Processing math: 100%
Research article

Time-Frequency connectedness between developing countries in the COVID-19 pandemic: The case of East Africa

  • Received: 18 October 2022 Revised: 18 December 2022 Accepted: 21 December 2022 Published: 26 December 2022
  • JEL Codes: C22, C58, E44, E58, F31, G01

  • Models of crisis prediction continue to gain traction with the increased frequency of global crisis such as the ongoing COVID-19 pandemic. Moreover, the connectedness of financial markets appears to be of central importance in determining how shocks spill through asset market linkages. The study thus applies the time-frequency connectedness measures of Diebold & Yilmaz (2012) and Baruník & Křehlík (2018) to examine return and volatility connectedness dynamics in East African Community (EAC) member states. The study found a strong interdependence among the considered EAC markets as indicated by the high values of total return and volatility spillover indices. This high degree of interdependence is reflected in both static time and frequency domain return and volatility connectedness, especially at the longer term frequency bands, an indication that return and volatility shocks are persistent. This result lends further support to existing evidence on the suitability of the EAC regional economic integration, including the possible eventual establishment of a monetary union. In addition, the dynamic spillover analysis indicates that connectedness among these EAC markets is highly time-varying and appears to be amplified during global crisis events such as the European debt crisis, Kenyan elections, commodity price shocks and the COVID-19 pandemic. However, the results suggest that relative to periods of domestic turbulence, financial market connectedness in the EAC is more likely to get amplified during periods of external global shocks. The study also contributes to emergent literature on connectedness among financial markets during the COVID-19 pandemic. Importantly, the study finds that the COVID-19 pandemic had a significant effect on all the considered EAC markets although the magnitude and direction of impact varies across markets and countries. In addition, the study finds that Brent Crude oil prices are a significant source of return and volatility spillovers to EAC markets especially during crisis periods.

    Citation: Lorna Katusiime. 2022: Time-Frequency connectedness between developing countries in the COVID-19 pandemic: The case of East Africa, Quantitative Finance and Economics, 6(4): 722-748. doi: 10.3934/QFE.2022032

    Related Papers:

    [1] Ridha Dida, Hamid Boulares, Bahaaeldin Abdalla, Manar A. Alqudah, Thabet Abdeljawad . On positive solutions of fractional pantograph equations within function-dependent kernel Caputo derivatives. AIMS Mathematics, 2023, 8(10): 23032-23045. doi: 10.3934/math.20231172
    [2] Wedad Albalawi, Muhammad Imran Liaqat, Fahim Ud Din, Kottakkaran Sooppy Nisar, Abdel-Haleem Abdel-Aty . Significant results in the pth moment for Hilfer fractional stochastic delay differential equations. AIMS Mathematics, 2025, 10(4): 9852-9881. doi: 10.3934/math.2025451
    [3] Waleed M. Alfaqih, Abdullah Aldurayhim, Mohammad Imdad, Atiya Perveen . Relation-theoretic fixed point theorems under a new implicit function with applications to ordinary differential equations. AIMS Mathematics, 2020, 5(6): 6766-6781. doi: 10.3934/math.2020435
    [4] Xianying Huang, Yongkun Li . Besicovitch almost periodic solutions for a stochastic generalized Mackey-Glass hematopoietic model. AIMS Mathematics, 2024, 9(10): 26602-26630. doi: 10.3934/math.20241294
    [5] Yanli Ma, Hamza Khalil, Akbar Zada, Ioan-Lucian Popa . Existence theory and stability analysis of neutral ψ–Hilfer fractional stochastic differential system with fractional noises and non-instantaneous impulses. AIMS Mathematics, 2024, 9(4): 8148-8173. doi: 10.3934/math.2024396
    [6] Amjad Ali, Kamal Shah, Dildar Ahmad, Ghaus Ur Rahman, Nabil Mlaiki, Thabet Abdeljawad . Study of multi term delay fractional order impulsive differential equation using fixed point approach. AIMS Mathematics, 2022, 7(7): 11551-11580. doi: 10.3934/math.2022644
    [7] Ugyen Samdrup Tshering, Ekkarath Thailert, Sotiris K. Ntouyas . Existence and stability results for a coupled system of Hilfer-Hadamard sequential fractional differential equations with multi-point fractional integral boundary conditions. AIMS Mathematics, 2024, 9(9): 25849-25878. doi: 10.3934/math.20241263
    [8] M. Syed Ali, M. Hymavathi, Bandana Priya, Syeda Asma Kauser, Ganesh Kumar Thakur . Stability analysis of stochastic fractional-order competitive neural networks with leakage delay. AIMS Mathematics, 2021, 6(4): 3205-3241. doi: 10.3934/math.2021193
    [9] Hasanen A. Hammad, Doha A. Kattan . Strong tripled fixed points under a new class of F-contractive mappings with supportive applications. AIMS Mathematics, 2025, 10(3): 5785-5805. doi: 10.3934/math.2025266
    [10] Songkran Pleumpreedaporn, Chanidaporn Pleumpreedaporn, Weerawat Sudsutad, Jutarat Kongson, Chatthai Thaiprayoon, Jehad Alzabut . On a novel impulsive boundary value pantograph problem under Caputo proportional fractional derivative operator with respect to another function. AIMS Mathematics, 2022, 7(5): 7817-7846. doi: 10.3934/math.2022438
  • Models of crisis prediction continue to gain traction with the increased frequency of global crisis such as the ongoing COVID-19 pandemic. Moreover, the connectedness of financial markets appears to be of central importance in determining how shocks spill through asset market linkages. The study thus applies the time-frequency connectedness measures of Diebold & Yilmaz (2012) and Baruník & Křehlík (2018) to examine return and volatility connectedness dynamics in East African Community (EAC) member states. The study found a strong interdependence among the considered EAC markets as indicated by the high values of total return and volatility spillover indices. This high degree of interdependence is reflected in both static time and frequency domain return and volatility connectedness, especially at the longer term frequency bands, an indication that return and volatility shocks are persistent. This result lends further support to existing evidence on the suitability of the EAC regional economic integration, including the possible eventual establishment of a monetary union. In addition, the dynamic spillover analysis indicates that connectedness among these EAC markets is highly time-varying and appears to be amplified during global crisis events such as the European debt crisis, Kenyan elections, commodity price shocks and the COVID-19 pandemic. However, the results suggest that relative to periods of domestic turbulence, financial market connectedness in the EAC is more likely to get amplified during periods of external global shocks. The study also contributes to emergent literature on connectedness among financial markets during the COVID-19 pandemic. Importantly, the study finds that the COVID-19 pandemic had a significant effect on all the considered EAC markets although the magnitude and direction of impact varies across markets and countries. In addition, the study finds that Brent Crude oil prices are a significant source of return and volatility spillovers to EAC markets especially during crisis periods.



    Rough set theory was initially developed by Pawlak [1] as a new mathematical methodology to deal with the vagueness and uncertainty in information systems. Covering rough set (CRS) theory is a generalization of traditional rough set theory, which is characterized by coverings instead of partitions. Degang Chen et al.[2] proposed belief and plausibility functions to characterize neighborhood-covering rough sets. Essentially, they developed a numerical method for finding reductions using belief functions. Liwen Ma[3] defined the complementary neighborhood of an arbitrary element in the universe and discussed its properties. Based on the concepts of neighborhood and complementary neighborhood, an equivalent definition of a class of CRS is defined or given. Bin Yang and Bao Qing Hu [4] introduced some new definitions of fuzzy-covering approximation spaces and studied the properties of fuzzy-covering approximation spaces and Mas fuzzy covering-based rough set models. On this basis, they proposed three rough set models based on fuzzy coverage as the generalization of Ma model. Yan-Lan Zhang and Mao-Kang Luo[5] studied the relation between relation-based rough sets and covering-based rough sets. In a rough set framework based on relation, they unified five kinds of covering-based rough sets. The equivalence relations of covering-based rough sets and the type of relation-based rough sets were established. Lynn Deer et al. [6] studied 24 such neighborhood operators, which can be derived from a single covering. They also verified the equality between them, reducing the original set to 13 different neighborhood operators. For the latter, they established a partial order showing which operators produce smaller or larger neighborhoods than the others. Li Zhang et al.[7,8] combined the extended rough set theory with the mature MADM problem solving methods and proposed several types of covering-based general multigranulation intuitionistic fuzzy rough set models by using four types of intuitionistic fuzzy neighborhoods. Sang-Eon Han [9,10] set a starting point for establishing a CRS for an LFC-Space and developed the notions of accuracy of rough set approximations. Further, he gave two kinds of rough membership functions and two new rough concepts of digital topological rough set. Qingyuan Xu et al.[11] proposed a rough set method to deal with a class of set covering problem, called unicost set covering problem, which is a well-known problem in binary optimization. Liwen Ma[12] considered some types of neighborhood-related covering rough sets by introducing a new notion of complementary neighborhood. Smarandache[13] proposed the concept of neutrosophic sets in 1999, pointing out that neutrosophic sets is a set composed of the truth-membership, indeterminacy-membership and falsity-membership. Compared with previous models, it can better describe the support, neutrality and opposition of fuzzy concepts. Because of the complexity of practical problems in real life, Wang et al.[14] proposed interval neutrosophic sets(INS) and proved various properties of interval neutrosophic sets, which are connected to operations and relations over interval neutrosophic sets. Nguyen Tho Thong et al.[15] presented a new concept called dynamic interval-valued neutrosophic sets for such the dynamic decision-making applications. Irfan Deli[16] defined the notion of the interval valued neutrosophic soft sets, which is a combination of an interval valued neutrosophic sets and a soft sets. And introduced some definition and properties of interval valued neutrosophic soft sets. Hua Ma et al. [17,18] utilized the INS theory to propose a time-aware trustworthiness ranking prediction approach to selecting the highly trustworthy cloud service meeting the user-specific requirements and a time-aware trustworthy service selection approach with tradeoffs between performance costs and potential risks because of the deficiency of the traditional value prediction approaches. Ye jun[19] defined the Hamming and Euclidean distances between INS and proposed the similarity measures between INS based on the relationship between similarity measures and distances. Hongyu Zhang et al.[20] Defined the operations for INS and put forward a comparison approach based on the related research of interval valued intuitionistic fuzzy sets. Wei Yang et al.[21] developed a new multiple attribute decision-making method based on the INS and linear assignment. Meanwhile he considered the correlation of information by using the Choquet integral. Peide Liu and Guolin Tang[22] combined power average and generalized weighted agammaegation operators to INS, and proposed some agammaegation operators to apply in decision making problem.

    In recent years, many scholars have studied the combined application of rough sets and neutrosophic sets. In order to make a comprehensive overview for neutrosophic fusion of rough set theory Xue Zhan-Ao et al.[23] defifined a new covering rough intuitionistic fuzzy set model in covering approximation space, which is combined by CRS and intuitionistic fuzzy sets. They discussed the properties of lower and upper approximation operators and extended covering rough intuitionistic fuzzy set in rough sets from single-granulation to multi-granulation. Hai-Long Yang et al.[24] proposed single valued neutrosophic rough sets by combining single valued neutrosophic sets and rough sets. They also studied the hybrid model by constructive and axiomatic approaches. Hai-Long Yang et al.[25] combined INS with rough sets and proposed a generalized interval neutrosophic rough sets based on interval neutrosophic relation.They explored the hybrid model through the construction method and the axiomatic method. At the same time, the generalized interval neutrosophic approximation lower and upper approximation operators were defined by the construction method. In this paper we will study the interval neutrosophic covering rough set (INCRS), which is combined by the CRS and INS, and discuss the properties of it. Further we will give the complete proof of them. In order to do so, the remainder of this paper is shown as follows. In Section 2, we briefly review the basic concepts and operational rules of INS and CRS. In Section 3, we propose the definition and the properties of INCRS and give some easy cases to describe it. In Section 4, we discuss some theorems for INCRS and prove them completely. In Section 5, we give a simple application of Interval Neutrosophic Covering Rough Sets. In Section 6, we conclude the paper.

    This section gives a brief overview of concepts and definitions of interval neutrosophic sets, and covering rough sets.

    Definition 2.1.[13] Let X be a space of points (objects), with a class of elements in X denoted by x. A neutrosophic set A in X is summarized by a truth-membership function TA(x), an indeterminacy-membership function IA(x), and a falsity-membership function FA(x).The functions TA(x), IA(x), FA(x) are real standard or non-standard subsets of ]0,1+[. That is TA(x):X]0,1+[IA(x):X]0,1+ and FA(x):X]0,1+[.

    There is restriction on the sum of TA(x),IA(x) and FA(x), so 0supTA(x)+supIA(x)+supFA(x)3+. As mentioned above, it is hard to apply the neutrosophic set to solve some real problems. Hence, Wang et al presented interval neutrosophic set, which is a subclass of the neutrosophic set and mentioned the definition as follows:

    Definition 2.2.[13] Let X be a space of points (objects), with a class of elements in X denoted by x. A single-valued neutrosophic set N in X is summarized by a truth-membership function TN(x), an indeterminacy-membership function IN(x), and a falsity-membership function FN(x). Then an INS A can be denoted as follows:

    A={x,TA(x),IA(x),FA(x)xX} (2.1)

    where TA(x)=[TLA(x),TUA(x)], IA(x)=[ILA(x),IUA(x)], FA(x)=[FLA(x),FUA(x)][0,1] for xX. Meanwhile, the sum of TA(x)IA(x), and FA(x) fulfills the condition 0TA(x)+IA(x)+FA(x)3.

    For convenience, we refer to A=TA,IA,FA=[TLA,TUA],[ILA,IUA],[FLA,FUA] as an interval neutrosophic number (INN), which is a basic unit of INS. In addition, let X=[1,1],[0,0],[0,0] be the biggest interval neutrosophic number, and =[0,0],[1,1],[1,1] be the smallest interval neutrosophic number.

    Definition 2.3.[13] The complement of an INS A=TA,IA,FA=[TLA,TUA],[ILA,IUA],[FLA,FUA] is denoted by AC and which is defined as AC=[FLA,FUA],[1IUA,1ILA],[TLA,TUA]. For any x,yX, an INS 1y and its complement 1X{y} are defined as follows:

    T1y(x)={[1,1],x=y[0,0],xy,I1y(x)=F1y(x)={[0,0],x=y[1,1],xy
    T1x(y)(x)={[0,0],x=y[1,1],xy,I1x1y(x)=F1x(y)(x)={[1,1],x=y[0,0],xy

    Definition 2.4.[16] A={x,TA(x),IA(x),FA(x)} and B={x,TB(x),IB(x),FB(x)} are two interval neutrosophic sets, where TA(x)=[TLA(x),TUA(x)], IA(x)=[ILA(x),IUA(x)], FA(x)=[FLA(x),FUA(x)], and TB(x)=[TLB(x),TUB(x)], IB(x)=[ILB(x),IUB(x)], FB(x)=[FLB(x),FUB(x)], then

    ABTA(x)TB(x),IA(x)IB(x),FA(x)FB(x)ABTA(x)TB(x),IA(x)IB(x),FA(x)FB(x)A=BTA(x)=TB(x),IA(x)=IB(x),FA(x)=FB(x)

    And it satisfies that:

    TA(x)TB(x)TLA(x)TLB(x),TUA(x)TUB(x)TA(x)TB(x)TLA(x)TLB(x),TUA(x)TUB(x)TA(x)=TB(x)TLA(x)=TLB(x),TUA(x)=TUB(x)

    If A and B do not satisfy the above relationship, then they are said to be incompatible.

    Definition 2.5. A and B are two INNs, we have the following basic properties of INNs.

     (1) AAB,BAB (2) ABA,ABB (3) (AB)c=ACBC; (4) (AC)C=A

    Definition 2.6.[25] Let X be a finite set space of points (objects), and R be an equivalence relation on X. Denote by X/R the family of all equivalence classes induced by R. Obviously X/R gives a partition of X. (X, R) is called an interval neutrosophic approximation space. For xX, the lower and upper approximations of A are defined as below:

    R(A)={xX|[x]RA},R+(A)={xX|[x]RA},

    where

    [x]R={yX|(x,y)R}. It follows that R(A)AR+(A)

    If R(A)R+(A), A is called a rough set.

    Definition 2.7.[3] Let X be a space of points (objects) and C={C1,C2,,Cm} be a family of subsets of X. If none of the elements in C is empty and mi=1Ci=X, then C is called a covering of X, and (X,C) is called a covering approximation space.

    Definition 2.8.[3] Let (X,C) be a covering approximation space. For any xX, the neighborhood of x is defined as mi=1{CiC|xCi}, which is denoted by Nx.

    Definition 2.9.[24] Let (X,C) be a covering approximation space. For any xX, the lower and upper approximations of A are defined as below:

    C(A)={xX|NxA},C+(A)={xX|NxA}

    Based on the definition of neighborhood, the new covering rough models can be obtained.

    We will give the definition of interval neutrosophic covering rough sets in this section, meanwhile we'll also use some examples for the sake of intuition. In addition, we will given some properties and their proofs of INCRS.

    Definition 3.1. Let X be a space of points (objects). For any [s,t][0,1] and C={C1,C2,,Cm}, where Ci={Tc,iIci,Fci} and CiINS(i=1,2,,m). For xX,CkC, then Ck(x)[s,t], where TCk(x)[s,t],ICk(x)[1t,1s], FCk(x)[1t,1s]. Then C is called a interval neutrosophic [s,t] covering of X.

    Definition 3.2. Let C={C1,C2,,Cm} be an interval neutrosophic [s,t] covering of X. If 0[s,t][s,t], C is an interval neutrosophic [s,t]covering of X.

    Proof. C={C1,C2,,Cm} is a interval neutrosophic [s,t] covering of X. ThusCk(x)[s,t], and satisfy TCk(x)[s,t],ICk(x)[1t,1s], FCk(x)[1t,1s]. when 0[s,t][s,t], we can get 0[s,t][s,t]TCk(x) and 0ICk(x)[1s,1t][1s,1t],0FCk(x)[1s,1t][1s,1t]. So C is a interval neutrosophic left[s,t] covering of X.

    Definition 3.3.[26] Suppose C={C1,C2,,Cm} is an interval neutrosophic [s,t] covering of X. Ifs=t=β, then C is called a interval neutrosophic β covering of X.

    Definition 3.4. Suppose C={C1,C2,,Cm} is an interval neutrosophic [s,t] covering of X, where Ci={Tc,iIci,Fci} and CiINS(i=1,2,,m). For xX, the interval neutrosophic [s,t] neighborhood of x is defined as follows:

    N[s,t]x(y)={CiC|TCi(x)[s,t],ICi(x)[1t,1s],FCi(x)[1t,1s]}.

    Definition 3.5.[26] Let C={C1,C2,,Cm} be an interval neutrosophic [s,t] covering of X, where Ci={Tc,iIci,Fci} and CiINS(i=1,2,,m). If s=t=β, then the interval neutrosophic [s,t] neighborhood of x is degraded as the interval neutrosophic β neighborhood of x.

    Theorem 3.6. Let C={C1,C2,,Cm} be an interval neutrosophic [s,t] covering of X, where Ci={Tc,iIci,Fci} and CiINS(i=1,2,,m). x,y,zX, some propositions are shown as follows:

    (1) N[s,t]x(x)[s,t];

    (2) if N[s,t]x(y)[s,t] and N[s,t]y(z)[s,t], then N[s,t]x(z)[s,t];

    (3) CixX{N[s,t]x|Ci(x)[s,t]},i{1,2,,m};

    (4) if [s1,t1][s2,t2][s,t], then N[s1,t1]xN[s2,t2]x.

    Proof. (1)

    N[s,t]x(x)=(TCi(x)[s,t],ICi(x)[1t,1s],FCi(x)[1t,1s])(x)=(Ci(x)[s,t]Ci)(x)=Ci(x)[s,t]Ci(x)[s,t].

    (2)

    If N[s,t]x(y)[s,t], then N[s,t]x(y)=(TCi(x)[s,t],ICi(x)[1t,1s],FCi(x)[1t,1s]Ci)(y) =(Ci(x)[s,t]Ci)(y)=Ci(x)[s,t]Ci(y)[s,t], thus Ci(x)[s,t]Ci(y)[s,t], similarly, it can be obtained that Ci(y)[s,t]Ci(z)[s,t]. So Ci(x)[s,t]Ci(z)[s,t], thus N[s,t]x(z)=(TCi(x)[s,t],ICi(x)[1t,1s],FCi(x)[1t,1s]Ci)(z)=(Ci(x)[s,t]Ci)(z)=Ci(x)[s,t]Ci(z)[s,t]

    (3)

    N[s,t]x={CiC|TCi(x)[s,t],ICi(x)[1t,1s],FCi(x)[1t,1s]}=(Ci(x)[s,t]Ci)Ci, hence for any xX, it can be obtained that CixX{N[s,t]x(x)|Ci(x)[s,t]},(i=1,2,,m)

    (4)

    {CiC|TCi(x)[s1,t1],ICi(x)[1t1,1s1],FCi(x)[1t1,1s1]}={CiC|Ci(x)[s1,t1]}. When [s1,t1][s2,t2], it is obvious that {CiC|Ci(x)[s1,t1]}{CiC|Ci(x)[s2,t2]}, then {CiC|Ci(x)[s1,t1]}{CiC|Ci(x)[s2,t2]},, that is N[s1,t1]xN[s2,t2]x.

    Example 1. Let X be a space of a points(objects), with a class of elements in X denoted by x, C={C1,C2,C3,C4} is a interval neutrosophic covering of X, which is shown in Table 1. Set [s,t]=[0.4,0.5], and it can be gotten that C is a interval neutrosophic [0.4,0.5] covering of X.

    Table 1.  The interval neutrosophic [0.4,0.5] covering of X.
    C1 C2 C3 C4
    x1 [0.4,0.5],[0.2,0.3],[0.3,0.4] [0.4,0.6],[0.1,0.3],[0.2,0.4] [0.7,0.9],[0.2,0.3],[0.4,0.5] [0.4,0.5],[0.3,0.4],[0.5,0.7]
    x2 [0.6,0.7],[0.1,0.2],[0.2,0.3] [0.6,0.7],[0.1,0.2],[0.2,0.3] [0.3,0.6],[0.2,0.3],[0.3,0.4] [0.5,0.7],[0.2,0.3],[0.1,0.3]
    x3 [0.3,0.6],[0.3,0.5],[0.8,0.9] [0.5,0.6],[0.2,0.3],[0.3,0.4] [0.4,0.5],[0.2,0.4],[0.7,0.9] [0.3,0.5],[0.0,0.2],[0.2,0.4]
    x4 [0.7,0.8],[0.0,0.1],[0.1,0.2] [0.6,0.7],[0.1,0.2],[0.1,0.3] [0.6,0.7],[0.3,0.4],[0.8,0.9] [0.4,0.5],[0.5,0.6],[0.3,0.4]

     | Show Table
    DownLoad: CSV

    N[0.4,0.5]x1=C1C2C3,N[0.4,0.5]x2=C1C2C4,N[0.4,0.5]x3=C2C4,N[0.4,0.5]x4=C1C2.

    The interval neutrosophic [0.4,0.5] neighborhood of xi(i=1,2,3,4) is shown in Table 2. Obviously, the interval neutrosophic [0.4,0.5] neighborhood of xi(i=1,2,3,4) is covering of X.

    Table 2.  The interval neutrosophic [0.4,0.5] neighborhood of xi(i=1,2,3,4).
    x1 x2 x3 x4
    N[0.4,0.5]x1 [0.4,0.5],[0.2,0.3],[0.4,0.5] [0.3,0.6],[0.3,0.5],[0.8,0.9] [0.3,0.5],[0.2,0.4],[0.7,0.9] [0.6,0.7],[0.3,0.4],[0.8,0.9]
    N[0.4,0.5]x2 [0.4,0.5],[0.3,0.4],[0.5,0.7] [0.5,0.7],[0.2,0.3],[0.2,0.3] [0.3,0.5],[0.2,0.4],[0.3,0.4] [0.4,0.5],[0.5,0.6],[0.3,0.4]
    N[0.4,0.5]x3 [0.4,0.5],[0.3,0.4],[0.5,0.7] [0.5,0.7],[0.2,0.3],[0.2,0.3] [0.3,0.5],[0.2,0.3],[0.3,0.4] [0.4,0.5],[0.5,0.6],[0.3,0.4]
    N[0.4,0.5]x4 [0.4,0.5],[0.2,0.3],[0.3,0.4] [0.6,0.7],[0.1,0.2],[0.2,0.3] [0.3,0.6],[0.2,0.3],[0.3,0.4] [0.6,0.7],[0.1,0.2],[0.1.0.3]

     | Show Table
    DownLoad: CSV

    The interval neutrosophic [s,t] covering was presented in the previous section. Based on this, the coverage approximation space can be obtained.

    Definition 3.7.[26] Let C={C1,C2,,Cm} be an interval neutrosophic [s,t] covering of X, where Ci={TciIci,Fci} and CiINS(i=1,2,,m). Then (X,C) is called a interval neutrosophic [s,t] covering approximation space.

    Definition 3.8. Let (X,C) be an interval neutrosophic [s,t] covering approximation space, for any A INS, the lower approximation operator C_[s,t](A) and the upper approximation operator ¯C[s,t](A) of interval neutrosophic A are defined as follows: C_[s,t](A)={TC_[s,t](A),IC_[s,t](A),FC_[s,t](A)},¯C[s,t](A)={T¯C[s,t](A),I¯C[s,t](A),F¯C[s,t](A)}, where

    TC_[s,t](A)={TA(y)FN[s,t]x(y)|yX},IC_[s,t](A)={IA(y)([1,1]IN[s,t]x(y))|yX},
    FC_[s,t](A)={FA(y)TN[s,t]x(y)|yX},T¯C[s,t](A)={TA(y)TN[s,t]x(y)|yX},
    I¯C[s,t](A)={IA(y)IN[s,t]x(y))T|yX},F¯C[s,t](A)={FA(y)FN[s,t]x(y)|yX}.

    For any xX, then A is called an interval neutrosophic [s,t] covering rough set, if C_[s,t](A)¯C[s,t](A).

    Example 2. Let A be a interval neutrosophic set, where

    A(x1)=[0.4,0.6],[0.2,0.4],[0.3,0.4],A(x2)=[0.4,0.5],[0.1,0.3],[0.2,0.4],
    A(x3)=[0.4,0.5],[0.2,0.5],[0.3,0.6],A(x4)=[0.3,0.5],[0.2,0.4],[0.4,0.6].

    Then the lower approximation operator C_[0.4,0.5](A) and the upper approximation operator ¯C[0.4,0.5](A) of interval neutrosophic A can be calculated by Definition 3.8.

    C_[0.4,0.5](A)(x1)=[0.4,0.6],[0.2,0.5],[0.4,0.6],C_[0.4,0.5](A)(x2)=[0.3,0.5],[0.2,0.5],[0.4,0.5],
    C_[0.4,0.5](A)(x3)=[0.3,0.5],[0.2,0.5],[0.4,0.5],C_[0.4,0.5](A)(x4)=[0.3,0.5],[0.2,0.5],[0.4,0.6].
    ¯C[0.4,0.5](A)(x1)=[0.4,0.5],[0.2,0.4],[0.4,0.5],¯C[0.4,0.5](A)(x2)=[0.4,0.5],[0.2,0.3],[0.2,0.4],
    ¯C[0.4,0.5](A)(x1)=[0.4,0.5],[0.2,0.3],[0.2,0.4],¯C[0.4,0.5](A)(x2)=[0.4,0.5],[0.1,0.3],[0.2,0.4].

    In this section we'll give you some theorems about INCRS and a complete proof of them.

    Theorem 1. (1) C_[s,t](X)=X,¯C[s,t]()=;

    (2) C_[s,t](AC)=(¯C[s,t](A))C,¯C[s.t](AC)=(C_[s,t](A))C;

    (3) C_[s,t](AB)=C_[s,t](A)C_[s,t](B),¯C[s,t](AB)=¯C[s,t](A)¯C[s,t](B);

    (4) If AB, then C_[s,t](A)C_[s,t](B),¯C[s,t](A)¯C[s,t](B);

    (5) C_[s,t](AB)C_[s,t](A)C_[s,t](B),¯C[s,t](AB)¯C[s,t](A)¯C[s,t](B);

    (6) If 0[s,t][s,t], then C_[s,t](A)C_[s,t](A),¯C[s,t](A)¯C[s,t](A).

    proof. (1) TC_[s,t](X)={TX(y)FN[s,t]x(y)|yX}=[1,1],

    IC_[s,t](X)={IX(y)([1,1]IN[s,t]x(y))|yX}=[0,0],

    FC_[s,t](X)={FX(y)TN[s,t]x(y)|yX}=[0,0],

    C_[s,t](X)=TC_[s,t](X),IC_[s,t](X),FC_[s,t](X)=[1,1],[0,0],[0,0]=X;

    T¯C[s,t]()={T(y)TN[s,t]x(y)|yX}=[0,0],

    I¯C[s,t]()={I(y)IN[s,t]x(y)|yX}=[1,1],

    F¯C[s,t]()={F(y)FN[s,t]x(y)|yX}=[1,1],

    ¯C[s,t]()=T¯C[s,t](),I¯C[s,t](),F¯C[s,t]()=[0,0],[1,1],[1,1]=.

    (2) AC=FA,[1,1]IA,TA,

    TC_[s,t](AC)={FA(y)FN[s,t]x(y)|yX}=F¯C[s,t](A),

    IC_[s,t](AC)={([1,1]IA(y))([1,1]IN[s,t]x(y))|yX}

    =[1,1]{IA(y)IN[s,t]x(y)|yX}=[1,1]I¯C[s,t](A)

    FC_[s,t](AC)={TA(y)TN[s,t]x(y)|yX}=T¯C[s,t](A),

    C_[s,t](AC)={TC_[s,t](AC),IC_[s,t](AC),FC_[s,t](AC)}={F¯C[s,t](A),[1,1]I¯C[s,t](A),T¯C[s,t](A)}

    (¯C[s,t](A))C={F¯C[s,t](A),[1,1]I¯C[s,t](A),T¯C[s,t](A)}=C_[s,t](AC).

    Similarly, it can be gotten that ¯C[s.t](AC)=(C_[s,t](A))C

    (3) AB={TATB,IAIB,FAFB},

    TC_[s,t](AB)={(TA(y)TB(y))FN[s,t]x(y)|yX}

    ={(TA(y)FN[s,t]x(y))(TB(y)FN[s,t]x(y))|yX}=TC_[s,t](A)TC_[s,t](B),

    IC_[s,t](AB)={(IA(y)IB(y))([1,1]IN[s,t]x(y))|yX}

    ={(IA(y)([1,1]IN[s,t]x(y)))(IB(y)([1,1]IN[s,t]x(y)))|yX} =IC_[s,t](A)IC_[s,t](A),

    FC_[s,t](AB)={(FA(y)FB(y))TN[s,t]x(y)|yX}

    ={(FA(y)(TN[s,t]x(y)))(FB(y)(TN[s,t]x(y)))|yX}=FC_[s,t](A)FC_[s,t](A),

    C_[s,t](AB)={TC_[s,t](AB),IC_[s,t](AB),FC_[s,t](AB)}

    ={TC_[s,t](A)TC_[s,t](B),IC_[s,t](A)IC_[s,t](A),FC_[s,t](A)FC_[s,t](A)}=C_[s,t](A)C_[s,t](B).

    Similarly, it can be gotten that ¯C[s,t](AB)=¯C[s,t](A)¯C[s,t](B)

    (4) If AB, then TATB,IAIB,FAFB.

    When TATB, then {TA(y)FN[s,t]x(y)|yX}{TB(y)FN[s,t]x(y)|yX},

    thus {TA(y)FN[s,t]x(y)|yX} {TB(y)FN[s,t]x(y)|yX},

    hence {TB(y)FN[s,t]x(y)|yX}, {TB(y)FN[s,t]x(y)|yX}, that is TC_[s,t](A)TC_[s,t](B).

    When IAIB, then {IA(y)(1IN[s,t]x(y))|yX}{IB(y)([1,1]IN[s,t]x(y))|yX}.

    Thus {IA(y)([1,1]IN[s,t]x(y))|yX}{IB(y)([1,1]IN[s,t]x(y))|yX},

    hence IC_[s,t](A)IC_[s,t](A).

    When FAFB, then {FA(y)TN[s,t]x(y)|yX}{FB(y)TN[s,t]x(y)|yX},

    thus {FA(y)TN[s,t]x(y)|yX}{FB(y)TN[s,t]x(y)|yX}, so FC_[s,t](A)FC_[s,t](A),C_[s,t](A)C_[s,t](B).

    Similarly, it can be gotten that ¯C[s,t](A)¯C[s,t](B).

    (5) It is obvious that AAB,BAB, ABA,ABB.

    So C_[s,t](A)C_[s,t](AB),C_[s,t](B)C_[s,t](AB), ¯C[s,t](AB)¯C[s,t](A), ¯C[s,t](AB)¯C[s,t](B).

    Hence C_[s,t](A)C_[s,t](B)C[s,t](AB), ¯C[s,t](AB)¯C[s,t](A)¯C[s,t](B).

    (6) If 0[s,t][s,t], then N[s,t]xN[s,t]x. Thus TN[s,t]xTN[s,t]x, IN[s,t]xIN[s,t]x, FN[s,t]xFN[s,t]x, hence {TA(y)FN[s,t]x(y)|yX}{TA(y)FN[s,t]x(y)|yX},

    {IA(y)([1,1]IN[s,t]x(y))|yX}{IA(y)([1,1]IN[s,t]x(y))|yX},

    {FA(y)TN[s,t]x(y)|yX}{FA(y)TN[s,t]x(y)|yX}.

    That is C_[s,t](A)C_[s,t](A). Similarly, it can be gotten that ¯C[s,t](A)¯C[s,t](A).

    Theorem 2. Let (X,C) be an interval neutrosophic [s,t] covering approximation space, then the following statements are equivalent:

    (1) C_[s,t]()=;

    (2) ¯C[s,t](X)=X;

    (3) For anyxX, {yX|CiC((Ci(x)[s,t])(Ci(y)=X))}.

    Proof. {yX|CiC((Ci(x)[s,t])(Ci(y)=X))} means for each xX and Ci(x)[s,t],yX such that Ci(y)=X, satisfying N[s,t]x(y)=X.

    (1)(3) If C_[s,t]()=, then

    C_[s,t]()={FN[s,t]x(y),([1,1]IN[s,t]x(y)),TN[s,t]x(y)|yX}= yX,

    FN[s,t]x(y)=[0,0],IN[s,t]x(y)=[0,0],TN[s,t]x(y)=[1,1], that is N[s,t]x(y)=X.

    (3)(2) If N[s,t]x(y)=X, then

    ¯C[s,t](X)={TN[s,t]x(y),IN[s,t]x(y),FN[s,t]x(y)|yX}={[1,1],[0,0],[0,0]}=X.

    (2)(1) It is proved by the rotation of C_ and ¯C. So they are equivalent.

    Theorem 3. Let (X,C) be an interval neutrosophic [s,t] covering approximation space. Ais an INS and B is an constant interval neutrosophic set, where B=[α,α+],[β,β+],[γ,γ+]. It satisfies that for any xX, [α,α+],[β,β+],[γ,γ+](x)=[α,α+],[β,β+],[γ,γ+].

    If {yX|CiC((Ci(x)[s,t])(Ci(y)=X))}, then

    (1) C_[s,t](B)=B,¯C[s,t](B)=B;

    (2) C_[s,t](AB)=C_[s,t](A)B,¯C[s,t](AB)=¯C[s,t](A)B.

    Proof. (1) {yX|CiC((Ci(x)[s,t])(Ci(y)=X))} means for each xX and Ci(x)[s,t], yX, such that Ci(y)=X, then N[s,t]x(y)=X.

    TB_[s,t]={[α,α+]FN[s,t]x(y)|yX}=[α,α+],

    IB_[s,t]={[β,β+]([1,1]IN[s,t]x(y))|yX}=[β,β+],

    FB_[s,t]={[γ,γ+]TN[s,t]x(y)|yX}=[γ,γ+].

    So that C_[s,t](B)=B. Similarly, it can be gotten that ¯C[s,t](B)=B.

    (2) TC_[s,t](AB)={(TA(y)[α,α+])FN[s,t]x(y)|yX}={TA(y)FN[s,t]x(y)|yX}[α,α+],

    IC_[s,t](AB)={(IA(y)[β,β+])([1,1]IN[s,t]x(y))|yX}

    ={IA(y)([1,1]IN[s,t]x(y))|yX}[β,β+],

    FC_[s,t](AB)={(FA(y)[γ,γ+])TN[s,t]x(y)|yX}={FA(y)TN[s,t]x(y)|yX}[γ,γ+],

    Thus C_[s,t](AB)=C_[s,t](A)B. Similarly, it can be proofed that ¯C[s,t](AB)=¯C[s,t](A)B.

    Corollary. When α=α+=α,β=β+=β,γ=γ+=γ,B=α,β,γ It can be gotten that

    (1) C_[s,t]α,β,γ=α,β,γ,¯C[s,t]α,β,γ=α,β,γ;

    (2) C_[s,t](Aα,β,γ)=C_[s,t](A)α,β,γ,¯C[s,t](Aα,β,γ=¯C[s,t](A)α,β,γ.

    The proof is omitted.

    Theorem 4. Let (X,C) be an interval neutrosophic [s,t] covering approximation space. Ais an INS and AX, for any xX, there are

    (1) ¯C[s,t](1y)(x)=N[s,t]x(y);

    (2) C_[s,t](1X{y})(x)=(N[s,t]x(y))C.

    Proof. T¯C[s,t](1y)(x)={T1y(z)TN[s,t]x(z)|zX}

    =(T1y(y)TN[s,t]x(y))(zX{y}(T1y(z)TN[s,t]x(z)))

    =([1,1]TN[s,t]x(y))([0,0]TN[s,t]x(z))=TN[s,t]x(y),

    I¯C[s,t](1y)(x)={I1y(z)IN[s,t]x(z)|zX}

    =(I1y(y)IN[s,t]x(y))(zX{y}(I1y(z)IN[s,t]x(z)))

    =([0,0]IN[s,t]x(y))([1,1]IN[s,t]x(z))=IN[s,t]x(y),

    F¯C[s,t](1y)(x)={F1y(z)FN[s,t]x(z)|zX}

    =(F1y(y)FN[s,t]x(y))(zX{y}(F1y(z)FN[s,t]x(z)))

    =([0,0]FN[s,t]x(y))([1,1]FN[s,t]x(z))=FN[s,t]x(y).

    So ¯C[s,t](1y)(x)=N[s,t]x(y).

    Similarly, it can be gotten that C_[s,t](1X{y})(x)=(N[s,t]x(y))C, and the proof process is omitted.

    Theorem 5. Let (X,C) be an interval neutrosophic [s,t] covering approximation space. Ais an INS and AX, for any xX, if (N[s,t]x)CAN[s,t]x, then C_[s,t](C_[s,t](A))C_[s,t](A)A¯C[s,t](A)¯C[s,t](¯C[s,t](A)).

    Proof. (N[s,t]x)C=FN[s,t]x,([1,1]IN[s,t]x),TN[s,t]x.

    When (N[s,t]x)CA,thus FN[s,t]xTA, [1,1]IN[s,t]xIA,TN[s,t]xFA,

    so TC_[s,t](A)={TA(y)FN[s,t]x(y)|yX}={TA(y)|yX}TA,

    IC_[s,t](A)={IA(y)([1,1]IN[s,t]x(y))|yX}={IA(y)|yX}IA,

    FC_[s,t](A)={FA(y)TN[s,t]x(y)|yX}={FA(y)|yX}FA.

    That is C_[s,t](A)A. Similarly, A¯C[s,t](A).

    According to theorem 1(4), C_[s,t](C_[s,t](A))C_[s,t](A)A¯C[s,t](A)¯C[s,t](¯C[s,t](A)).

    Theorem 5 gives a sufficient condition for C_[s,t](A)A¯C[s,t](A), and then theorem 6 will give the necessary condition.

    Theorem 6. Let (X,C) be an interval neutrosophic [s,t] covering approximation space. AX, if xX,Ci(x)[s,t]Ci(x)=X(i={1,2,m}), and then

    C_[s,t](A)AˉC[s,t](A).

    Proof. xX,Ci(x)[s,t]Ci(x)=X(i={1,2,m}), which means xX,N[s,t]x=X=[1,1],[0,0],[0,0].

    TC_[s,t](A)={TA(y)FN[s,t]x(y)|yX}={TA(y)[0,0]|yX}={TA(y)|yX}TA,

    IC_[s,t](A)={IA(y)([1,1]IN[s,t]x(y))|yX}={IA(y)[1,1]|yX}={IA(y)|yX}IA,

    FC_[s,t](A)={FA(y)TN[s,t]x(y)|yX}={FA(y)[1,1]|yX}={FA(y)|yX}FA.

    So C_[s,t](A)A.

    T¯C[s,t](A)={TA(y)TN[s,t]x(y)|yX}={TA(y)|yX}TA,

    I¯C[s,t](A)={IA(y)IN[s,t]x(y)|yX}={IA(y)|yX}IA,

    F¯C[s,t](A)={FA(y)FN[s,t]x(y)|yX}={FA(y)|yX}FA.

    So A¯C[s,t](A).

    Hence C_[s,t](A)A¯C[s,t](A).

    Theorem 7. Let C={C1,C2,,Cm} be an interval neutrosophic [s,t] covering of X.AINS,¯C and C_ are the upper and lower approximation operator, which are defined in defination 3.8. Then we can get that:

     (1)  C is serial C_[s,t]α,β,λ=α,β,λ,α,β,λ[0,1],C_[s,t]()=,ˉC[s,t]α,β,λ=α,β,λ,α,β,λ[0,1],ˉC[s,t](X)=X;

     (2) C is reflexive C_[s,t](A)A,AˉC[s,t](A);

     (3) C is symmetric C_[s,t](1X(y}))(x)=C_[s,t](1X{x})(y),x,yX,ˉC[s,t](1y)(x)=ˉC[s,t](1x)(y),x,yX;

     (4) C is transitive C_[s,t](A)C_[s,t](C_[s,t](A)),ˉC[s,t](ˉC[s,t](A))ˉC[s,t](A).

    Proof. (1) When C is serial, then it satisfies yX and N[s,t]x(y)=X. So it can be proved by Theorem 3, Theorem 4 and Deduction.

    (2) When C is reflexive, then N[s,t]x(x)=X=[1,1],[0,0],[0,0]

    TC_[s,t](A)(x)={TA(y)FN[s,t]x(y)|yX}TA(x)FN[s,t]x(x)=TA(x),

    IC_[s,t](A)(x)={IA(y)([1,1]IN[s,t]x(y))|yX}IA(x)[1,1]=IA(x),

    FC_[s,t](A)(x)={FA(y)TN[s,t]x(y)|yX}FA(x)[1,1]=FA(x).

    That is C_[s,t](A)A.

    If C_[s,t](A)A, let A=1X(x), and x,yX, then

    TN[s,t]x(x)=(TN[s,t]x(x)[1,1])[0,0]

    =(TN[s,t]x(x)F(1X{x})(x))(yX{x}(TN[s,t]x(y)F(1X{x})(y)))

    ={TN[s,t]x(y)F(1X{x})(y)|yX}

    =FC_[s,t](1X{x})(x)F(1X{x})(x)=[1,1],

    [1,1]IN[s,t]x(x)={([1,1]IN[s,t]x(x))[1,1]}[0,0]

    ={([1,1]IN[s,t]x(x))I(1X{x})(x)}{yX{x}(([1,1]IN[s,t]x(y))I(1X{x})(y))}

    ={I(1X{x})(x)([1,1]IN[s,t]x(y))|yX}

    =IC_[s,t](1X{x})(x)I(1X{x})(x)=[1,1],

    so IN[s,t]x(x)=[0,0].

    FN[s,t]x(x)={FN[s,t]x(x))[0,0]}[1,1]

    ={FN[s,t]x(x)T(1X{x})(x)}{yX{x}(FN[s,t]x(y)T(1X{x})(y))}

    ={T(1X{x})(x)FN[s,t]x(y)|yX}

    =TC_[s,t](1X{x})(x)T(1X{x})(x)=[0,0].

    That is N[s,t]x(x)=[1,1],[0,0],[0,0]=X. So C is reflexive. Meanwhile, it is easy to prove the other part by the same way.

    (3) TC_[s,t](1X{x})(y)={T(1X{x})(z)FN[s,t]y(z)|zX}

    ={FN[s,t]y(x)T(1X{x})(x)}{zX{x}(FN[s,t]y(z)T(1X{x})(z))}

    ={FN[s,t]y(x)[0,0]}[1,1] =FN[s,t]y(x), TC_[s,t](1X{y})(x)={T(1X{y})(z)FN[s,t]x(z)|zX}

    ={FN[s,t]x(y)T(1X{y})(y)}{zX{y}(FN[s,t]x(z)T(1X{y})(z))}

    ={FN[s,t]x(y)[0,0]}[1,1]

    =FN[s,t]x(y),

    IC_[s,t](1X{x})(y)={I(1X{x})(z)([1,1]IN[s,t]y(z))|zX}

    ={([1,1]IN[s,t]y(x))I(1X{x})(x)}{zX{x}(([1,1]IN[s,t]y(z))I(1X{x})(z))}

    ={([1,1]IN[s,t]y(x))[1,1]}[0,0]

    =[1,1]IN[s,t]y(x),

    IC_[s,t](1X{y})(x)={I(1X{y})(z)([1,1]IN[s,t]x(z))|zX}

    ={([1,1]IN[s,t]x(y))I(1X{y})(y)}{zX{y}(([1,1]IN[s,t]x(z))I(1X{y})(z))}

    ={([1,1]IN[s,t]x(y))[1,1]}[0,0]

    =[1,1]IN[s,t]x(y),

    FC_[s,t](1X{x})(y)={F(1X{x})(z)TN[s,t]y(z)|zX}

    ={TN[s,t]y(x)F(1X{x})(x)}{zX{x}(TN[s,t]y(z)F(1X{x})(z))}

    ={TN[s,t]y(x)[1,1]}[0,0]

    =TN[s,t]y(x),

    FC_[s,t](1X{y})(x)={F(1X{y})(z)TN[s,t]x(z)|zX}

    ={TN[s,t]x(y)F(1X{y})(y)}{zX{y}(TN[s,t]x(z)F(1X{y})(z))}

    ={TN[s,t]x(y)[1,1]}[0,0]

    =TN[s,t]x(y).

    So when is symmetric, it satisfies TN[s,t]x(y)=TN[s,t]y(x),IN[s,t]x(y)=IN[s,t]y(x), FN[s,t]x(y)=FN[s,t]y(x), that is N[s,t]x(y)=N[s,t]y(x), then

    TC_[s,t](1X{x})(y)=TC_[s,t](1X{y})(x),

    IC_[s,t](1X{x})(y)=IC_[s,t](1X{y})(x),FC_[s,t](1X{x})(y)=FC_[s,t](1X{y})(x)

    That is C_[s,t](1X{x})(y)=C_[s,t](1X{y})(x).

    It is similar to get ¯C[s,t](1y)(x)=¯C[s,t](1x)(y), and the proof is omitted.

    (4) If C is transitive, then {TN[s,t]x(y)TN[s,t]y(z)|yX}TN[s,t]x(z),

    {IN[s,t]x(y)IN[s,t]y(z)|yX}IN[s,t]x(z), {FN[s,t]x(y)FN[s,t]y(z)|yX}FN[s,t]x(z).

    TC_[s,t](C_[s,t](A))(x)={TC_[s,t](A)(y)FN[s,t]x(y)|yX}={{TA(z)FN[s,t]y(z)|zX}FN[s,t]x(y)|yX}

    =yXzX(TA(z)FN[s,t]x(z)FN[s,t]x(y))=zX(yX(FN[s,t]y(z)FN[s,t]x(y))TA(z))

    zX(FN[s,t]x(z)TA(z))=TC_[s,t](A)(x),

    IC_[s,t](C_[s,t](A))(x)={IC_[s,t](A)(z)(1IN[s,t]x(y))|yX}

    ={{IA(z)(1IN[s,t]y(z))|zX}(1IN[s,t]x(y))|yX}

    =yXzX(IA(z)(1IN[s,t]y(z))(1IN[s,t]x(y))=zX((1yX(IN[s,t]y(z)IN[s,t]x(y))IA(z)

    zX(1IN[s,t]x(z))IA(z)=IC_[s,t](A)(x),

    FC_[s,t](C_[s,t](A))(x)={FC_[s,t](A)(y)TN[s,t]x(y)|yX}={{FA(z)TN[s,t]y(z)|zX}TN[s,t]x(y)|yX}

    =yXzX(FA(z)TN[s,t]y(z)TN[s,t]x(y))=zX(yX(TN[s,t]y(z)TN[s,t]x(y)))FA(z)

    zX(TN[s,t]x(z)FA(z))=FC_[s,t](A)(x),

    so C_[s,t](A)C_[s,t](C_[s,t](A)).

    Similarly, it can be gotten that ¯C[s,t](¯C[s,t](A))¯C[s,t](A). If C_[s,t](A)C_[s,t](C_[s,t](A)), let A=1X{x} and x,y,zX, \\ from the proving process of (3), we have

    TN[s,t]x(z)=FC_[s,t](1X{z})(x)FC_[s,t](C_[s,t](1X{z})(x) ={FC_[s,t](1X{z})(y)TN[s,t]x(y)|yX}

    ={TN[s,t]y(z)TN[s,t]x(y)|yX},

    [1,1]IN[s,t]x(z)=IC_[s,t](1X{z})(x)IC_[s,t](C_[s,t](1X{z})(x) {IC_[s,t](1X{z})(y)([1,1]IN[s,t]x(y))|yX}

    ={([1,1]IN[s,t]y(z)([1,1]IN[s,t]x(y)|yX},

    Thus IN[s,t]x(z){IN[s,t]y(z)IN[s,t]x(y)|yX}.

    FN[s,t]x(z)=TC_[s,t](1X{z})(x)TC_[s,t](C_[s,t](1X{z})(x) ={TC_[s,t](1X{z})(y)FN[s,t]x(y)|yX}

    ={FN[s,t]y(z)FN[s,t]x(y)|yX},

    Therefore C is transitive. When ¯C[s,t](¯C[s,t](A))¯C[s,t](A), it can be proved C is transitive by the same way.

    In medicine, a combination of drugs is usually used to cure a disease. Suppose, X={xj,j=1,2,,n} is a collection of n drugs, V={yi,i=1,2,,m} are m important symptom (such as fever, cough, fatigue, phlegm, etc.) of diseases (such as: 2019-NCOV, etc.), and Ci(xj) represents the effective value of medication for the treatment of symptoms.

    Let [s,t] be the evaluation range. For each drugxjX, if there is at least one symptom yiV that causes the effective value of drug xj for the treatment of symptom yi to be in the [s,t] interval, thenC={Ci:i=1,2,,m} is the interval neutrosophic [s,t] covering on X. Thus, for each drug xj, we consider the set of symptoms {yi:Ci(xj)[s,t]}.

    The interval neutrosophic [s,t] neighborhood of xj is N[s,t]xj={CiC|TCi(xj)[s,t],ICi(xj)[1t,1s],FCi(xj)[1t,1s]}(xk)=(Ci(x)[s,t]Ci)Ci(xk,k=1,2,,n. This represents the effective value interval for each drugxk for all symptoms in the symptom set {yi:Ci(xj)[s,t]}. We consider as the upper and lower thresholds of effective values of s and t. If they are lower than the lower threshold, there will be no therapeutic effect; if they are higher than the upper threshold, the therapeutic effect will be too strong, and it is easy to cause other side effects to the body during the treatment (regardless of the situation of reducing the usage). Let an interval neutrosophic set of A represent the therapeutic ability of all drugs in X that can cure disease X. Since Ais imprecise, we consider the approximation of A, that is, the lower approximation and the upper approximation of interval neutrosophic covering rough.

    Example 3. LetX be a space of a points (objects), with a class of elements in X denoted by x, being a interval neutrosophic covering of X, which is shown in Table 3. Set [s,t]=[0.4,0.5], and it can be gotten that C is a interval neutrosophic [s,t] covering of X. N[0.4,0.5]x1=C1C2C3,N[0.4,0.5]x2=C1C4,N[0.4,0.5]x3=C2C4,N[0.4,0.5]x4=C2C3. The interval neutrosophic [s,t]neighborhood of xi(i=1,2,3,4) is shown in Table 4. Obviously, the interval neutrosophic[s,t]neighborhood of xi(i=1,2,3,4) is covering of X.

    Table 3.  The interval neutrosophic [0.4,0.5] neighborhood of xi(i=1,2,3,4).
    C1 C2 C3 C4
    x1 [0.4,0.5],[0.2,0.3],[0.4,0.5] [0.4,0.6],[0.1,0.3],[0.3,0.5] [0.7,0.9],[0.2,0.3],[0.4,0.5] [0.4,0.5],[0.3,0.4],[0.6,0.7]
    x2 [0.6,0.7],[0.1,0.2],[0.2,0.3] [0.2,0.4],[0.1,0.2],[0.2,0.3] [0.3,0.6],[0.3,0.5],[0.8,0.9] [0.5,0.7],[0.2,0.3],[0.4,0.6]
    x3 [0.3,0.5],[0.2,0.3],[0.4,0.5] [0.5,0.6],[0.2,0.3],[0.3,0.4] [0.3,0.5],[0.2,0.4],[0.3,0.4] [0.5,0.6],[0.0,0.2],[0.3,0.4]
    x4 [0.7,0.8],[0.6,0.7],[0.1,0.2] [0.6,0.7],[0.1,0.2],[0.1,0.3] [0.6,0.7],[0.3,0.4],[0.3,0.5] [0.3,0.5],[0.5,0.6],[0.6,0.7]

     | Show Table
    DownLoad: CSV
    Table 4.  The interval neutrosophic [0.4,0.5] covering of X.
    C1 C2 C3 C4
    x1 [0.4,0.5],[0.2,0.3],[0.4,0.5] [0.2,0.4],[0.3,0.5],[0.8,0.9] [0.3,0.5],[0.2,0.4],[0.4,0.5] [0.6,0.7],[0.6,0.7],[0.3,0.5]
    x2 [0.4,0.5],[0.3,0.4],[0.6,0.7] [0.5,0.7],[0.2,0.3],[0.4,0.6] [0.3,0.5],[0.2,0.3],[0.4,0.5] [0.3,0.5],[0.6,0.7],[0.6,0.7]
    x3 [0.4,0.5],[0.3,0.4],[0.6,0.7] [0.2,0.4],[0.2,0.3],[0.4,0.6] [0.5,0.6],[0.2,0.3],[0.3,0.5] [0.3,0.5],[0.5,0.6],[0.6,0.7]
    x4 [0.4,0.6],[0.2,0.3],[0.4,0.5] [0.2,0.4],[0.3,0.5],[0.8,0.9] [0.3,0.5],[0.2,0.4],[0.3,0.5] [0.6,0.7],[0.3,0.4],[0.3,0.5]

     | Show Table
    DownLoad: CSV

    Let A be an interval neutrosophic set, and

    A(x1)=[0.2,0.4],[0.2,0.4],[0.3,0.4],A(x2)=[0.5,0.7],[0.1,0.3],[0.2,0.4],A(x3)=[0.3,0.4],[0.2,0.5],[0.3,0.5],A(x4)=[0.5,0.6],[0.2,0.4],[0.4,0.6].

    The lower approximation operator C_[0.4,0.5](A) and the upper approximation operator ¯C[0.4,0.5](A) of the intelligent set A in the interval can be obtained by definition 3.9.

    C_[0.4,0.5](A)(x1)=[0.4,0.5],[0.2,0.5],[0.4,0.6],C_[0.4,0.5](A)(x2)=[0.4,0.5],[0.2,0.5],[0.3,0.5],C_[0.4,0.5](A)(x3)=[0.3,0.5],[0.2,0.5],[0.3,0.5],C_[0.4,0.5](A)(x4)=[0.3,0.5],[0.2,0.5],[0.4,0.6].¯C[0.4,0.5](A)(x1)=[0.5,0.6],[0.2,0.4],[0.4,0.5],¯C[0.4,0.5](A)(x2)=[0.5,0.7],[0.2,0.3],[0.4,0.5],¯C[0.4,0.5](A)(x3)=[0.3,0.5],[0.2,0.3],[0.3,0.5],¯C[0.4,0.5](A)(x4)=[0.5,0.6],[0.2,0.4],[0.3,0.5].

    Then A is the interval neutrosophic [s,t] covering of X.

    And we can get that

    (1) A(x2)[0.4.0.5],C_[0.4,0.5](A)(x2)[0.4.0.5],¯C[0.4,0.5](A)(x2)[0.4.0.5]. Therefore, drug x2plays an important role in the treatment of diseaseA.

    (2) A(x3)<[0.4.0.5],C_[0.4,0.5](A)(x3)<[0.4.0.5],¯C[0.4,0.5](A)(x3)<[0.4.0.5]. So drug x3 has no effect on the treatment of diseaseA.

    (3) A(x1)<[0.4.0.5],C_[0.4,0.5](A)(x1)[0.4.0.5],¯C[0.4,0.5](A)(x1)[0.4.0.5]. Therefore, drug x1 has less effect on the treatment of disease A than drug x2 and drug x4.

    In this paper, we propose the interval neutrosophic covering rough sets by combining the CRS and INS. Firstly, the paper introduces the definition of interval neutrosophic sets and covering rough sets, where the covering rough set is defined by neighborhood. Secondly, Some basic properties and operation rules of interval neutrosophic sets and covering rough sets are discussed. Thirdly, the definition of interval neutrosophic covering rough sets are proposed. Then, this paper put forward some theorems and give their proofs of interval neutrosophic covering rough sets. Lastly, we give the numerical example to apply the interval neutrosophic covering rough sets in the real life.

    The authors wish to thank the editors and referees for their valuable guidance and support in improving the quality of this paper. This research was funded by the Humanities and Social Sciences Foundation of Ministry of Education of the Peoples Republic of China (17YJA630115).

    The authors declare that there is no conflict of interest.



    [1] Agénor PR, Pereira da Silva LA (2018) Financial spillovers, spillbacks, and the scope for international macroprudential policy coordination. Bank for International Settlements, BIS Paper(97).
    [2] Agyei SK (2022) Diversification Benefits between Stock Returns from Ghana and Jamaica: Insights from Time-Frequency and VMD-Based Asymmetric Quantile-on-Quantile Analysis. Math Probl Eng 2022: 9375170. https://doi.org/10.1155/2022/9375170 doi: 10.1155/2022/9375170
    [3] Agyei SK, Bossman A, Asafo−Adjei E, et al. (2022) Exchange Rate, COVID-19, and Stock Returns in Africa: Insights from Time-Frequency Domain. Discrete Dyn Nat Soc 2022: 4372808. https://doi.org/10.1155/2022/4372808 doi: 10.1155/2022/4372808
    [4] Al Jazeera (2021) Kenya lifts longstanding COVID curfew as infections ease. Available from: https://www.aljazeera.com/news/2021/10/20/kenya-lifts-longstanding-covid-curfew-as-infections-ease.
    [5] Anyanwu JC, Salami AO (2021) The impact of COVID-19 on African economies: An introduction. Afr Dev Rev 33: S1–S16. https://doi.org/10.1111/1467-8268.12531 doi: 10.1111/1467-8268.12469
    [6] Assifuah-Nunoo E, Junior PO, Adam AM, et al. (2022) Assessing the safe haven properties of oil in African stock markets amid the COVID-19 pandemic: a quantile regression analysis. Quant Financ Econ 6: 244–269. https://doi.org/10.3934/QFE.2022011 doi: 10.3934/QFE.2022011
    [7] Bagheri E, Ebrahimi SB (2020) Estimating Network Connectedness of Financial Markets and Commodities. J Syst Sci Syst Eng 29: 572–589. https://doi.org/10.1007/s11518-020-5465-1 doi: 10.1007/s11518-020-5465-1
    [8] Bank of Uganda (2019) Bank of Uganda Monetary Policy Rep. Available from: https://www.bou.or.ug/bou/bouwebsite/bouwebsitecontent/MonetaryPolicy/Monetary_Policy_Reports/2019/Dec/DEC-2019-Monetary-Policy-Report.pdf.
    [9] Barrot LD, Calderón C, Servén L (2018) Openness, specialization, and the external vulnerability of developing countries. J Dev Econ 134: 310–328. https://doi.org/10.1016/j.jdeveco.2018.05.015 doi: 10.1016/j.jdeveco.2018.05.015
    [10] Baruník J, Kocenda E, Vácha L (2015) Volatility spillovers across petroleum markets. http://dx.doi.org/10.2139/ssrn.2600204
    [11] Baruník J, Křehlík T (2018) Measuring the Frequency Dynamics of Financial Connectedness and Systemic Risk*. J Financ Econ 16: 271–296. https://doi.org/10.1093/jjfinec/nby001 doi: 10.1093/jjfinec/nby001
    [12] Daily Monitor (2022) Uganda's Museveni reopens economy amidst surge in Covid-19 — The East African. Available from: https://www.theeastafrican.co.ke/tea/news/east-africa/uganda-museveni-reopens-economy-amidst-surge-in-covid-19-3669258.
    [13] Degutis A, Novickytė L (2014) The efficient market hypothesis: A critical review of literature and methodology. Ekonomika 93: 7–23.
    [14] Dickey DA, Fuller WA (1979) Distribution of the estimators for autoregressive time series with a unit root. J Am Stat Assoc 74: 427–431.
    [15] Diebold FX, Yilmaz K (2009) Measuring Financial Asset Return and Volatility Spillovers, With Application To Global Equity Markets. Econ J 119: 158–171. doi: 10.1111/j.1468-0297.2008.02208.x
    [16] Diebold FX, Yilmaz K (2012) Better to give than to receive: Predictive directional measurement of volatility spillovers. Int J Forecast 28: 57–66. https://doi.org/10.1016/j.ijforecast.2011.02.006 doi: 10.1016/j.ijforecast.2011.02.006
    [17] Dieppe AM, Kilic Celik S, Okou CIF (2020) Implications of Major Adverse Events on Productivity. Available from: http://documents.worldbank.org/curated/en/706191600779573582/Implications-of-Major-Adverse-Events-on-Productivit.
    [18] Drummond P, Aisen A, Alper CE, et al. (2015) Toward a monetary union in the East African Community: asymmetric shocks, exchange rates, and risk-sharing mechanisms. International Monetary Fund.
    [19] Eberhardt M, Presbitero AF (2018) Commodity Price Movements and Banking Crises. IMF Working Papers 2018: 54. https://doi.org/10.5089/9781484366776.001.A000 doi: 10.5089/9781484366776.001.A000
    [20] Gill I (2022) Developing economies must act now to dampen the shocks from the Ukraine conflict. Available from: https://blogs.worldbank.org/voices/developing-economies-must-act-now-dampen-shocks-ukraine-conflict.
    [21] Hung NT, Vo XV (2021) Directional spillover effects and time-frequency nexus between oil, gold and stock markets: Evidence from pre and during COVID-19 outbreak. Int Rev Financ Anal 76: 101730. https://doi.org/10.1016/j.irfa.2021.101730 doi: 10.1016/j.irfa.2021.101730
    [22] International Monetary Fund (2003) Fund Assistance for Countries Facing Exogenous Shocks. Int Monetary Fund. Available from: http://www.imf.org/external/np/pdr/sustain/2003/080803.pdf.
    [23] Juma C (2016) Brexit is an opportunity for Africa, World Economic Forum. World Economic Forum. Available from: https://www.weforum.org/agenda/2016/07/brexit-is-an-opportunity-for-africa/
    [24] Kasekende L, Ng'eno NK (2000) Regional integration and economic integration in Eastern and Southern Africa. In: Oyejide, A., Elbadawi, I., Collier, P.(Eds.), Regional Integration and Trade Liberalization in Sub-Saharan Africa: Framework, Issues and Methodological Perspectives, 1, Macmillan Press Ltd.
    [25] Katusiime L (2019) Investigating Spillover Effects between Foreign Exchange Rate Volatility and Commodity Price Volatility in Uganda. Economies 7: 1. https://doi.org/10.3390/economies7010001 doi: 10.3390/economies7010001
    [26] Katusiime L (2021) COVID 19 and Bank Profitability in Low Income Countries: The Case of Uganda. J Risk Financ Manage 14: 588. https://doi.org/10.3390/jrfm14120588 doi: 10.3390/jrfm14120588
    [27] Koop G, Pesaran MH, Potter SM (1996) Impulse response analysis in nonlinear multivariate models. J Econometrics 74: 119–147. https://doi.org/10.1016/0304-4076(95)01753-4 doi: 10.1016/0304-4076(95)01753-4
    [28] Kwiatkowski D, Phillips PCB, Schmidt P, et al. (1992) Testing the null hypothesis of stationarity against the alternative of a unit root: How sure are we that economic time series have a unit root? J Econometrics 54: 159–178. https://doi.org/10.1016/0304-4076(92)90104-Y doi: 10.1016/0304-4076(92)90104-Y
    [29] Langevoort DC (1992) Theories, assumptions, and securities regulation: Market efficiency revisited. U Penn Law Rev 140: 851–920. doi: 10.2307/3312329
    [30] Li X, Li B, Wei G, et al. (2021). Return connectedness among commodity and financial assets during the COVID-19 pandemic: Evidence from China and the US. Resour Policy 73: 102166. https://doi.org/10.1016/j.resourpol.2021.102166 doi: 10.1016/j.resourpol.2021.102166
    [31] Lin S, Chen S (2021) Dynamic connectedness of major financial markets in China and America. Int Rev Econ Financ 75: 646–656. https://doi.org/10.1016/j.iref.2021.04.033 doi: 10.1016/j.iref.2021.04.033
    [32] Lo AW (2008) Efficient markets hypothesis. New Palgrave Dictionary Econ 2: 1–17.
    [33] López J, Perrotini I (2006) On floating exchange rates, currency depreciation and effective demand. Q Review-Banca Nazionale Del Lavoro 238: 221.
    [34] Mahadeva L, Sterne G (2012) Monetary policy frameworks in a global context. Routledge.
    [35] Mensi W, Shafiullah M, Vo XV, et al. (2021) Volatility spillovers between strategic commodity futures and stock markets and portfolio implications: Evidence from developed and emerging economies. Resour Policy 71: 102002. https://doi.org/10.1016/j.resourpol.2021.102002 doi: 10.1016/j.resourpol.2021.102002
    [36] Minoiu C, Kang C, Subrahmanian VS, et al. (2015) Does financial connectedness predict crises? Quant Financ 15: 607–624. https://doi.org/10.1080/14697688.2014.968358 doi: 10.1080/14697688.2014.968358
    [37] Mokni K, Mansouri F (2017) Conditional dependence between international stock markets: A long memory GARCH-copula model approach. J Multinatl Financ Manage 42–43: 116–131. https://doi.org/10.1016/j.mulfin.2017.10.006 doi: 10.1016/j.mulfin.2017.10.006
    [38] Moore J (2017) Uhuru Kenyatta Is Declared Winner of Kenya's Repeat Election—The New York Times. The New York Times. Available from: https://www.nytimes.com/2017/10/30/world/africa/kenya-election-kenyatta-odinga.html.
    [39] N Price G, U Elu J (2014) Does regional currency integration ameliorate global macroeconomic shocks in sub-Saharan Africa? The case of the 2008–2009 global financial crisis. J Econ Stud 41: 737–750. https://doi.org/10.1108/JES-08-2011-0092 doi: 10.1108/JES-08-2011-0092
    [40] Ogbuabor JE, Anthony-Orji OI, Manasseh CO, et al. (2020) Measuring the dynamics of COMESA output connectedness with the global economy. J Econ Asymmetries 21: e00138. https://doi.org/10.1016/j.jeca.2019.e00138 doi: 10.1016/j.jeca.2019.e00138
    [41] Owusu Junior P, Agyei SK, Adam AM, et al. (2022). Time-frequency connectedness between food commodities: New implications for portfolio diversification. Environ Challenges 9: 100623. https://doi.org/10.1016/j.envc.2022.100623 doi: 10.1016/j.envc.2022.100623
    [42] Palanska T (2020) Measurement of Volatility Spillovers and Asymmetric Connectedness on Commodity and Equity Markets. Czech J Econ Financ (Finance a Uver) 70: 42–69.
    [43] Pesaran HH, Shin Y (1998) Generalized impulse response analysis in linear multivariate models. Econ Lett 58: 17–29. https://doi.org/10.1016/S0165-1765(97)00214-0
    [44] Phillips PCB, Perron P (1988) Testing for a unit root in time series regression. Biometrika 75: 335–346.
    [45] Prasad ES, Rogoff K, Wei SJ, et al. (2003) Effects of Financial Globalization on Developing Countries: Some Empirical Evidence. International Monetary Fund.
    [46] Raddatz C (2007) Are external shocks responsible for the instability of output in low-income countries? J Dev Econ 84: 155–187. https://doi.org/10.1016/j.jdeveco.2006.11.001 doi: 10.1016/j.jdeveco.2006.11.001
    [47] Stocker M, Baffes J, Vorisek D (2018) What triggered the oil price plunge of 2014–2016 and why it failed to deliver an economic impetus in eight charts. World Bank Blog. Available from: https://blogs.worldbank.org/developmenttalk/what-triggered-oil-price-plunge-2014-2016-and-why-it-failed-deliver-economic-impetus-eight-charts.
    [48] The EastAfrican (2012) EAC economies feel the pinch of Eurozone crisis—The East African. Available from: https://www.theeastafrican.co.ke/tea/business/eac-economies-feel-the-pinch-of-eurozone-crisis--1311184.
    [49] The World Bank (2017) Reviving Private Sector Credit Growth and Boosting Revenue Mobilization to Support Fiscal Consolidation POISED TO BOUNCE BACK? Available from: https://openknowledge.worldbank.org/bitstream/handle/10986/29033/121895-WP-P162368-PUBLIC-KenyaEconomicUpdateFINAL.pdf?sequence=1&isAllowed=y.
    [50] Tobin J, de Macedo JB (1979) The short-run macroeconomics of floating exchange rates: An exposition.
    [51] Uluceviz E, Yilmaz K (2021) Measuring real–financial connectedness in the U.S. economy. The North American J Econ Financ 58: 101554. https://doi.org/10.1016/j.najef.2021.101554 doi: 10.1016/j.najef.2021.101554
    [52] Umar Z, Gubareva M (2020) A time–frequency analysis of the impact of the Covid-19 induced panic on the volatility of currency and cryptocurrency markets. J Behav Exp Financ 28: 100404. https://doi.org/10.1016/j.jbef.2020.100404 doi: 10.1016/j.jbef.2020.100404
    [53] UNECA (2018) East Africa the fastest growing region in Africa, with people leading longer and healthier lives - tralac trade law centre. United Nations Economic Commission for Africa. Available from: https://www.tralac.org/news/article/13721-east-africa-the-fastest-growing-region-in-africa-with-people-leading-longer-and-healthier-lives.html.
    [54] Vacha L, Barunik J (2012) Co-movement of energy commodities revisited: Evidence from wavelet coherence analysis. Energy Econ 34: 241–247. https://doi.org/10.1016/j.eneco.2011.10.007 doi: 10.1016/j.eneco.2011.10.007
    [55] Varangis P, Varma S, DePlaa A, et al. (2004) Exogenous shocks in low income countries: economic policy issues and the role of the international community. In: Background Paper prepared for the Report: Managing the Debt Risk of Exogenous Shocks in Low Income Countries.
    [56] Wearden G, Fletcher N (2016) Brexit panic wipes $2 trillion off world markets - as it happened, Business. Available from: https://www.theguardian.com/business/live/2016/jun/24/global-markets-ftse-pound-uk-leave-eu-brexit-live-updates.
  • This article has been cited by:

    1. Reny George, Zoran D. Mitrović, Ali Turab, Ana Savić, Wajahat Ali, On a Unique Solution of a Class of Stochastic Predator–Prey Models with Two-Choice Behavior of Predator Animals, 2022, 14, 2073-8994, 846, 10.3390/sym14050846
    2. Ali Turab, On a unique solution and stability analysis of a class of stochastic functional equations arising in learning theory, 2022, 42, 0174-4747, 261, 10.1515/anly-2022-1052
    3. Ali Turab, Nabil Mlaiki, Nahid Fatima, Zoran D. Mitrović, Wajahat Ali, Analysis of a Class of Stochastic Animal Behavior Models under Specific Choice Preferences, 2022, 10, 2227-7390, 1975, 10.3390/math10121975
    4. Muhammad Nazam, Sumit Chandok, Aftab Hussain, Hamed H. Al Sulmi, On the Iterative Multivalued ⊥-Preserving Mappings and an Application to Fractional Differential Equation, 2023, 12, 2075-1680, 53, 10.3390/axioms12010053
    5. Ismat Beg, Mujahid Abbas, Muhammad Waseem Asghar, Approximation of the Solution of Split Equality Fixed Point Problem for Family of Multivalued Demicontractive Operators with Application, 2023, 11, 2227-7390, 959, 10.3390/math11040959
    6. Ali Turab, Norhayati Rosli, Wajahat Ali, Juan J. Nieto, The existence and uniqueness of solutions to a functional equation arising in psychological learning theory, 2023, 56, 2391-4661, 10.1515/dema-2022-0231
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1854) PDF downloads(111) Cited by(7)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog