Keywords are commonly used to summarize text documents. In this paper, we perform a systematic comparison of methods for automatic keyword extraction from web pages. The methods are based on three different types of features: statistical, structural and linguistic. Statistical features are the most common, but there are other clues in web documents that can also be used. Structural features utilize styling codes like header tags and links, but also the structure of the web page. Linguistic features can be based on detecting synonyms, semantic similarity of the words and part-of-speech tagging, but also concept hierarchy or a concept graph derived from Wikipedia. We compare different types of features to find out the importance of each of them. One of the key results is that stop word removal and other pre-processing steps are the most critical. The most successful linguistic feature was a pre-constructed list of words that had no synonyms in WordNet. A new method called ACI‑rank is also compiled from the best working combination.
Citation: Himat Shah, Pasi Fränti. Combining statistical, structural, and linguistic features for keyword extraction from web pages[J]. Applied Computing and Intelligence, 2022, 2(2): 115-132. doi: 10.3934/aci.2022007
[1] | Abel Cabrera-Martínez, Andrea Conchado Peiró . On the {2}-domination number of graphs. AIMS Mathematics, 2022, 7(6): 10731-10743. doi: 10.3934/math.2022599 |
[2] | Abel Cabrera Martínez, Iztok Peterin, Ismael G. Yero . Roman domination in direct product graphs and rooted product graphs. AIMS Mathematics, 2021, 6(10): 11084-11096. doi: 10.3934/math.2021643 |
[3] | Yubin Zhong, Sakander Hayat, Suliman Khan, Vito Napolitano, Mohammed J. F. Alenazi . Combinatorial analysis of line graphs: domination, chromaticity, and Hamiltoniancity. AIMS Mathematics, 2025, 10(6): 13343-13364. doi: 10.3934/math.2025599 |
[4] | Shumin Zhang, Tianxia Jia, Minhui Li . Partial domination of network modelling. AIMS Mathematics, 2023, 8(10): 24225-24232. doi: 10.3934/math.20231235 |
[5] | Ana Klobučar Barišić, Antoaneta Klobučar . Double total domination number in certain chemical graphs. AIMS Mathematics, 2022, 7(11): 19629-19640. doi: 10.3934/math.20221076 |
[6] | Fu-Tao Hu, Xing Wei Wang, Ning Li . Characterization of trees with Roman bondage number 1. AIMS Mathematics, 2020, 5(6): 6183-6188. doi: 10.3934/math.2020397 |
[7] | Rangel Hernández-Ortiz, Luis Pedro Montejano, Juan Alberto Rodríguez-Velázquez . Weak Roman domination in rooted product graphs. AIMS Mathematics, 2021, 6(4): 3641-3653. doi: 10.3934/math.2021217 |
[8] | Mingyu Zhang, Junxia Zhang . On Roman balanced domination of graphs. AIMS Mathematics, 2024, 9(12): 36001-36011. doi: 10.3934/math.20241707 |
[9] | Huiqin Jiang, Pu Wu, Jingzhong Zhang, Yongsheng Rao . Upper paired domination in graphs. AIMS Mathematics, 2022, 7(1): 1185-1197. doi: 10.3934/math.2022069 |
[10] | Ahlam Almulhim . Signed double Italian domination. AIMS Mathematics, 2023, 8(12): 30895-30909. doi: 10.3934/math.20231580 |
Keywords are commonly used to summarize text documents. In this paper, we perform a systematic comparison of methods for automatic keyword extraction from web pages. The methods are based on three different types of features: statistical, structural and linguistic. Statistical features are the most common, but there are other clues in web documents that can also be used. Structural features utilize styling codes like header tags and links, but also the structure of the web page. Linguistic features can be based on detecting synonyms, semantic similarity of the words and part-of-speech tagging, but also concept hierarchy or a concept graph derived from Wikipedia. We compare different types of features to find out the importance of each of them. One of the key results is that stop word removal and other pre-processing steps are the most critical. The most successful linguistic feature was a pre-constructed list of words that had no synonyms in WordNet. A new method called ACI‑rank is also compiled from the best working combination.
Multilevel programming deals with decision-making situations in which decision makers are arranged within a hierarchical structure. Trilevel programming, the case of multilevel programming containing three planner, occurs in a variety of applications such as planning [6,7], security and accident management [1,18], supply chain management [14,17], economics, [10] and decentralized inventory [9]. In a trilevel decision-making process, the first-level planner (leader), in attempting to optimize his objective function, chooses values for the variables that he controls. Next, the second-level planner in attempting to optimize his objective function while considering the reactions of the third-level planner chooses values for the variables that he controls. Lastly, the third-level planner, with regard to the decisions made by the previous levels, optimizes his own objective function. A number of researchers have studied the linear trilevel programming (LTLP) problem, and have proposed some procedures to solve it. Some algorithms are proposed based on penalty method [16], Kuhn-Tucker transformation [2], multi-parametric approach [5], and enumerating extreme points of constraint region [19] to find the exact optimal solution to special classes of trilevel programming problem. In addition, because of the complexity of solving trilevel problems especially for large-scale problems, some other researches attempted to use fuzzy [13] and meta-heuristic approaches [8,15] to find good approximate solutions for these problems. For a good bibliography of the solution approaches to solve trilevel programming problems, the interested reader can refer to [11].
The present study investigates the trilevel Kth-best algorithm offered by Zhang et. al. [19] at a higher level of accuracy. First, some of the geometric properties of the feasible region of the LTLP problem have been stated and proven. It ought to be mentioned that despite the similarity of some presented theoretical results in this paper with Ref. [19], the techniques of the proof are different. Then, a modified version of the trilevel Kth-Best algorithm has been proposed regarding unboundedness of objective functions in both the second level and third level which is not considered in the proposed Kth-Best algorithm in reference [19]. Moreover, it is shown that the amount of computations in the solving process by the modified trilevel Kth-Best algorithm is less than of that of the solving process by the traditional trilevel Kth-Best algorithm. In addition, in case of finding the optimal solution of linear trilevel programming problems with conflicting objective functions, the modified Kth-Best algorithm is capable of giving more accurate solutions.
The organization of the paper is as follows. Basic definitions concerning LTLP problem that we shall investigate, are presented in Section 2. Some theoretical and geometric properties of the LTLP problem are studied in Section 3. Based on the facts stated in Section 3, a modified trilevel Kth-Best algorithm is proposed to solve the LTLP problem in Section 4. To show the superiority of the proposed algorithm over the traditional Kth-Best algorithm, some numerical examples are presented in Section 5. Ultimately, the paper is concluded with Section 6.
As it is mentioned before, we consider the linear trilevel programming problem which can be formulated as follows:
minx1∈X1f1(x1,x2,x3)=3∑j=1αT1jxjs.t3∑j=1A1jxj≤b1where x2,x3 solve:minx2∈X2f2(x1,x2,x3)=3∑j=1αT2jxjs.t3∑j=1A2jxj≤b2where x3 solves:minx3∈X3f3(x1,x2,x3)=3∑j=1αT3jxjs.t3∑j=1A3jxj≤b3 | (2.1) |
where
In this section, we state some definitions and notations about the LTLP problem.
● Constraint region:
● Constraint region for middle and bottom level, for fixed
● Feasible set for the level 3, for fixed
● Rational reaction set for level 3, for fixed
● Feasible set for level 2, for fixed
● Rational reaction set for level 2, for fixed
● Inducible region :
In the above definitions, the term
Definition 2.1. A point
Definition 2.2. A feasible point
In view of the above Definitions, determining the solution for the LTLP problem (2.1) is equal to solve the following problem:
min{f1(x1,x2,x3):(x1,x2,x3)∈IR}. | (2.2) |
In this section, we will demonstrate some geometric properties of the problem (2.1). Let
Assumption 3.1.
Assumption 3.2.
Assumption 3.3.
Note that by Assumption 3.1, we can conclude that
Example 3.1.
maxx1x1+10x2−2x3+x4s.t0≤x1≤1maxx2,x3x2+2x3s.tx2+x3≤x10≤x2,x3≤1x4=0maxx4x4s.tx4≤x3x4≤1−x3 |
In this example, we have
Ψ3(x1,x2,x3)={x3 if 0≤x3≤12,1−x3 if 12≤x3≤1. |
Then,
and
Ψ2(x1)=argmax{x2+2x3:(x2,x3,x4)∈Ω2(x1)} | (3.1) |
It is clear that if
Ψ2(x1)={(x1,0,0) if0≤x1<1(0,1,0) ifx1=1 |
It is evident that
Lemma 3.1. Let
Proof. It follows from
minx2≥03∑j=2αT2jxjs.t3∑j=2A2jxj≤b2−A21ˉx1where x3 solves:minx3≥03∑j=2αT3jxjs.t3∑j=2A3jxj≤b3−A31ˉx1 | (3.2) |
By Theorem 5.2.2 of [3] we conclude that
Since
Thus, it can be concluded that
Corollary 3.1. Let
Proof. The statement is immediately derived from the fact that
Theorem 3.1. Let
Proof. Let
Moreover, we can choose
Besides, for all
Consequently, from Corollary 3.1, it can be concluded that:
In addition,
Eventually,
If we repeat the process, we can construct from
Therefore, we approach point
Corollary 3.2. The inducible region of the LTLP problem can be written as the union of some faces of S that are not necessarily connected.
Corollary 3.3. If
Proof. Notice that the problem (2.2) can be written equivalently as
min{f1(x1,x2,x3):(x1,x2,x3)∈conv IR} | (3.3) |
where conv
Through the above results, it has been demonstrated that there exists at least a vertex of
In this section, the modified trilevel Kth-Best algorithm is presented. In actual, the modified algorithm takes into account LTLP problems with unbounded middle and bottom level problems. These cases are not considered in the Kth-Best algorithm [19]. Also, it resolves some of drawbacks while finding an optimal solution for LTLP problems with opposing objectives. Moreover, in the next section, it is shown that in some LTLP problems, the proposed algorithm leads to reduction the amount of computations needed for finding an optimal solution.
The process of the modified trilevel Kth-Best algorithm is as follows:
The Algorithm
Step 1. Initialization: Set
Step 2. Find the optimal solution of the optimization problem (4.1). Let it be
min{f1(x1,x2,x3):(x1,x2,x3)∈S} | (4.1) |
Step 3. Solve the following problem.
min{αT3 3x3:x3∈Ω3(x[k]1,x[k]2)}. | (4.2) |
If the problem (4.2) is unbounded go to step 7, else let
Step 4. If
Step 5. Solve the following problem.
min{αT2 2x2+αT2 3x3:(x2,x3)∈S2(x[k]1),x3=x[k]3}. | (4.3) |
If problem (4.3) is unbounded go to step 7, else let
Step 6. If
Step 7. Set
Step 8. If
Figure 1 illustrates the process of modified trilevel Kth-Best algorithm.
Remark 4.1. It is clear that if
Proposition 4.1. Let the LTLP problem (2.1) has an optimal solution. Then the modified trilevel Kth-Best algorithm will terminate with an optimal solution of LTLP problem in a finite number of iterations.
Proof. Let
It is worth mentioning that, by omitting the examined extreme points from
To illustrate the advantages of the modified trilevel Kth-Best algorithm, the following examples are solved according to the outline indicated in the previous section.
Example 5.1. Consider the following LTLP problem:
minx12x1+2x2+5x3x1≤8x2≤5 where x2,x3 solve:maxx26x1+x2−3x3x1+x2≤8x1+4x2≥87x1−2x2≥0 where x3 solves:minx32x1+x2−2x35x1+5x2+14x3≤40x1,x2,x3≥0 |
In this example, we have
Ψ2(x1)={(72x1,114(40−452x1)):815≤x1≤169}∪{(8−x1,0):169≤x1≤8}. |
It is clear that for
Actually,
which is disconnected. This fact shows that despite the continuity of
By Corollary 3.3, an optimal solution of the above example occurs at the point
To solve the example by the modified trilevel Kth-Best algorithm, the process is as follows:
Iteration 1
1.
2.
3.
4.
Iteration 2
1.
2.
3.
4.
Iteration 3
1.
2.
3.
4. The point
As demonstrated in the solving process of this problem, although the number of iterations and the optimal solution found by the two algorithms are the same, the number of optimization problems needed to be solved in each iteration of the Kth-Best algorithm [19] are more than the number of optimization problems needed to be solved in the modified Kth-Best algorithm. Then the amount of computations in each iteration of the modified Kth-Best algorithm is less than that of the corresponding iteration in the Kth-Best algorithm..
The two following examples show some discrepancies in the Kth-Best algorithm [19] that cause an erroneous result.
Example 5.2.
minxf1(x,y,z)=−x−4z+2ywhere y, z soleve:s.tminyf2(x,y,z)=3y−2zwhere z solves:s.tminzf3(x,y,z)=2z−ys.tx+y+z≤20≤x,y,z≤1 |
In this example, we have
The Kth-Best algorithm process [19] for solving this problem is as follows:
Iteration 1 :
Therefore,
Iteration 2 :
Iteration 7 :
By solving the example via the modified trilevel Kth-Best algorithm, the process is as follows:
Iteration 1
1.
2.
3.
Iteration 2
1.
2.
3.
Continuing this method, at iteration 4 we get:
Note that, in the trilevel Kth-Best algorithm [19], the bottom-level optimal solution which is found for some fixed values of upper and middle-level variables, is not considered as a constraint for the second level problem. This causes the Kth-best algorithm is not capable of finding an optimal solution for some LTLP problems. This fact is considered in step 5 of the modified trilevel Kth-Best algorithm by fixing the lower level variable which is found as the optimal solution of problem (4.2) and substituting it in the problem (4.3).
Example 5.3.
minx1x1−4x2+2x3−x1−x2≤−3−3x1+2x2−x3≥−10where x2,x3 solve:minx2x1+x2−x3−2x1+x2−2x3≤−12x1+x2+4x3≤14where x3 solves:minx3x1−2x2−2x32x1−x2−x3≤2x1,x2,x3≥0 | (5.1) |
The process of the modified trilevel Kth-Best algorithm to solve this problem is as follows:
Iteration 1
1.
2. The bottom level problem corresponding to
3.
4.
5.
Iteration 2
1.
2. The bottom level problem corresponding to
3.
4.
5.
Iteration 3
1.
2. The bottom level problem corresponding to
3.
4.
5.
Iteration 4
1.
2. The bottom level problem corresponding to
3.
4.
5.
Iteration 5
1.
2. The bottom level problem corresponding to
3.
4.
5.
Iteration 6
1.
2. The bottom level problem corresponding to
3.
4.
5.
Iteration 7
1.
2. The bottom level problem corresponding to
.
4.
5.
Iteration 8
1.
2. The bottom level problem corresponding to
4.
5. There is no optimal solution.
In the above example, the constraint region is a bounded polyhedron. Let
minx3x1−2x2−2x32x1−x2−x3≤2x1=x∗1 , x2=x∗2 , x3≥0 | (5.2) |
It is easy to see that the problem (5.2) is unbounded. Therefore,
In this study, the linear trilevel programming problem whereby each planner has his (her) own constraints, was considered. Some geometric properties of the inducible region were discussed. Under certain assumptions, it is proved that if the inducible region is non-empty, then it is composed of the union of some non-empty faces of the constraint region
The authors declare no conflict of interest in this paper.
[1] |
M. Rezaei, N. Gali, P. Fränti, CLRank: A method for keyword extraction from web pages using clustering and distribution of nouns, IEEE/WIC/ACM international conference on web intelligence and intelligent agent technology (WI-IAT), 1 (2015), 79-84. https://doi.org/10.1109/WI-IAT.2015.64 doi: 10.1109/WI-IAT.2015.64
![]() |
[2] |
S. Lazemi, H. Ebrahimpour-Komleh, N. Noroozi, PAKE: a supervised approach for Persian automatic keyword extraction using statistical features, SN Appl. Sci., 1 (2019), 1-4. https://doi.org/10.1007/s42452-019-1627-5 doi: 10.1007/s42452-019-1627-5
![]() |
[3] |
S. Vijaya Shetty, S. Akshay, S. Reddy, H. Rakesh, M. Mihir, J. Shetty, Graph-Based Keyword Extraction for Twitter Data, Emerging Research in Computing, Information, Communication and Applications, (2022), 863-871. https://doi.org/10.1007/978-981-16-1342-5_68 doi: 10.1007/978-981-16-1342-5_68
![]() |
[4] |
B. Armouty, S. Tedmori, Automated keyword extraction using support vector machine from Arabic news documents, IEEE Jordan International Joint Conference on Electrical Engineering and Information Technology (JEEIT), (2019), 342-346. https://doi.org/10.1109/JEEIT.2019.8717420 doi: 10.1109/JEEIT.2019.8717420
![]() |
[5] |
P. Sun, L. Wang, Q. Xia, The Keyword Extraction of Chinese Medical Web Page Based on WF TF IDF Algorithm, Ininternational conference on cyber enabled distributed computing and knowledge discovery (CyberC), (2017), 193-198. https://doi.org/10.1109/CyberC.2017.40 doi: 10.1109/CyberC.2017.40
![]() |
[6] |
A. Onan, S. Korukoğlu, H. Bulut, Ensemble of keyword extraction methods and classifiers in text classification, Expert Syst. Appl., 57 (2016), 232-247. https://doi.org/10.1016/j.eswa.2016.03.045 doi: 10.1016/j.eswa.2016.03.045
![]() |
[7] |
W. Zhang, D. Wang, G. R. Xue, H. Zha, Advertising Keywords Recommendation for Short Text Web Pages using Wikipedia, ACM T. Intel. Syst. Tec., 3 (2012), 1-25. https://doi.org/10.1145/2089094.2089112 doi: 10.1145/2089094.2089112
![]() |
[8] |
A. Hulth, Improved automatic keyword extraction given more linguistic knowledge, Proceedings of the conference on empirical methods in natural language processing, (2003), 216-223. https://doi.org/10.3115/1119355.1119383 doi: 10.3115/1119355.1119383
![]() |
[9] |
H. Shah, M. U. Khan, P. Fränti, H-rank: a keywords extraction method from web pages using POS tags, IEEE 17th International Conference on Industrial Informatics (INDIN), 1 (2019), 264-269. https://doi.org/10.1109/INDIN41052.2019.8972331 doi: 10.1109/INDIN41052.2019.8972331
![]() |
[10] | D. Khyani, B. S. Siddhartha, N. M. Niveditha, B. M. Divya, An Interpretation of Lemmatization and Stemming in Natural Language Processing, Journal of University of Shanghai for Science and Technology, 22 (2021), 350-357. |
[11] | Nie H, Yang Y, and Zeng D, Keyword Generation for Sponsored Search Advertising: Balancing Coverage and Relevance, In IEEE intelligent systems, vol. 34, number 5, pp. 14-24, 2019. https://doi.org/10.1109/MIS.2019.2938881 |
[12] |
O. Alqaryouti, H. Khwileh, T. Farouk, A. Nabhan, K. Shaalan, Graph based keyword extraction, Intelligent natural language processing: trends and applications, 740 (2018), 159-172. https://doi.org/10.1007/978-3-319-67056-0_9 doi: 10.1007/978-3-319-67056-0_9
![]() |
[13] | W. Zhang, W. Feng, J. Wang, Integrating semantic relatedness and words intrinsic features for keyword extraction, Twenty third international joint conference on artificial intelligence (IJCAI'13), (2013), 2225-2231. |
[14] | J. Xu, Q. Lu, Z. Liu, Aggregating skip bigrams into key phrase-based vector space model for web person disambiguation, In KONVENS, (2012), 108-117. |
[15] |
T. D. Nguyen, M. Y. Kan, Keyphrase extraction in scientific publications, Proceedings of the 10th international conference on Asian digital libraries, (2007), 317-326. https://doi.org/10.1007/978-3-540-77094-7_41 doi: 10.1007/978-3-540-77094-7_41
![]() |
[16] |
A. Gupta, A. Dixit, A. K. Sharma, A novel statistical and linguistic features-based technique for keyword extraction, International conference on information systems and computer networks (ISCON), (2014), 55-59. https://doi.org/10.1109/ICISCON.2014.6965218 doi: 10.1109/ICISCON.2014.6965218
![]() |
[17] | D. Cai, S. Yu, J. R. Wen, W. Y. Ma, VIPS: a vision-based page segmentation algorithm, In Microsoft technical report, MSR-TR-2003-79, 2003. |
[18] |
H. Shah, M. Rezaei, P. Fränti, DOM based keyword extraction from webpages, In proceedings of international conference on artificial intelligence, information processing and cloud computing (AⅡPCC), (2019), 1-6. https://doi.org/10.1145/3371425.3371495 doi: 10.1145/3371425.3371495
![]() |
[19] |
P. Liu, J. Azimi, R. Zhang, Automatic keywords generation for contextual advertising, In Proceedings of the 23rd International Conference on World Wide Web, (2014), 345-346. https://doi.org/10.1145/2567948.2577361 doi: 10.1145/2567948.2577361
![]() |
[20] |
S. Siddiqi, A. Sharan, Keyword and keyphrase extraction techniques: a literature review, In international journal of computer applications, 109 (2015), 18-23. https://doi.org/10.5120/19161-0607 doi: 10.5120/19161-0607
![]() |
[21] |
M. Grineva, M. Grinev, D. Lizorkin, Extracting key terms from noisy and multi-theme documents, In Proceedings of the 18th international conference on World Wide Web, (2009), 661-670. https://doi.org/10.1145/1526709.1526798 doi: 10.1145/1526709.1526798
![]() |
[22] |
F. Lei, M. Yao, Y. Hao, Improve the performance of the webpage content extraction using webpage segmentation algorithm, In proceedings of international forum on computer science-technology and applications, (2009), 323-325. https://doi.org/10.1109/IFCSTA.2009.84 doi: 10.1109/IFCSTA.2009.84
![]() |
[23] |
D. Cai, S. Yu, J. R. Wen, W. Y. Ma, Extracting content structure for web pages based on visual representation, In Asia-Pacific Web Conference, (2003), 406-417. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-36901-5_42 doi: 10.1007/3-540-36901-5_42
![]() |
[24] |
G. Salton, C. S. Yang, C. T. Yu, A theory of term importance in automatic text analysis, Journal of the American society for Information Science, 26 (1975), 33-44. https://doi.org/10.1002/asi.4630260106 doi: 10.1002/asi.4630260106
![]() |
[25] |
J. Pasternack, D. Roth, Extracting article text from the web with maximum subsequence segmentation, Proceedings of the 18th international conference on world wide web, (2009), 971-980. https://doi.org/10.1145/1526709.1526840 doi: 10.1145/1526709.1526840
![]() |
[26] |
S. Gupta, G. Kaiser, D. Neistadt, P. Grimm, DOM-based content extraction of html documents, Proceedings of the 12th international conference on World Wide Web, (2003), 207-214. https://doi.org/10.1145/775152.775182 doi: 10.1145/775152.775182
![]() |
[27] |
M. Krapivin, A. Autayeu, M. Marchese, E. Blanzieri, N. Segata, Keyphrases extraction from scientific documents: improving machine learning approaches with natural language processing, International Conference on Asian Digital Libraries, (2010), 102-111. https://doi.org/10.1007/978-3-642-13654-2_12 doi: 10.1007/978-3-642-13654-2_12
![]() |
[28] | R. Mihalcea, P. Tarau, TextRank: Bringing order into texts, In proceedings of (EMNLP04) conference on empirical methods in natural language processing, (2004), 404-411. |
[29] |
R. Campos, V. Mangaravite, A. Pasquali, A. M. Jorge, C. Nunes, A. Jatowt, YAKE! Collection-Independent Automatic Keyword Extractor, European conference on information retrieval, 10772 (2018), 806-810. https://doi.org/10.1007/978-3-319-76941-7_80 doi: 10.1007/978-3-319-76941-7_80
![]() |
[30] |
H. Shah, R. Mariescu-Istodor, P. Fränti, WebRank: Language-Independent Extraction of Keywords from Webpages, IEEE International Conference on Progress in Informatics and Computing (PIC), (2021), 184-192. https://doi.org/10.1109/PIC53636.2021.9687047 doi: 10.1109/PIC53636.2021.9687047
![]() |
[31] |
N. Gali, R. Mariescu-Istodor, D. Hostettler, P. Fränti, Framework for syntactic string similarity measures, Expert Syst. Appl., 129 (2019), 169-185. https://doi.org/10.1016/j.eswa.2019.03.048 doi: 10.1016/j.eswa.2019.03.048
![]() |
[32] |
N. Gali, R. Mariescu-Istodor, P. Fränti, Using linguistic features to automatically extract web page title, Expert Syst. Appl., 79 (2017), 296-312. https://doi.org/10.1016/j.eswa.2017.02.045 doi: 10.1016/j.eswa.2017.02.045
![]() |
[33] |
N. Gali, A. Tabarcea, P. Fränti, Extracting Representative Image from Web Page, In WEBIST, (2015), 411-419. https://doi.org/10.5220/0005438704110419 doi: 10.5220/0005438704110419
![]() |
[34] | P. Fränti and R. Mariescu-Istodor, Soft precision and recall. Manuscript. Software available from: https://cs.uef.fi/sipu/soft/SoftEval/ |
[35] | M. Grootendorst, KeyBERT: minimal keyword extraction with BERT. Available from: https://github.com/MaartenGr/KeyBERT. |
[36] |
A. Awajan, Keyword extraction from Arabic documents using term equivalence classes, ACM Transactions on Asian and Low-Resource Language Information Processing (TALLIP), 14 (2015), 1-18. https://doi.org/10.1145/2665077 doi: 10.1145/2665077
![]() |
1. | Sakander Hayat, Raman Sundareswaran, Marayanagaraj Shanmugapriya, Asad Khan, Venkatasubramanian Swaminathan, Mohamed Hussian Jabarullah, Mohammed J. F. Alenazi, Characterizations of Minimal Dominating Sets in γ-Endowed and Symmetric γ-Endowed Graphs with Applications to Structure-Property Modeling, 2024, 16, 2073-8994, 663, 10.3390/sym16060663 |