,...,d) with λ1λ2λd.
    Step 3. Choose the first r largest eigenvalues so that return P=[pi,,pr]

    The DAGDNEP algorithm is an improved version of the DAGDNE algorithm. DAGDNE could keep the local intrinsic structure for the raw image data through the extracted features by constructing two adjacency graphs. However, DAGDNE just gives the weight value +1 when construct intra-class adjacency graph and inter-class adjacency graph. That just give +1 cannot preserve the geometric structure of the given data and the geometric structure plays a different role in the classification task. Therefore, when extracting the discriminative features from the raw image data, some more important discriminative features may miss. DAGDNEP regulates heat kernel function as the weight that can preserve the geometric structure among data. As a result, DAGDNEP can achieve a good performance.

    Since a single edge server only collects a small amount of images, it is inappropriate to use deep neural network models to perform image recognition tasks. The reason is that using deep neural network models cannot achieve good performance due to the small number of images stored on a single edge server. In the contrast, the proposed feature extraction algorithm can well fit the small number of images and achieve good performance. In this sense, Combining the MEC architecture [13,14,15,16,17] and the proposed feature extraction algorithm to provide image recognition services is advisable.

    We have conducted experiments on two datasets, which are publicly available, UMIST and ORL datasets. Wherein the UMIST dataset contains 564 face images of 20 individuals and the ORL dataset contains 400 face images of 40 individuals, with 10 images for each individual.

    DAGDNE and the proposed algorithm are implemented in MATLAB 2015b, and are conducted on an i5 Intel ® Core CPU 2.50 GHz machine with 4G bytes of memory. In our experiment, which requires the nearest neighbor parameter K for constructing adjacency graphs. For simplicity, the nearest neighbor classifier is used for classifying the test images

    To evaluate the effectiveness and the correctness of DAGDNEP, experiments are carried out on UMIST and ORL databases, and the results are compared with DAGDNE.

    In the experiment, the parameter β is selected to be several different sets of values so as to observe their effect on the recognition rate. The whole validation set, and the value of parameter β is selected based on the training result on the validation set.

    The UMIST dataset consists of 564 images of 20 individuals, taking into account race, sex and appearance. Each subject is taken in a range of poses from profile to frontal views. The pre-cropped dataset is used and the size of each image is 112×92 pixels, with 256 gray levels per pixel. For UMIST datasets, we randomly select 20% images from the database as training samples, the remaining 80% as test samples. Figure 2 shows some image samples in the UMIST dataset. We repeat 20 runs and report the average results.

    Figure 2.  Face images from the UMIST database.

    First, we consider parameter choose, the nearest neighbor parameter K is selected in the set {1,3}. Figure 3 illustrates the relationships of accuracy and the value of β. From Figure 3 we know that different values of β has different accuracy, which β as a tuning parameter that preserve the geometric structure of the given data. So we know that the geometric structure information plays a great role in the classification task.

    Figure 3.  Average recognition rates vs. β.

    Figure 4 (a) and (b) show the accuracy of two algorithms vs. dimensionality of subspace with different K. From Figure 4 (a) and (b), the classification accuracy of DAGDNEP and DAGDNE algorithms are all increase rapidly, however, DAGDNEP is more rapidly than DAGDNE.

    Figure 4.  Recognition accuracy for different parameters on UMIST database.

    The ORL dataset is composed of 40 distinct subjects, each of which contains 10 different gray-scale images. In ORL dataset, images for each subject were taken by varying the lighting, facial expressions or facial details at different times, and all were taken against a dark homogenous background in an upright and frontal position. The size of each image is 112×92 pixels, with 256 gray levels per pixel. For ORL dataset, we randomly select 60% images from the database as training samples, the remaining 40% as test samples. Figure 5 shows some image samples in the ORL dataset. There are 240 training samples and 160 test ones. Figure 6 illustrate the relationship β and recognition rate with K=1 and K=3, respectively.

    Figure 5.  Sample face images from the ORL database.
    Figure 6.  Average recognition rates vs. β.

    In this experiment, we reduce dimensionality with two times so as to get a high running speed. When choose parameter, similar to UMIST dataset, the neighborhood parameter K in DAGDNE and DAGDNEP is set to be 1 and 3, respectively.

    Figure 7 shows the accuracy of DAGDNE and DAGDNEP algorithms vs. dimensionality of subspace with different K. We can see that DAGDNEP can obtain good performance and more rapidly than DAGDNE to get the best performance. Compared with DAGDNE, DAGDNEP has a better recognition rate and its optimal discriminative subspace has a relatively low dimensionality so as to reduce the complexity of calculation.

    Figure 7.  Recognition accuracy for different parameters on ORL database.

    In this paper, we proposed a location-aware feature extraction algorithm to fit the image recognition in the MEC environment. By considering that in MEC architecture, a single edge server only collects a small number of images, we propose a location-aware feature extraction algorithm, which can achieve good performance when the trainable images are very few. Moreover, the proposed feature extraction algorithm considers the location information of the images, compared with traditional feature extraction algorithms, it achieves higher accuracy. Thus, by combining the MEC architecture and the proposed feature extraction algorithm, it is possible to support the mobile devices to provide long-lasting real time response and high accuracy image recognition services. Finally, on two publicly datasets, we demonstrate the effectiveness of our proposed feature extraction algorithm.

    The work is supported by National Natural Science Foundation of China (No.61003100), Hubei Provincial Natural Science Foundation of China (No. 2017CFA012), National Natural Science Foundation of China (No. 61572012), National Natural Science Foundation of Hubei Province (No.2015CFB525) and Wuhan science and technology plan innovation team project (No.201307020402005).

    All authors declare no conflicts of interest in this paper.

    [1] UN-WCED (1987) Our Common Future. Oxford University Press.
    [2] Sala S, Ciuffo B, Nijkamp P (2015) A systemic framework for sustainability assessment. Ecol Econ 119: 314–325. doi: 10.1016/j.ecolecon.2015.09.015
    [3] Wiek A, Ness B, Schweizer-Ries P, et al. (2012) From complex systems analysis to transformational change: A comparative appraisal of sustainability science projects. Sustainability Sci 7: 5–24.
    [4] Marvuglia A, Benetto E, Murgante B (2015) Calling for an Integrated Computational Systems Modelling Framework for Life Cycle Sustainability Analysis. J Environ Accounting Manage 3: 213–216. doi: 10.5890/JEAM.2015.09.001
    [5] Heijungs R (2010) Ecodesign-carbon footprint-life cycle assessment-life cycle sustainability analysis. A flexible framework for a continuum of tools. Sci J Riga Tech U 4: 42–46.
    [6] Guinée JB, Heijungs R, Huppes G, et al. (2011) Life Cycle Assessment: Past, Present, and Future. Environ Sci Technol 45: 90–96. doi: 10.1021/es101316v
    [7] Ponta L, Raberto M, Teglio A, et al. (2018) An Agent-based Stock-flow Consistent Model of the Sustainable Transition in the Energy Sector. Ecol Econ 145: 274–300. doi: 10.1016/j.ecolecon.2017.08.022
    [8] Markard J, Raven R, Truffer B (2012) Sustainability transitions: An emerging field of research and its prospects. Res Polic 41: 955–967. doi: 10.1016/j.respol.2012.02.013
    [9] The TIR Consulting Group LCC (2016) The 3rd industrial revolution strategy study for the Grand Duchy of Luxembourg. Luxembourg.
    [10] Martin G, Allain S, Bergez JE, et al. (2018) How to Address the Sustainability Transition of Farming Systems? A Conceptual Framework to Organize Research. Sustainability 10: 2083.
    [11] Stanitsas M, Kirytopoulos K, Vareilles E (2019) Facilitating sustainability transition through serious games: A systematic literature review. J Clean Prod 208: 924–936. doi: 10.1016/j.jclepro.2018.10.157
    [12] Mitchell M (2009) Complexity: A Guided Tour. Oxford University Press, New York.
    [13] Popa F, Guillermin M, Dedeurwaerdere T (2015) A pragmatist approach to transdisciplinarity in sustainability research: From complex systems theory to reflexive science. Futures 65: 45–56. doi: 10.1016/j.futures.2014.02.002
    [14] Hare M, Deadman P (2004) Further towards a taxonomy of agent-based simulation models in environmental management. Math Comput Simulat 64: 25–40. doi: 10.1016/S0378-4754(03)00118-6
    [15] Rounsevell MDA, Robinson DT, Murray-Rust D (2011) From actors to agents in socio-ecological systems models. Philos T Roy Soc B 367: 259–269.
    [16] Heath B, Hill R, Ciarallo F (2009) A Survey of Agent-Based Modeling Practices (January 1998 to July 2008). J Artif Soc Soc Simul 12: 9.
    [17] Heckbert S, Baynes T, Reeson A (2010) Agent-based modeling in ecological economics. Ann N Y Acad Sci 1185: 39–53. doi: 10.1111/j.1749-6632.2009.05286.x
    [18] Teglio A (2011) From Agent-Based models to artificial economies: The Eurace approach for policy design in economics. PhD thesis, Universitat Jaume I.
    [19] Gaud N, Galland S, Gechter F, et al. (2008) Holonic multilevel simulation of complex systems: Application to real-time pedestrians simulation in virtual urban environment. Simul Model Pract Theor 16: 1659–1676. doi: 10.1016/j.simpat.2008.08.015
    [20] Gilbert N (2008) Agent-Based Models. SAGE Publications, Los Angeles.
    [21] Grimm V, Railsback SF (2005) Individual-based Modeling and Ecology. Princeton University Press.
    [22] North MJ, Macal CM (2007) Managing Business Complexity: Discovering Strategic Solutions With Agent-Based Modeling and Simulation. Oxford University Press, Oxford.
    [23] Ferber J (1999) Multi-agent systems: An introduction to distributed artificial intelligence, 1st edition. Addison-Wesley.
    [24] An L (2012) Modeling human decisions in coupled human and natural systems: Review of agent-based models. Ecol Model 229: 25–36. doi: 10.1016/j.ecolmodel.2011.07.010
    [25] An L, Zvoleff A, Liu J, et al. (2014) Modeling human decisions in coupled human and natural systems (CHANS): Lessons from a comparative analysis. Ann Assoc Am Geogr 104: 723–745. doi: 10.1080/00045608.2014.910085
    [26] Halog A, Manik Y (2011) Advancing Integrated Systems Modelling Framework for Life Cycle Sustainability Assessment. Sustainability 3: 469–499. doi: 10.3390/su3020469
    [27] Marvuglia A, Benetto E, Rege S, et al. (2013) Modelling approaches for consequential life-cycle assessment (C-LCA) of bioenergy: Critical review and proposed framework for biogas production. Renew Sust Energ Rev 25: 768–781. doi: 10.1016/j.rser.2013.04.031
    [28] Tiruta-Barna L, Pigné Y, Navarrete Gutiérrez T, et al. (2016) Framework and computational tool for the consideration of time dependency in Life Cycle Inventory: Proof of concept. J Clean Prod 116: 198–206. doi: 10.1016/j.jclepro.2015.12.049
    [29] Davis C, Nikolić I, Dijkema GPJ (2009) Integration of Life Cycle Assessment Into Agent-Based Modeling. J Ind Ecol 13: 306–325. doi: 10.1111/j.1530-9290.2009.00122.x
    [30] Baustert P, Benetto E (2017) Uncertainty analysis in agent-based modelling and consequential life cycle assessment coupled models: A critical review. J Clean Prod 156: 378–394. doi: 10.1016/j.jclepro.2017.03.193
    [31] Querini F, Benetto E (2014) Agent-based modelling for assessing hybrid and electric cars deployment policies in Luxembourg and Lorraine. Transport Res Part A-Pol 70: 149–161. doi: 10.1016/j.tra.2014.10.017
    [32] Querini F, Benetto E (2015) Combining Agent-Based Modeling and Life Cycle Assessment for the Evaluation of Mobility Policies. Environ Sci Technol 49: 1744–1751. doi: 10.1021/es5060868
    [33] Page C, Bazile D, Becu N, et al. (2013) Agent-Based Modelling and Simulation Applied to Environmental Management, In: Edmonds B, Meyer R (eds.), Simulating Social Complexity, Springer Berlin Heidelberg, 499–540.
    [34] Clift R, Doig A, Finnveden G (2000) The Application of Life Cycle Assessment to Integrated Solid Waste Management: Part I-Methodology. Trans Inst Chem Eng 78: 279–289.
    [35] Shimako AH, Tiruta-Barna L, Pigné Y, et al. (2016) Environmental assessment of bioenergy production from microalgae based systems. J Clean Prod 139: 51–60. doi: 10.1016/j.jclepro.2016.08.003
    [36] Heijungs R, Suh S (2002) The Computational Structure of Life Cycle Assessment. Kluwer Academic Publishers, Dordrecht, The Netherlands.
    [37] Miller SA, Moysey S, Sharp B, et al. (2013) A Stochastic Approach to Model Dynamic Systems in Life Cycle Assessment. J Ind Ecol 17: 352–362. doi: 10.1111/j.1530-9290.2012.00531.x
    [38] Bichraoui-Draper N, Xu M, Miller SA, et al. (2015) Agent-based life cycle assessment for switchgrass-based bioenergy systems. Resour, Conserv Recycl 103: 171–178. doi: 10.1016/j.resconrec.2015.08.003
    [39] Heairet A, Choudhary S, Miller S, et al. (2012) Beyond life cycle analysis: Using an agent-based approach to model the emerging bio-energy industry, In: Proceedings of 2012 IEEE International Symposium on Sustainable Systems and Technology (ISSST), Boston, MA, 1–5.
    [40] Navarrete Gutiérrez T, Rege S, Marvuglia A, et al. (2015) Introducing LCA Results to ABM for Assessing the Influence of Sustainable Behaviours, In: Bajo J, Hernández JZ, Mathieu P, Campbell A, Fernández-Caballero A, Moreno MN, Julián V, Alonso-Betanzos A, Jiménez-López MD, Botti V (eds.), Trends in Practical Applications of Agents, Multi-Agent Systems and Sustainability, Springer International Publishing, 185–196.
    [41] Marvuglia A, Rege S, Navarrete Gutiérrez T, et al. (2017) A return on experience from the application of agent-based simulations coupled with life cycle assessment to model agricultural processes. J Clean Prod 142: 1539–1551. doi: 10.1016/j.jclepro.2016.11.150
    [42] Davidsson P, Verhagen H (2013) Types of Simulation, In: Edmonds B, Meyer R (eds.), Simulating Social Complexity, Springer Berlin Heidelberg, 23–36.
    [43] Smajgl A, Brown DG, Valbuena D, et al. (2011) Empirical characterisation of agent behaviours in socio-ecological systems. Environ Modell Softw 26: 837–844. doi: 10.1016/j.envsoft.2011.02.011
    [44] Huynh N, Namazi-Rad M, Perez P, et al. (2013) Generating a Synthetic Population in Support of Agent-Based Modeling of Transportation in Sydney.
    [45] Bichraoui-Draper N (2015) Computational Sustainability Assessment: Agent-based Models and Agricultural Industrial Ecology. Université de Technologie de Troyes.
    [46] Bruch E, Atwell J (2015) Agent-Based Models in Empirical Social Research. Sociol Meth Res 44: 186–221. doi: 10.1177/0049124113506405
    [47] Bandini S, Manzoni S, Vizzari G (2009) Agent Based Modeling and Simulation: An Informatics Perspective. J Artif Soc Soc Simul 12: 4.
    [48] Norling EJ (2009) Modelling Human Behavior with BDI Agents. PhD thesis, University of Melbourne.
    [49] Goldman A (1993) The psychology of folk psychology. Behav Brain Sci 16: 15–28. doi: 10.1017/S0140525X00028648
    [50] Caillou P, Gaudou B, Grignard A, et al. (2017) A Simple-to-use BDI architecture for Agent-based Modeling and Simulation. Adv Intell Syst Comput 528: 15–28. doi: 10.1007/978-3-319-47253-9_2
    [51] Quang Truong C (2016) Integrating cognitive models of human decision-making in agent-based models: an application to land use planning under climate change in the Mekong river delta. PhD Thesis, Université Pierre et Marie Curie-Paris VI.
    [52] Rand W, Rust RT (2011) Agent-based modeling in marketing: Guidelines for rigor. Int J Res Mark 28: 181–193. doi: 10.1016/j.ijresmar.2011.04.002
    [53] Watts DJ, Strogatz SH (1998) Collective dynamics of "small-world" networks. Nature 393: 440–442. doi: 10.1038/30918
    [54] Marvuglia A, Rege S, Vázquez-Rowe I, et al. (2013) Applying agent-based modelling for consequential Life Cycle Assessment of agro-systems: Challenges, strategies and assets. 6th International Conference on Life Cycle Management, Gothenburg, Sweden, 25–28 August 2013.
    [55] Moglia M, Cook S, McGregor J (2017) A review of Agent-Based Modelling of Technology Diffusion with special reference to residential energy efficiency. Sust Cities Soc 31: 173–182. doi: 10.1016/j.scs.2017.03.006
    [56] Borshchev A (2013) The Big Book of Simulation Modeling: Multimethod Modeling with Anylogic 6. AnyLogic North America.
    [57] Grignard A, Drogoul A, Zucker JD (2013) Online analysis and visualization of agent based models. Ho Chi Minh City, Vietnam, 662–672.
    [58] Happe K, Kellermann K, Balmann A (2006) Agent-based Analysis of Agricultural Policies: An Illustration of the Agricultural Policy Simulator AgriPoliS, its Adaptation and Behavior. Ecol Soc 11: 49 doi: 10.5751/ES-01741-110149
    [59] Zellner ML, Theis TL, Karunanithi AT, et al. (2008) A new framework for urban sustainability assessments: Linking complexity, information and policy. Comput, Environ Urban Syst 32: 474–488. doi: 10.1016/j.compenvurbsys.2008.08.003
    [60] Astier M, García-Barrios L, Galván-Miyoshi Y, et al. (2012) Assessing the Sustainability of Small Farmer Natural Resource Management Systems. A Critical Analysis of the MESMIS Program (1995–2010). Ecol Soc 17: 20.
    [61] Murray-Rust D, Robinson DT, Guillem E, et al. (2014) An open framework for agent based modelling of agricultural land use change. Environ Modell Softw 61: 19–38. doi: 10.1016/j.envsoft.2014.06.027
    [62] Wise S, Crooks AT (2012) Agent-based modeling for community resource management: Acequia-based agriculture. Comput, Environ Urban Syst 36: 562–572. doi: 10.1016/j.compenvurbsys.2012.08.004
    [63] Kravari K, Bassiliades N (2015) A Survey of Agent Platforms. J Artif Soc Soc Simul 18: 11
    [64] Kornhauser D, Wilensky U, Rand W (2009) Design Guidelines for Agent Based Model Visualization. J Artif Soc Soc Simul 12: 21.
    [65] Edmonds B, Moss S, (2005) From KISS to KIDS-An "Anti-simplistic" Modelling Approach, In: Multi-Agent and Multi-Agent-Based Simulation, 130–144.
    [66] Waldherr A, Wijermans N (2013) Communicating social simulation models to sceptical minds. J Artif Soc Soc Simul 16: 13.
    [67] Bert FE, Rovere SL, Macal CM, et al. (2014) Lessons from a comprehensive validation of an agent based-model: The experience of the Pampas Model of Argentinean agricultural systems. Ecol Model 273: 284–298. doi: 10.1016/j.ecolmodel.2013.11.024
    [68] Sargent RG (2013) Verification and validation of simulation models. J Simul 7: 12–24. doi: 10.1057/jos.2012.20
    [69] Zeigler BP, Praehofer H, Kim TG (2000) Theory of Modeling and Simulation: Integrating Discrete Event and Continuous Complex Dynamic Systems. Academic Press.
    [70] Bianchi C, Cirillo P, Gallegati M, et al. (2007) Validating and Calibrating Agent-Based Models: A Case Study. Comput Econ 30: 245–264. doi: 10.1007/s10614-007-9097-z
    [71] David N, (2013) Validating Simulations, In: Edmonds B, Meyer R (eds.), Simulating Social Complexity, Springer Berlin Heidelberg, 135–171.
    [72] Windrum P, Fagiolo G, Moneta A (2007) Empirical Validation of Agent-Based Models: Alternatives and Prospects. J Artif Soc Soc Simul 10: 8.
    [73] Knepell PL, Arangno DC (1993) Simulation Validation: A Confidence Assessment Methodology. Wiley-IEEE Computer Society Press.
    [74] McKelvey B, (2002) Model-Centered Organization Science Epistemology, In: Baum JAC (ed.), Companion to Organizations, Wiley-Blackwell, 752–780.
    [75] Voinov A, Bousquet F (2010) Modelling with stakeholders. Environ Modell Softw 25: 1268–1281. doi: 10.1016/j.envsoft.2010.03.007
    [76] Louie MA, Carley KM (2008) Balancing the criticisms: Validating multi-agent models of social systems. Simul Model Pract Theory 16: 242–256. doi: 10.1016/j.simpat.2007.11.011
    [77] Bianchi C, Cirillo P, Gallegati M, et al. (2008) Validation in agent-based models: An investigation on the CATS model. J Econ Behav Org 67: 947–964. doi: 10.1016/j.jebo.2007.08.008
    [78] Fagiolo G, Birchenhall C, Windrum P (2007) Empirical Validation in Agent-based Models: Introduction to the Special Issue. Comput Econ 30: 189–194. doi: 10.1007/s10614-007-9109-z
    [79] Fagiolo G, Moneta A, Windrum P (2007) A Critical Guide to Empirical Validation of Agent-Based Models in Economics: Methodologies, Procedures, and Open Problems. Comput Econ 30: 195–226. doi: 10.1007/s10614-007-9104-4
    [80] Damgaard M, Kjeldsen C, Sahrbacher A, et al. (2009) Validation of an Agent-Based, Spatio-Temporal Model for Farming in the River Gudenå Landscape. Results from the MEA-Scope Case Study in Denmark, In: Piorr A, Müller K (eds.), Rural Landscapes and Agricultural Policies in Europe, Springer Berlin Heidelberg, 239–254.
    [81] Park HS, Rene ER, Choi SM, et al. (2008) Strategies for sustainable development of industrial park in Ulsan, South Korea-from spontaneous evolution to systematic expansion of industrial symbiosis. J Environ Manage 87: 1–13. doi: 10.1016/j.jenvman.2006.12.045
    [82] Busch J, Roelich K, Bale CSE, et al. (2017) Scaling up local energy infrastructure; An agent-based model of the emergence of district heating networks. Energ Policy 100: 170–180. doi: 10.1016/j.enpol.2016.10.011
    [83] Rotmans J (2006) Tools for Integrated Sustainability Assessment: A two-track approach. Int Assess J 6: 35–57.
    [84] Axtell RL (2000) Why agents? on the varied motivations for agent computing in the social sciences. Center on Social and Economic Dynamics.
    [85] Davis C (2007) Integration of Life Cycle Analysis within Agent Based Modeling using a case study on bio-electricity. MSc thesis, TU Delft.
    [86] Segovia-Juarez JL, Ganguli S, Kirschner D (2004) Identifying control mechanisms of granuloma formation during M. tuberculosis infection using an agent-based model. J Theor Biol 231: 357–376.
    [87] Topping CJ, Dalkvist T, Grimm V (2012) Post-Hoc Pattern-Oriented Testing and Tuning of an Existing Large Model: Lessons from the Field Vole. PLoS One 7: e45872. doi: 10.1371/journal.pone.0045872
    [88] Grimm V, Revilla E, Berger U, et al. (2005) Pattern-Oriented Modeling of Agent-Based Complex Systems: Lessons from Ecology. Science 310: 987–991. doi: 10.1126/science.1116681
    [89] Grimm V, Railsback SF (2011) Pattern-oriented modelling: A "multi-scope" for predictive systems ecology. Philos T Roy Soc B 367: 298–310.
    [90] Topping CJ, Høye TT, Olesen CR (2010) Opening the black box-Development, testing and documentation of a mechanistically rich agent-based model. Ecol Model 221: 245–255. doi: 10.1016/j.ecolmodel.2009.09.014
    [91] Delmotte S, Barbier JM, Mouret JC, et al. (2016) Participatory integrated assessment of scenarios for organic farming at different scales in Camargue, France. Agric Syst 143: 147–158. doi: 10.1016/j.agsy.2015.12.009
    [92] Andrei N, (2013) Introduction to GAMS Technology, In: Andrei N (ed.), Nonlinear Optimization Applications Using the GAMS Technology, Springer US, Boston, MA, 9–23.
    [93] Moss S, Edmonds B (2005) Sociology and Simulation: Statistical and Qualitative Cross-Validation. Am J Soc 110: 1095–1131. doi: 10.1086/427320
    [94] Laurent G (2000) Improving the external validity of marketing models: A plea for more qualitative input. Int J Res Mark 17: 177–182. doi: 10.1016/S0167-8116(00)00020-3
    [95] Smajgl A, Xu J, Egan S, et al. (2015) Assessing the effectiveness of payments for ecosystem services for diversifying rubber in Yunnan, China. Environ Modell Softw 69: 187–195. doi: 10.1016/j.envsoft.2015.03.014
    [96] Smajgl A, Ward JR, Foran T, et al. (2015) Visions, beliefs, and transformation: Exploring cross-sector and transboundary dynamics in the wider Mekong region. Ecol Soc 20: 16.
    [97] Smajgl A, Ward J, Egan S (2013) Validating simulations of development outcomes in the Mekong region.
    [98] Box G (1979) Robustness in the strategy of scientific model building. Robustness in Statistics.
    [99] Schouten M, Verwaart T, Heijman W (2014) Comparing two sensitivity analysis approaches for two scenarios with a spatially explicit rural agent-based model. Environ Modell Softw 54: 196–210. doi: 10.1016/j.envsoft.2014.01.003
    [100] Filatova T, Verburg PH, Parker DC, et al. (2013) Spatial agent-based models for socio-ecological systems: Challenges and prospects. Environ Modell Softw 45: 1–7. doi: 10.1016/j.envsoft.2013.03.017
    [101] Saltelli A, Ratto M, Andres T, et al. (2008) Global Sensitivity Analysis: The Primer. Wiley & Sons.
    [102] Cariboni J, Gatelli D, Liska R, et al. (2007) The role of sensitivity analysis in ecological modelling. Ecol Model 203: 167–182. doi: 10.1016/j.ecolmodel.2005.10.045
    [103] Marino S, Hogue IB, Ray CJ, et al. (2008) A methodology for performing global uncertainty and sensitivity analysis in systems biology. J Theor Biol 254: 178–196. doi: 10.1016/j.jtbi.2008.04.011
    [104] Lorscheid I, Heine BO, Meyer M (2012) Opening the "black box" of simulations: increased transparency and effective communication through the systematic design of experiments. Comput Math Organ Theor 18: 22–62. doi: 10.1007/s10588-011-9097-3
    [105] Dancik GM, Jones DE, Dorman KS (2010) Parameter estimation and sensitivity analysis in an agent-based model of Leishmania major infection. J Theor Biol 262: 398–412. doi: 10.1016/j.jtbi.2009.10.007
    [106] Ratto M, Castelletti A, Pagano A (2012) Emulation techniques for the reduction and sensitivity analysis of complex environmental models. Environ Modell Softw 34: 1–4. doi: 10.1016/j.envsoft.2011.11.003
    [107] Happe K (2005) Agent-based modelling and sensitivity analysis by experimental design and metamodelling: An application to modelling regional structural change.
    [108] Fonoberova M, Fonoberov VA, Mezić I (2013) Global sensitivity/uncertainty analysis for agent-based models. Reliab Eng Syst Safe 118: 8–17. doi: 10.1016/j.ress.2013.04.004
    [109] Ligmann-Zielinska A, Kramer DB, Cheruvelil KS, et al. (2014) Using Uncertainty and Sensitivity Analyses in Socioecological Agent-Based Models to Improve Their Analytical Performance and Policy Relevance. PLoS One 9: e109779. doi: 10.1371/journal.pone.0109779
    [110] Ligmann-Zielinska A, Sun L (2010) Applying time-dependent variance-based global sensitivity analysis to represent the dynamics of an agent-based model of land use change. Int J Geogr Inf Sci 24: 1829–1850. doi: 10.1080/13658816.2010.490533
    [111] Alam M, Deng X, Philipson C, et al. (2015) Sensitivity Analysis of an ENteric Immunity SImulator (ENISI)-Based Model of Immune Responses to Helicobacter pylori Infection. PLoS One 10: e0136139. doi: 10.1371/journal.pone.0136139
    [112] Troost C, Berger T (2015) Dealing with Uncertainty in Agent-Based Simulation: Farm-Level Modeling of Adaptation to Climate Change in Southwest Germany. Am J Agr Econ 97: 833–854. doi: 10.1093/ajae/aau076
    [113] Bell A, Parkhurst G, Droppelmann K, et al. (2016) Scaling up pro-environmental agricultural practice using agglomeration payments: Proof of concept from an agent-based model. Ecol Econ 126: 32–41. doi: 10.1016/j.ecolecon.2016.03.002
    [114] Parry HR, Topping CJ, Kennedy MC, et al. (2013) A Bayesian sensitivity analysis applied to an Agent-based model of bird population response to landscape change. Environ Modell Softw 45: 104–115. doi: 10.1016/j.envsoft.2012.08.006
    [115] Yang J (2011) Convergence and uncertainty analyses in Monte-Carlo based sensitivity analysis. Environ Modell Softw 26: 444–457. doi: 10.1016/j.envsoft.2010.10.007
    [116] Ligmann-Zielinska A, Jankowski P (2010) Exploring normative scenarios of land use development decisions with an agent-based simulation laboratory. Comput, Environ Urban Syst 34: 409–423. doi: 10.1016/j.compenvurbsys.2010.05.005
    [117] Igos E, Benetto E, Meyer R, et al. (2018) How to treat uncertainties in life cycle assessment studies? Int J Life Cycle Assess, 1–14.
    [118] Lloyd SM, Ries R (2007) Characterizing, Propagating, and Analyzing Uncertainty in Life-Cycle Assessment: A Survey of Quantitative Approaches. J Ind Ecol 11: 161–179.
    [119] Huijbregts MAJ, Gilijamse W, Ragas AMJ, et al. (2003) Evaluating Uncertainty in Environmental Life-Cycle Assessment. A Case Study Comparing Two Insulation Options for a Dutch One-Family Dwelling. Environ Sci Technol 37: 2600–2608.
    [120] Wei W, Larrey-Lassalle P, Faure T, et al. (2015) How to Conduct a Proper Sensitivity Analysis in Life Cycle Assessment: Taking into Account Correlations within LCI Data and Interactions within the LCA Calculation Model. Environ Sci Technol 49: 377–385. doi: 10.1021/es502128k
    [121] Parker DC, Hessl A, Davis SC (2008) Complexity, land-use modeling, and the human dimension: Fundamental challenges for mapping unknown outcome spaces. Geoforum 39: 789–804. doi: 10.1016/j.geoforum.2007.05.005
    [122] Filatova T, Parker DC, van der Veen A (2009) Agent-Based Urban Land Markets: Agent's Pricing Behavior, Land Prices and Urban Land Use Change. J Artif Soc Soc Simul 12: 13.
    [123] Schreinemachers P, Berger T (2011) An agent-based simulation model of human-environment interactions in agricultural systems. Environ Modell Softw 26: 845–859. doi: 10.1016/j.envsoft.2011.02.004
    [124] Feola G, Binder CR (2010) Towards an improved understanding of farmers' behavior: The integrative agent-centred (IAC) framework. Ecol Econ 69: 2323–2333. doi: 10.1016/j.ecolecon.2010.07.023
    [125] Jackson T (2005) Motivating sustainable consumption. A review of evidence on consumer behavior and behavioural change. A Report to the Sustainable Development Research Network. Centre for Environmental Strategy, University of Surrey, Guilford.
    [126] Bonabeau E (2002) Agent-based modeling: Methods and techniques for simulating human systems. P Natl Acad Sci USA 99: 7280–7287. doi: 10.1073/pnas.082080899
    [127] Matthews R, Gilbert N, Roach A, et al. (2007) Agent-based land-use models: A review of applications. Landscape Ecol 22: 1447–1459. doi: 10.1007/s10980-007-9135-1
    [128] Parker DC, Manson SM, Janssen MA, et al. (2003) Multi-Agent Systems for the Simulation of Land-Use and Land-Cover Change: A review. Ann Assoc Am Geogr 93: 314–337. doi: 10.1111/1467-8306.9302004
    [129] Berger T, Schreinemachers P, Woelcke J (2006) Multi-agent simulation for the targeting of development policies in less-favored areas. Agr Syst 88: 28–43. doi: 10.1016/j.agsy.2005.06.002
    [130] Freeman T, Nolan J, Schoney R (2009) An Agent-Based Simulation Model of Structural Change in Canadian Prairie Agriculture, 1960–2000. Can J Agr Econ 57: 537–554. doi: 10.1111/j.1744-7976.2009.01169.x
    [131] Happe K, Balmann A, Kellermann K, et al. (2008) Does structure matter? The impact of switching the agricultural policy regime on farm structures. J Econ Behav Org 67: 431–444.
    [132] Mialhe F, Becu N, Gunnell Y (2012) An agent-based model for analyzing land use dynamics in response to farmer behavior and environmental change in the Pampanga delta (Philippines). Agric, Ecosyst Environ 161: 55–69. doi: 10.1016/j.agee.2012.07.016
    [133] Kaye-Blake W, Li FY, McLeish MA, et al. (2010) Multi-agent simulation models in agriculture: A review of their construction and uses. 60.
    [134] Marohn C, Schreinemachers P, Quang DV, et al. (2013) A software coupling approach to assess low-cost soil conservation strategies for highland agriculture in Vietnam. Environ Modell Softw 45: 116–128. doi: 10.1016/j.envsoft.2012.03.020
    [135] Murray-Rust D, Brown C, van Vliet J, et al. (2014) Combining agent functional types, capitals and services to model land use dynamics. Environ Modell Softw 59: 187–201. doi: 10.1016/j.envsoft.2014.05.019
    [136] Hauschild MZ, Huijbregts MAJ (2015) LCA compendium-the complete world of life cycle assessment: Life cycle impact assessment. Springer, Dordrecht.
  • Reader Comments
  • © 2018 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(8624) PDF downloads(1219) Cited by(22)

Figures and Tables

Figures(2)  /  Tables(1)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog