
Citation: Michaela D Curry, Abigail Zimmermann, Mohammadbagher Parsa, Mohammad-Reza A. Dehaqani, Kelsey L Clark, Behrad Noudoost. A Cage-Based Training System for Non-Human Primates[J]. AIMS Neuroscience, 2017, 4(3): 102-119. doi: 10.3934/Neuroscience.2017.3.102
[1] | Usman Babar, Haidar Ali, Shahid Hussain Arshad, Umber Sheikh . Multiplicative topological properties of graphs derived from honeycomb structure. AIMS Mathematics, 2020, 5(2): 1562-1587. doi: 10.3934/math.2020107 |
[2] | Ali Al Khabyah . Mathematical aspects and topological properties of two chemical networks. AIMS Mathematics, 2023, 8(2): 4666-4681. doi: 10.3934/math.2023230 |
[3] | R. Aguilar-Sánchez, J. A. Mendez-Bermudez, José M. Rodríguez, José M. Sigarreta . Multiplicative topological indices: Analytical properties and application to random networks. AIMS Mathematics, 2024, 9(2): 3646-3670. doi: 10.3934/math.2024179 |
[4] | Fei Yu, Hifza Iqbal, Saira Munir, Jia Bao Liu . M-polynomial and topological indices of some transformed networks. AIMS Mathematics, 2021, 6(12): 13887-13906. doi: 10.3934/math.2021804 |
[5] | Ali Al Khabyah, Haseeb Ahmad, Ali Ahmad, Ali N. A. Koam . A uniform interval-valued intuitionistic fuzzy environment: topological descriptors and their application in neural networks. AIMS Mathematics, 2024, 9(10): 28792-28812. doi: 10.3934/math.20241397 |
[6] | Sumiya Nasir, Nadeem ul Hassan Awan, Fozia Bashir Farooq, Saima Parveen . Topological indices of novel drugs used in blood cancer treatment and its QSPR modeling. AIMS Mathematics, 2022, 7(7): 11829-11850. doi: 10.3934/math.2022660 |
[7] | Fozia Bashir Farooq . Implementation of multi-criteria decision making for the ranking of drugs used to treat bone-cancer. AIMS Mathematics, 2024, 9(6): 15119-15131. doi: 10.3934/math.2024733 |
[8] | Jung-Chao Ban, Chih-Hung Chang . Entropy dimension of shifts of finite type on free groups. AIMS Mathematics, 2020, 5(5): 5121-5139. doi: 10.3934/math.2020329 |
[9] | Ali N. A. Koam, Ali Ahmad, Azeem Haider, Moin A. Ansari . Computation of eccentric topological indices of zero-divisor graphs based on their edges. AIMS Mathematics, 2022, 7(7): 11509-11518. doi: 10.3934/math.2022641 |
[10] | Yanjie Wang, Beibei Zhang, Bo Cao . On the number of zeros of Abelian integrals for a kind of quadratic reversible centers. AIMS Mathematics, 2023, 8(10): 23756-23770. doi: 10.3934/math.20231209 |
Graph theory has provided the researcher with various useful tools, such as graph labeling, locating numbers and topological indices. Graph theory subject has many applications and implementations in different research subjects like chemistry, medicine and engineering. A graph can be recognized by a numeric value, a polynomial, a sequence of numbers or a matrix. The representation of the chemical compound in terms of diagram, known as its molecular graph, in which its atoms and the chemical bonding between them represent the nodes and edges, respectively. Recently, a new subject caught attention of the researchers was introduced, which is the combination of chemistry, information science and mathematics is called Cheminformatics, which studies QSAR/QSPR relationship, bioactivity and characterization of chemical compounds [1].
The topological index is a numeric value related with chemical compositions maintaining the correlation of chemical structures with many physico-chemical properties, chemical reactivity or biological activity. Topological indices are prepared on the grounds of the transformation of a chemical network into a number that describes the topology of the chemical network. Some of the main types of topological indices of graphs are distance-based topological indices, degree-based topological indices, and counting-related topological indices. Recently, numerous researchers have found topological indices for the study of fundamental properties of molecular graph or network. These networks have very motivating topological properties which have been considered in different characteristics in [2,3,4,5,6,7,8,9].
Let G=(V,E) be a simple connected graph, with V be the vertex set and E be the edge set of graph G, with order |V|=p, size |E|=q. The number of edges incident with a vertex ω is known as the degree of ω, denoted by ζ(ω). The reverse vertex degree (R(ω)) was introduced by Kulli [10] defined as: R(ω)=1−ζ(ω)+Δ, where Δ denoted the maximum degree of the given graph. Let ER(ω),R(μ) represents the edge partition of the given graph based on reverse degree of end vertices of an edge ωμ∈E and |ER(ω),R(μ)| represents its cardinality. There are detailed variations of topological indices mainly distance-based and degree-based indices, see [11,12,13,14,15,16]. Milan Randic [30] was the first who defined the degree-based indices and its reverse Randic index is defined as:
RRα(G)=∑ωμ∈E(G)(R(ω)×R(μ))α,α=12,−12,1,−1. | (1.1) |
Estrada et al. presented the atom bond connectivity (ABC) index in [18] and the reverse atom bond connectivity (RABC) is defined as:
RABC(G)=∑ωμ∈E(G)√R(ω)+R(μ)−2R(ω)×R(μ) | (1.2) |
Vukicevic and Furtula defined the geometric arithmetic (GA) index in [19] and the reverse geometric arithmetic (RGA) is presented as:
RGA(G)=∑ωμ∈E(G)2√R(ω)×R(μ)R(ω)+R(μ) | (1.3) |
Gutman et al. [20,21] defined the first and second Zagreb and its reverse indices as:
RM1(G)=∑ωμ∈E(G)(R(ω)+R(μ)) | (1.4) |
RM2(G)=∑ωμ∈E(G)(R(ω)×R(μ)) | (1.5) |
Shirdel et al. [22] introduced hyper Zagreb index. We defined the reverse hyper Zagreb index as:
RHM(G)=∑ωμ∈E(G)(R(ω)+R(μ))2 | (1.6) |
Furtula and Gutman [23] accomplished the forgotten index and its reverse forgotten index as:
RF(G)=∑ωμ∈E(G)((R(ω))2+(R(μ))2) | (1.7) |
Augmented Zagreb index was introduced by Furtula et al. [24] and the reverse augmented Zagreb index as:
RAZI(G)=∑ωμ∈E(G)(R(ω)×R(μ)R(ω)+R(μ)−2)3 | (1.8) |
Ranjini et al. [25] introduced the first redefined, second redefined and third redefined Zagreb indices. The reverse first redefined, second redefined and third redefined Zagreb indices are defined as:
RReZ1(G)=∑ωμ∈E(G)R(ω)+R(μ)R(ω)×R(μ) | (1.9) |
RReZ2(G)=∑ωμ∈E(G)R(ω)×R(μ)R(ω)+R(μ) | (1.10) |
RReZ3(G)=∑ωμ∈E(G)(R(ω)+R(μ))(R(ω)×R(μ)) | (1.11) |
For latest results on topological indices see [26,27,28,29,31,32,33,34,35]. In this paper, we compute the exact results for all the above reverse indices.
With the help of complete graphs of order 3 (K3), Chen et al. [36] assembled a hexagonal mesh. In terms of chemistry, these K3 graphs are also called oxide graphs. The Figure 1 is obtained by joining these K3 graphs. Two dimensional mesh graph HX(2) (see Figure 1 (a)), is obtained by joining six K3 graphs and three dimensional mesh graph HX(3) (see Figure 1 (b)) is obtained by putting K3 graphs around all side of HX(2). Furthermore, repeating the same process by putting the t K3 graph around each hexagon, we obtained the tth hexagonal mesh. To be noted that the one dimensional hexagonal mesh graph does not exist.
Simonraj et al. [37] created the new network which is named as third type of hex-derived networks. The graphically construction algorithm for third type of hexagonal hex-derived network HHDN3(t) (see Figure 2), triangular hex-derived network THDN3(t) (see Figure 3) and rectangular hex-derived network RHDN3(t) (see Figure 4) are defined in [38,39] and they determined some topological indices of these new derived networks. Some networks such as hexagonal, honeycomb, and grid networks, for instance, endure closeness to atomic or molecular lattice configurations. Related research that applies this theory and which could get additional advantages from the visions of the new research is found in [40,41,42,43,44,45,46].
Let Γ1=HHDN3(t) be the third type of hexagonal hex-derived network which is shown in Figure 2, where t≥4. The graph Γ1 has 21t2−39t+19 vertices from which 18t2−36t+18 vertices of reverse degree 15, 4 vertices of reverse degree 12, 6t−12 vertices of reverse degree 9 and 3t2−9t+9 vertices of reverse degree 1. There are 63t2−123t+60 number of edges of Γ1 is partitioned into nine classes based on their reverse degrees which are given in Eq (3.1).
|ER(ω),R(μ)(Γ1)|={9t2−33t+30,for; R(ω)=1,R(μ)=112t−24,for; R(ω)=9,R(μ)=16t−18,for; R(ω)=9,R(μ)=96,for; R(ω)=12,R(μ)=112,for; R(ω)=12,R(μ)=936t2−108t+84,for; R(ω)=15,R(μ)=136t−72,for; R(ω)=15,R(μ)=924,for; R(ω)=15,R(μ)=1218t2−36t+18,for; R(ω)=15,R(μ)=15 | (3.1) |
In the next theorem, we will calculate the reverse Randic index, reverse Zagreb indices, reverse forgotten index for Γ1 graph.
Theorem 3.1. Let Γ1 be the third type of hexagonal hex-derived network, then
● RRα(Γ1)=[9+36(15)α+18(225)α]t2+[−33+12(9)α+6(81)α−108(15)α+36(135)α−36(225)α]t+30−24(9)α−18(81)α+6(12)α+12(108)α+84(15)α−72(135)α+24(180)α+18(225)α
● RM1(Γ1)=1134t2−1782t+630
● RM2(Γ1)=4599t2−4299t−366
● RHM(Γ1)=25452t2−36300t+11922
● RF(Γ1)=16254t2−27702t+12654
Proof. Let Γ1 be the third type of hexagonal hex-derived network which is shown in Figure 2. The order of hexagonal hex derived network Γ1 is p=|Γ1|=21t2−39t+19 and size is q=63t2−123t+60. The edge partitioned of Γ1 based on their reverse degrees are shown in Eq (3.1). Reverse Randic index can be calculated by using Eq (3.1). Thus, from Eq (1.1), it follows,
RRα(Γ1)=(1)α|E1,1(Γ1)|+(9)α|E9,1(Γ1)|+(81)α|E9,9(Γ1)|+(12)α|E12,1(Γ1)|+(108)α|E12,9(Γ1)|+(15)α|E15,1(Γ1)|+(135)α|E15,9(Γ1)|+(180)α|E15,12(Γ1)|+(225)α|E15,15(Γ1)|.
=(9t2−33t+30)+(9)α(12t−24)+(81)α(6t−18)+(12)α(6)+(108)α(12)+(15)α(36t2−108t+84)+(135)α(36t−72)+(180)α(24)+(225)α(18t2−36t+18).
=[9+36(15)α+18(225)α]t2+[−33+12(9)α+6(81)α−108(15)α+36(135)α−36(225)α]t+30−24(9)α−18(81)α+6(12)α+12(108)α+84(15)α−72(135)α+24(180)α+18(225)α. Put α=1 and after some calculation, we get reverse second Zagreb index RM2(Γ1) as:
RM2(Γ1)=4599t2−4299t−366. | (3.2) |
Using the Eq (1.4), we can determine the reverse first Zagreb index RM1(Γ1) as:
RM1(Γ1)=2×|E1,1(Γ1)|+10×|E9,1(Γ1)|+18×|E9,9(Γ1)|+13×|E12,1(Γ1)|+21×|E12,9(Γ1)|+16×|E15,1(Γ1)|+24×|E15,9(Γ1)|+27×|E15,12(Γ1)|+30×|E15,15(Γ1)|.
By putting the values of from equation (3.1) and after simplification, we obtain:
RM1(Γ1)=1134t2−1782t+630. | (3.3) |
Using the Eq (1.6), we can determine the reverse hyper Zagreb index RHM(Γ1) as:
RHM(Γ1)=4×|E1,1(Γ1)|+100×|E9,1(Γ1)|+324×|E9,9(Γ1)|+169×|E12,1(Γ1)|+441×|E12,9(Γ1)|+256×|E15,1(Γ1)|+576×|E15,9(Γ1)|+729×|E15,12(Γ1)|+900×|E15,15(Γ1)|.
After simplification, we get
RHM(Γ1)=25452t2−36300t+11922 |
Using the Eq (1.7), we can determine the reverse forgotten index RF(Γ1)) as:
RF(Γ1))=2×|E1,1(Γ1)|+82×|E9,1(Γ1)|+162×|E9,9(Γ1)|+145×|E12,1(Γ1)|+225×|E12,9(Γ1)|+226×|E15,1(Γ1)|+306×|E15,9(Γ1)|+369×|E15,12(Γ1)|+450×|E15,15(Γ1)|.
After simplification, we get
RF(Γ1)=16254t2−27702t+12654 |
In the next theorem, we will calculate the reverse atom bond connectivity index, reverse geometric arithmetic index for Γ1 graph.
Theorem 3.2. Let Γ1 be the third type of hexagonal hex-derived network, then
● RABC(Γ1)=(12√2105+12√75)t2+(8√2+83−36√2105+4√3305−24√75)t−8−16√2+√33+2√573+28√2105−8√3305+4√5+12√75
● RGA(Γ1)=(27+9√152)t2+(−2795−9√152)t+785+792√391−15√152+32√53.
Proof. The reverse atom bond connectivity (RABC(Γ1)), can be determined by using Eq (1.2) and Eq (3.1), as follows:
RABC(Γ1)=0×|E1,1(Γ1)|+√89×|E9,1(Γ1)|+√1681×|E9,9(Γ1)|+√1112×|E12,1(Γ1)|+√19108×|E12,9(Γ1)|+√1415×|E15,1(Γ1)|+√22135×|E15,9(Γ1)|+√25180×|E15,12(Γ1)|+√28225×|E15,15(Γ1)|.
After some simplification, we get
RABC(Γ1)=(12√2105+12√75)t2+(8√2+83−36√2105+4√3305−24√75)t−8−16√2+√33+2√573+28√2105−8√3305+4√5+12√75.
The reverse geometric arithmetic (RGA(Γ1)), can be determined by using Eq (1.3) and Eq (3.1), as follows:
RGA(Γ1)=|E1,1(Γ1)|+2√910×|E9,1(Γ1)|+2√8118×|E9,9(Γ1)|+2√1213×|E12,1(Γ1)|+2√10821×|E12,9(Γ1)|+2√1516×|E15,1(Γ1)|+2√13524×|E15,9(Γ1)|+2√18027×|E15,12(Γ1)|+2√22530×|E15,15(Γ1)|.
After some simplification, we get
RGA(Γ1)=(27+9√152)t2+(−2795−9√152)t+785+792√391−15√152+32√53. In the next theorems, we will calculate the reverse redefined Zagreb indices for Γ1 graph.
Theorem 3.3. Let Γ1 be the third type of hexagonal hex-derived network, then
● RReZ1(Γ1)=294t25−2474t15+362930
● RReZ2(Γ1)=693t24−2949t20−939071820
● RReZ3(Γ1)=130158t2−142518t+24828
Proof. Reverse redefined Zagreb indices can be calculated by using Eq (3.1), the RReZ1(Γ1) by using Eq (1.9) as follows:
RReZ1(Γ1)=2×|E1,1(Γ1)|+109×|E9,1(Γ1)|+1881×|E9,9(Γ1)|+1312×|E12,1(Γ1)|+21108×|E12,9(Γ1)|+1615×|E15,1(Γ1)|+24135×|E15,9(Γ1)|+27108×|E15,12(Γ1)|+30225×|E15,15(Γ1)|.
After some simplification, we get
RReZ1(Γ1)=294t25−2474t15+362930. |
The RReZ2(Γ1) can be determined by using Eq (1.10) as follows:
RReZ2(Γ1)=12×|E1,1(Γ1)|+910×|E9,1(Γ1)|+8118×|E9,9(Γ1)|+1213×|E12,1(Γ1)|+10821×|E12,9(Γ1)|+1516×|E15,1(Γ1)|+13524×|E15,9(Γ1)|+10827×|E15,12(Γ1)|+22530×|E15,15(Γ1)|.
After some simplification, we get
RReZ2(Γ1)=693t24−2949t20−939071820. |
The RReZ3(Γ1) can be calculated by using Eq (1.11) as follows:
RReZ3(Γ1)=2×|E1,1(Γ1)|+90×|E9,1(Γ1)|+1458×|E9,9(Γ1)|+156×|E12,1(Γ1)|+2268×|E12,9(Γ1)|+240×|E15,1(Γ1)|+3240×|E15,9(Γ1)|+2916×|E15,12(Γ1)|+6750×|E15,15(Γ1)|.
After some simplification, we get
RReZ3(Γ1)=130158t2−142518t+24828. |
Let Γ2=THDN3(t) be the third type of triangular hex-derived network which is shown in Figure 3, where t≥4. The graph Γ2 has 7t2−11t+62 vertices. There are 21t2−39t+182 number of edges of Γ2 is partitioned into six classes based on their reverse degrees which are given in Eq (4.1). Now we calculated reverse degree based indices such as: reverse Randic index RRα, reverse atom bond connectivity index RABC, reverse geometric arithmetic index RGA, first reverse Zagreb index RM1, second reverse Zagreb index RM2, reverse forgotten index RF, reverse hyper Zagreb index RHM and reverse redefined Zagreb indices for Γ2 graph.
|ER(ω),R(μ)(Γ2)|={3t22−21t2+18,for; R(ω)=1,R(μ)=16t−18,for; R(ω)=9,R(μ)=13t−6,for; R(ω)=9,R(μ)=96t2−30t+36,for; R(ω)=15,R(μ)=118t−30,for; R(ω)=15,R(μ)=93t2−6t+9,for; R(ω)=15,R(μ)=15 | (4.1) |
In the next theorem, we will calculate the reverse Randic index, reverse Zagreb indices, reverse forgotten index for Γ2 graph.
Theorem 4.1. Let Γ2 be the third type of triangular hex-derived network, then
● RRα(Γ2)=(32+6(15)α+3(225)α)t2+(−212+6(9)α+3(81)α−30(15)α+18(135)α−6(225)α)t+18−18(9)α−6(81)α+36(15)α−30(135)α+9(225)α.
● RM1(Γ2)=189t2−135t−126
● RM2(Γ2)=1533t22+1833t2−2115
● RHM(Γ2)=4242t2−1182t−3636
● RF(Γ2)=2709t2−3015t+594
Proof. Let Γ2 be the third type of triangular hex-derived network which is shown in Figure 3. The order of triangular hex derived network Γ2 is p=|Γ2|=7t2−11t+62 and size is q=21t2−39t+182. The edge partitioned of Γ2 based on their reverse degrees are shown in Eq (4.1). Reverse Randic index can be calculated by using Eq (4.1). Thus, from Eq (1.1), it follows,
RRα(Γ2)=(1)α|E1,1(Γ2)|+(9)α|E9,1(Γ2)|+(81)α|E9,9(Γ2)|+(15)α|E15,1(Γ2)|+(135)α|E15,9(Γ2)|+(225)α|E15,15(Γ2)|.
After simplification, we get
RRα(Γ2)=(32+6(15)α+3(225)α)t2+(−212+6(9)α+3(81)α−30(15)α+18(135)α−6(225)α)t+18−18(9)α−6(81)α+36(15)α−30(135)α+9(225)α.
Put α=1 and after some calculation, we get reverse second Zagreb index RM2(Γ2) as:
RM2(Γ2)=1533t22+1833t2−2115 | (4.2) |
Using the Eq (1.4), we can determine the reverse first Zagreb index RM1(Γ2) as:
RM1(Γ2)=2×|E1,1(Γ1)|+10×|E9,1(Γ1)|+18×|E9,9(Γ1)|+16×|E15,1(Γ1)|+24×|E15,9(Γ1)|+30×|E15,15(Γ1)|.
By putting the values of from Eq (4.1) and after simplification, we obtain:
RM1(Γ2)=189t2−135t−126 | (4.3) |
Using the Eq (1.6), we can determine the reverse hyper Zagreb index RHM(Γ2) as:
RHM(Γ2)=4×|E1,1(Γ2)|+100×|E9,1(Γ2)|+324×|E9,9(Γ2)|+256×|E15,1(Γ2)|+576×|E15,9(Γ2)|+900×|E15,15(Γ2)|.
After simplification, we get
RHM(Γ2)=4242t2−1182t−3636. |
Using the Eq (1.7), we can determine the reverse forgotten index RF(Γ2)) as:
RF(Γ2))=2×|E1,1(Γ2)|+82×|E9,1(Γ2)|+162×|E9,9(Γ2)|+226×|E15,1(Γ2)|+306×|E15,9(Γ2)|+450×|E15,15(Γ2)|.
After simplification, we get
RF(Γ2)=2709t2−3015t+594. |
In the next theorem, we will calculate the reverse atom bond connectivity index, reverse geometric arithmetic index for Γ2 graph.
Theorem 4.2. Let Γ2 be the third type of triangular hex-derived network, then
● RABC(Γ2)=(2√2105+2√75)t2+(4√2+43−2√210+2√3305−4√75)t−83−12√2+12√2105−2√3303+6√75
● RGA(Γ2)=(92+3√154)t2+(−9910+3√154)t+515−3√15.
Proof. The reverse atom bond connectivity (RABC(Γ2)), can be determined by using Eq (1.2) and Eq (4.1), as follows:
RABC(Γ2)=0×|E1,1(Γ2)|+√89×|E9,1(Γ2)|+√1681×|E9,9(Γ2)|+√1415×|E15,1(Γ2)|+√22135×|E15,9(Γ2)|+√28225×|E15,15(Γ2)|.
After some simplification, we get
RABC(Γ2)=(2√2105+2√75)t2+(4√2+43−2√210+2√3305−4√75)t−83−12√2+12√2105−2√3303+6√75.
The reverse geometric arithmetic (RGA(Γ2)), can be determined by using Eq (1.3) and Eq (4.1), as follows:
RGA(Γ2)=|E1,1(Γ2)|+2√910×|E9,1(Γ2)|+2√8118×|E9,9(Γ2)|+2√1516×|E15,1(Γ2)|+2√13524×|E15,9(Γ2)|+2√22530×|E15,15(Γ2)|.
After some simplification, we get
RGA(Γ2)=(92+3√154)t2+(−9910+3√154)t+515−3√15. |
In the next theorems, we will calculate the reverse redefined Zagreb indices for Γ2 graph.
Theorem 4.3. Let Γ2 be the third type of triangular hex-derived network, then
● RReZ1(Γ2)=49t25−649t15+73415
● RReZ2(Γ2)=231t28+1671t40−101710
● RReZ3(Γ2)=21693t2+15513t−38142.
Proof. Reverse redefined Zagreb indices can be calculated by using Eq (4.1), the RReZ1(Γ2) by using Eq (1.9) as follows:
RReZ1(Γ2)=2×|E1,1(Γ2)|+109×|E9,1(Γ2)|+1881×|E9,9(Γ2)|+1615×|E15,1(Γ2)|+24135×|E15,9(Γ2)|+30225×|E15,15(Γ2)|.
After some simplification, we get
RReZ1(Γ2)=49t25−649t15+73415. |
The RReZ2(Γ2) can be determined by using Eq (1.10) as follows:
RReZ2(Γ2)=12×|E1,1(Γ2)|+910×|E9,1(Γ2)|+8118×|E9,9(Γ2)|+1516×|E15,1(Γ2)|+13524×|E15,9(Γ2)|+22530×|E15,15(Γ2)|.
After some simplification, we get
RReZ2(Γ2)=231t28+1671t40−101710. |
The RReZ3(Γ2) can be calculated by using Eq (1.11) as follows:
RReZ3(Γ2)=2×|E1,1(Γ2)|+90×|E9,1(Γ2)|+1458×|E9,9(Γ2)|+240×|E15,1(Γ2)|+3240×|E15,9(Γ2)|+6750×|E15,15(Γ2)|.
After some simplification, we get
RReZ3(Γ2)=21693t2+15513t−38142. |
In this section, we calculate certain reverse degree based topological indices of the third type of rectangular hex-derived network, RHDN3(t,w) of dimension t=w. Now we calculated reverse degree based indices such as: reverse Randic index RRα, reverse atom bond connectivity index RABC, reverse geometric arithmetic index RGA, first reverse Zagreb index RM1, second reverse Zagreb index RM2, reverse forgotten index RF, reverse augmented Zagreb index RAZI, reverse hyper Zagreb index RHM and reverse redefined Zagreb indices for Γ3 graph.
|ER(ω),R(μ)(Γ3)|={3t2−16t+21,for; R(ω)=1,R(μ)=18t−20,for; R(ω)=9,R(μ)=14t−10,for; R(ω)=9,R(μ)=92,for; R(ω)=12,R(μ)=14,for; R(ω)=12,R(μ)=912t2−48t+48,for; R(ω)=15,R(μ)=124t−44,for; R(ω)=15,R(μ)=98,for; R(ω)=15,R(μ)=126t2−12t+10,for; R(ω)=15,R(μ)=15 | (5.1) |
In the next theorem, we will calculate the reverse Randic index, reverse Zagreb indices, reverse forgotten index for Γ3 graph.
Theorem 5.1. Let Γ3 be the third type of rectangular hex-derived network, then
● RRα(Γ3)=(3+12(15)α+6(225)α)t2+(−16+8(9)α+4(81)α−48(15)α+24(135)α−12(225)α)t+21−20(9)α−10(81)α+2(12)α+4(108)α+48(15)α−44(135)α+8(180)α+10(225)α
● RM1(Γ3)=378t2−432t
● RM2(Γ3)=1533t2+200t−2043
● RHM(Γ3)=8484t2−7232t−1278
● RF(Γ3)=5418t2−7632t+2808.
Proof. Let Γ3 be the third type of rectangular hex-derived network which is shown in Figure 4. The order of hexagonal hex derived network Γ3 is p=|Γ1|=7t2−12t+6 and size is q=21t2−40t+19. The edge partitioned of Γ3 based on their reverse degrees are shown in Eq (5.1). Reverse Randic index can be calculated by using Eq (5.1). Thus, from Eq (1.1), it follows,
RRα(Γ3)=(1)α|E1,1(Γ3)|+(9)α|E9,1(Γ3)|+(81)α|E9,9(Γ3)|+(12)α|E12,1(Γ3)|+(108)α|E12,9(Γ3)|+(15)α|E15,1(Γ3)|+(135)α|E15,9(Γ3)|+(180)α|E15,12(Γ3)|+(225)α|E15,15(Γ3)|.
After Simplification, we get
RRα(Γ3)=(3+12(15)α+6(225)α)t2+(−16+8(9)α+4(81)α−48(15)α+24(135)α−12(225)α)t+21−20(9)α−10(81)α+2(12)α+4(108)α+48(15)α−44(135)α+8(180)α+10(225)α.
Put α=1 and after some calculation, we get reverse second Zagreb index RM2(Γ3) as:
RM2(Γ3)=1533t2+200t−2043. | (5.2) |
Using the Eq (1.4), we can determine the reverse first Zagreb index RM1(Γ3) as:
RM1(Γ3)=2×|E1,1(Γ3)|+10×|E9,1(Γ3)|+18×|E9,9(Γ3)|+13×|E12,1(Γ3)|+21×|E12,9(Γ3)|+16×|E15,1(Γ3)|+24×|E15,9(Γ3)|+27×|E15,12(Γ3)|+30×|E15,15(Γ3)|.
By putting the values of from Eq (5.1) and after simplification, we obtain:
RM1(Γ3)=378t2−432t. | (5.3) |
Using the Eq (1.6), we can determine the reverse hyper Zagreb index RHM(Γ3) as:
RHM(Γ3)=4×|E1,1(Γ3)|+100×|E9,1(Γ3)|+324×|E9,9(Γ3)|+169×|E12,1(Γ3)|+441×|E12,9(Γ3)|+256×|E15,1(Γ3)|+576×|E15,9(Γ3)|+729×|E15,12(Γ3)|+900×|E15,15(Γ3)|.
After simplification, we get
RHM(Γ3)=8484t2−7232t−1278. |
Using the Eq (1.7), we can determine the reverse forgotten index RF(Γ3)) as:
RF(Γ3))=2×|E1,1(Γ3)|+82×|E9,1(Γ3)|+162×|E9,9(Γ3)|+145×|E12,1(Γ3)|+225×|E12,9(Γ3)|+226×|E15,1(Γ3)|+306×|E15,9(Γ3)|+369×|E15,12(Γ3)|+450×|E15,15(Γ3)|.
After simplification, we get
RF(Γ3)=5418t2−7632t+2808. |
In the next theorem, we will calculate the reverse atom bond connectivity index, reverse geometric arithmetic index for Γ3 graph.
Theorem 5.2. Let Γ3 be the third type of rectangular hex-derived network, then
● RABC(Γ3)=(4√2105+4√75)t2+(16√23+169−16√2105+8√33015−8√75)t−409−40√23+√333+2√579+16√2105−44√33045+4√53+4√73.
● RGA(Γ3)=(9+3√152)t2−96t5+9+264√391−5√15+32√59.
Proof. The reverse atom bond connectivity (RABC(Γ3)), can be determined by using Eq (1.2) and Eq (5.1), as follows:
RABC(Γ3)=0×|E1,1(Γ3)|+√89×|E9,1(Γ3)|+√1681×|E9,9(Γ3)|+√1112×|E12,1(Γ3)|+√19108×|E12,9(Γ3)|+√1415×|E15,1(Γ3)|+√22135×|E15,9(Γ3)|+√25180×|E15,12(Γ3)|+√28225×|E15,15(Γ3)|.
After some simplification, we get
RABC(Γ3)=(4√2105+4√75)t2+(16√23+169−16√2105+8√33015−8√75)t−409−40√23+√333+2√579+16√2105−44√33045+4√53+4√73.
The reverse geometric arithmetic (RGA(Γ3)), can be determined by using Eq (1.3) and Eq (5.1), as follows:
RGA(Γ3)=|E1,1(Γ3)|+2√910×|E9,1(Γ3)|+2√8118×|E9,9(Γ3)|+2√1213×|E12,1(Γ3)|+2√10821×|E12,9(Γ3)|+2√1516×|E15,1(Γ3)|+2√13524×|E15,9(Γ3)|+2√18027×|E15,12(Γ3)|+2√22530×|E15,15(Γ3)|.
After some simplification, we get
RGA(Γ3)=(9+3√152)t2−96t5+9+264√391−5√15+32√59.
In the next theorems, we will calculate the reverse redefined Zagreb indices for Γ3 graph.
Theorem 5.3. Let Γ3 be the third type of rectangular hex-derived network, then
● RReZ1(Γ3)=98t25−3184t45+597790
● RReZ2(Γ3)=231t24+86t5−28460273
● RReZ3(Γ3)=43386t2−8240t−31614.
Proof. Reverse redefined Zagreb indices can be calculated by using Eq (5.1), the RReZ1(Γ3) by using Eq (1.9) as follows:
RReZ1(Γ3)=2×|E1,1(Γ3)|+109×|E9,1(Γ3)|+1881×|E9,9(Γ3)|+1312×|E12,1(Γ3)|+21108×|E12,9(Γ3)|+1615×|E15,1(Γ3)|+24135×|E15,9(Γ3)|+27108×|E15,12(Γ3)|+30225×|E15,15(Γ3)|.
After some simplification, we get
RReZ1(Γ3)=98t25−3184t45+597790. |
The RReZ2(Γ1) can be determined by using equation (1.10) as follows:
RReZ2(Γ3)=12×|E1,1(Γ3)|+910×|E9,1(Γ3)|+8118×|E9,9(Γ3)|+1213×|E12,1(Γ3)|+10821×|E12,9(Γ3)|+1516×|E15,1(Γ3)|+13524×|E15,9(Γ3)|+10827×|E15,12(Γ3)|+22530×|E15,15(Γ3)|.
After some simplification, we get
RReZ2(Γ3)=231t24+86t5−28460273. |
The RReZ3(Γ3) can be calculated by using Eq (1.11) as follows:
RReZ3(Γ3)=2×|E1,1(Γ3)|+90×|E9,1(Γ3)|+1458×|E9,9(Γ3)|+156×|E12,1(Γ3)|+2268×|E12,9(Γ3)|+240×|E15,1(Γ3)|+3240×|E15,9(Γ3)|+2916×|E15,12(Γ3)|+6750×|E15,15(Γ3)|.
After some simplification, we get
RReZ3(Γ3)=43386t2−8240t−31614. |
In this article, we have calculated the exact solutions of reverse degree-based topological descriptors for hex-derived networks of third type. Hex-derived network has a variety of useful applications in pharmacy, electronics, and networking. We obtained the reverse degree-based indices such as reverse Randic index, reverse atom bond connectivity index, reverse geometric arithmetic index, reverse Zagreb indices, reverse redefined Zagreb indices for hex derived networks. These results may be helpful for people working in computer science and chemistry who encounter hex-derived networks.
The authors declare that there is no conflict of financial interests regarding the publication of this paper.
[1] |
Rumbaugh DM, Hopkins WD, Washburn DA, et al. (1989) Lana chimpanzee learns to count by NUMATH: a summary of a videotaped experimental repxort. Psychol Rec 39: 459-470. doi: 10.1007/BF03395074
![]() |
[2] |
Spinelli S, Pennanen L, Dettling AC, et al. (2004) Performance of the marmoset monkey on computerized tasks of attention and working memory. Cogn Brain Res 19: 123-137. doi: 10.1016/j.cogbrainres.2003.11.007
![]() |
[3] |
Mandell DJ, Sackett GP (2009) Comparability of developmental cognitive assessments between standard and computer testing methods. Dev Psychobiol 51: 1-13. doi: 10.1002/dev.20329
![]() |
[4] | Truppa V, Garofoli D, Castorina G, et al. (2010) Identity concept learning in matching-to-sample tasks by tufted capuchin monkeys (Cebus apella). Anim Cogn 13: 835-848. |
[5] |
Vonk J, Torgerson-White L, McGuire M, et al. (2014) Quantity estimation and comparison in western lowland gorillas (Gorilla gorilla gorilla). Anim Cogn 17: 755-765. doi: 10.1007/s10071-013-0707-y
![]() |
[6] |
Allritz M, Call J, Borkenau P (2016) How chimpanzees (Pan troglodytes) perform in a modified emotional Stroop task. Anim Cogn 19: 435-449. doi: 10.1007/s10071-015-0944-3
![]() |
[7] |
Wagner KE, Hopper LM, Ross SR (2016) Asymmetries in the production of self-directed behavior by chimpanzees and gorillas during a computerized cognitive test. Anim Cogn 19: 343-350. doi: 10.1007/s10071-015-0937-2
![]() |
[8] |
Andrews MW, Rosenblum LA (1993) Live-Social-Video Reward Maintains Joystick Task Performance in Bonnet Macaques. Percept Mot Skills 77: 755-763. doi: 10.2466/pms.1993.77.3.755
![]() |
[9] |
Andrews MW (1993) Video-task paradigm extended to Saimiri. Percept Mot Skills 76: 183–191. doi: 10.2466/pms.1993.76.1.183
![]() |
[10] | Andrews MW, Rosenblum LA (1994) Automated recording of individual performance and hand preference during joystick-task acquisition in group-living bonnet macaques (Macaca radiata). J. Comp Psychol 108: 358-362. |
[11] | Andrews MW (1994) Effective use of a joystick by an infant monkey. Am J Primatol 32: 141-144. |
[12] |
Leighty KA, Fragaszy DM (2003) Joystick acquisition in tufted capuchins (Cebus apella). Anim Cogn 6: 141-148. doi: 10.1007/s10071-003-0176-9
![]() |
[13] | Scott L, Pearce P, Fairhall S, et al. (2010) Training Nonhuman Primates to Cooperate With Scientific Procedures in Applied Biomedical Research. J Appl Anim Welf Sci 6: 199-207. |
[14] | Judge PG, Kurdziel LB, Wright RM, et al. (2012) Picture recognition of food by macaques (Macaca silenus). Anim Cogn 15: 313-325. |
[15] |
Joly M, Ammersdörfer S, Schmidtke D, et al. (2014) Touchscreen-Based Cognitive Tasks Reveal Age-Related Impairment in a Primate Aging Model, the Grey Mouse Lemur (Microcebus murinus). PLoS One 9: e109393. doi: 10.1371/journal.pone.0109393
![]() |
[16] |
Schmitt V, Federspiel I, Eckert J, et al. (2016) Do monkeys compare themselves to others? Anim Cogn 19: 417-428. doi: 10.1007/s10071-015-0943-4
![]() |
[17] | Jacobsen ME, Barros M, Maior RS (2017) MK-801 reduces sensitivity to Müller-Lyer's illusion in capuchin monkeys. Behav Brain Res 316: 54-58. |
[18] |
Washburn DA, Hopkins WD, Rumbaugh DM (1989) Video-task assessment of learning and memory in macaques (Macaca mulatta): effects of stimulus movement on performance. J Exp Psychol Anim Behav Process 15: 393-400. doi: 10.1037/0097-7403.15.4.393
![]() |
[19] | Richardson WK, Washburn DA, Hopkins WD, et al. (1990) The NASA/LRC computerized test system. Behav Res Methods Instruments & amp Comput 22: 127-131. |
[20] | Washburn DA, Hopkins WD, Rumbaugh DM (1991) Perceived control in rhesus monkeys (Macaca mulatta): enhanced video-task performance. J Exp Psychol Anim Behav Process 17: 123-129. |
[21] | Washburn DA, Rumbaugh DM (1992) Investigations of rhesus monkey video-task performance: evidence for enrichment. Contemp Top Lab Anim Sci 31: 6-10. |
[22] |
Washburn DA, Hopkins WD (1994) Videotape-versus pellet-reward preferences in joystick tasks by macaques. Percept Mot Skills 78: 48-50. doi: 10.2466/pms.1994.78.1.48
![]() |
[23] |
Weed MR, Taffe M A, Polis I, et al. (1999) Performance norms for a rhesus monkey neuropsychological testing battery: acquisition and long-term performance. Brain Res Cogn Brain Res 8: 185-201. doi: 10.1016/S0926-6410(99)00020-8
![]() |
[24] |
Fagot J, Paleressompoulle D (2009) Automatic testing of cognitive performance in baboons maintained in social groups. Behav Res Methods 41: 396-404. doi: 10.3758/BRM.41.2.396
![]() |
[25] |
Watson KK, Ghodasra JH, Furlong MA, et al. (2012) Visual preferences for sex and status in female rhesus macaques. Anim Cogn 15: 401-407. doi: 10.1007/s10071-011-0467-5
![]() |
[26] |
Gazes RP, Brown EK, Basile BM, et al. (2013) Automated cognitive testing of monkeys in social groups yields results comparable to individual laboratory-based testing. Anim Cogn 16: 445-458. doi: 10.1007/s10071-012-0585-8
![]() |
[27] |
Hutsell BA, Banks ML (2015) Effects of environmental and pharmacological manipulations on a novel delayed nonmatching-to-sample 'working memory' procedure in unrestrained rhesus monkeys. J Neurosci Methods 251: 62-71. doi: 10.1016/j.jneumeth.2015.05.009
![]() |
[28] |
Calapai A, Berger M, Niessing M, et al. (2017) A cage-based training, cognitive testing and enrichment system optimized for rhesus macaques in neuroscience research. Behav Res Methods 49: 35-45. doi: 10.3758/s13428-016-0707-3
![]() |
[29] |
Sorwell KG, Renner L, Weiss AR, et al. (2017) Cognition in aged rhesus monkeys: effect of DHEA and correlation with steroidogenic gene expression. Genes Brain Behav 16: 361-368. doi: 10.1111/gbb.12351
![]() |
[30] | Fiuzat EC, Rhodes SEV, Murray EA (2017) The Role of Orbitofrontal–Amygdala Interactions in Updating Action–Outcome Valuations in Macaques. J Neurosci 10: 1839-1816. |
[31] |
Fagot J, Parron C (2010) Relational Matching in Baboons (Papio papio) With Reduced Grouping Requirements. J Exp Psychol Anim Behav Process 36: 184-193. doi: 10.1037/a0017169
![]() |
[32] |
Fagot J, Bonté E (2010) Automated testing of cognitive performance in monkeys: Use of a battery of computerized test systems by a troop of semi-free-ranging baboons (Papio papio). Behav Res Methods 42: 507-516. doi: 10.3758/BRM.42.2.507
![]() |
[33] | Fagot J, Gullstrand J, Kemp C, et al. (2014) Effects of freely accessible computerized test systems on the spontaneous behaviors and stress level of Guinea baboons (Papio papio). Am J Primatol 76: 56-64. |
[34] | Washburn DA, Rumbaugh DM (1992) Testing primates with joystick-based automated apparatus: Lessons from the Language Research Center's Computerized Test System. Behav Res Methods Instruments Comput 24: 157-164. |
[35] |
Washburn DA, Harper S, Rumbaugh DM (1994) Computer-task testing of rhesus monkeys (Macaca mulatta) in the social milieu. Primates 35: 343-351. doi: 10.1007/BF02382730
![]() |
[36] |
Bennett AJ, Perkins CM, Tenpas PD, et al. (2016) Moving evidence into practice: cost analysis and assessment of macaques' sustained behavioral engagement with videogames and foraging devices. Am J Primatol 78: 1250-1264. doi: 10.1002/ajp.22579
![]() |
[37] | Srihasam K, Vincent JL, Livingstone MS (2014) Novel domain formation reveals proto-architecture in inferotemporal cortex. Nat Neurosci 12: 1776-1783. |
[38] |
Bangasser DA, Shors TJ (2010) Critical brain circuits at the intersection between stress and learning. Neurosci Biobehav Rev 34: 1223-1233. doi: 10.1016/j.neubiorev.2010.02.002
![]() |
[39] |
Slater H, Milne AE, Wilson B, et al. (2016) Individually customisable non-invasive head immobilisation system for non-human primates with an option for voluntary engagement. J Neurosci Methods 269: 46-60. doi: 10.1016/j.jneumeth.2016.05.009
![]() |
[40] |
Howell LL, Hoffman JM, Votaw JR, et al. (2001) An apparatus and behavioral training protocol to conduct positron emission tomography (PET) neuroimaging in conscious rhesus monkeys. J Neurosci Methods 106: 161-169. doi: 10.1016/S0165-0270(01)00345-4
![]() |
[41] |
Drucker CB, Carlson ML, Toda K, et al. (2015) Non-invasive primate head restraint using thermoplastic masks. J Neurosci Methods 253: 90-100. doi: 10.1016/j.jneumeth.2015.06.013
![]() |
[42] |
Machado CJ, Nelson EE (2011) Eye-tracking with nonhuman primates is now more accessible than ever before. Am J Primatol 73: 562-569. doi: 10.1002/ajp.20928
![]() |
[43] | Fairhall SJ, Dickson CA, Scott L, et al. (2006) A non-invasive method for studying an index of pupil diameter and visual performance in the rhesus monkey. J Med Primatol 35: 67-77. |
[44] |
Kiorpes L, Price T, Hall-Haro C, et al. (2012) Development of sensitivity to global form and motion in macaque monkeys (Macaca nemestrina). Vision Res 63: 34-42. doi: 10.1016/j.visres.2012.04.018
![]() |
1. | Saima Parveen, Fozia Bashir Farooq, Nadeem Ul Hassan Awan, Rakotondrajao Fanja, Muhammad Farooq Choudhary, Muhammad Kamran Jamil, Topological Indices of Drugs Used in Rheumatoid Arthritis Treatment and Its QSPR Modeling, 2022, 2022, 2314-4785, 1, 10.1155/2022/1562125 | |
2. | Ali N.A. Koam, Moin A. Ansari, Azeem Haider, Ali Ahmad, Muhammad Azeem, Topological properties of reverse-degree-based indices for sodalite materials network, 2022, 15, 18785352, 104160, 10.1016/j.arabjc.2022.104160 | |
3. | Ali N. A. Koam, Ali Ahmad, Ashfaq Ahmed Qummer, Gohar Ali, On the Study of Reverse Degree-Based Topological Properties for the Third Type of p th Chain Hex-Derived Network, 2021, 2021, 2314-4785, 1, 10.1155/2021/4540276 | |
4. | Usman Babar, Asim Naseem, Hani Shaker, Mian Muhammad Zobair, Haidar Ali, Andrea Penoni, Eccentricity-Based Topological Descriptors of First Type of Hex-Derived Network, 2022, 2022, 2090-9071, 1, 10.1155/2022/3340057 | |
5. | Vignesh Ravi, QSPR analysis of drugs used for treatment of hepatitis via reduced reverse degree-based topological descriptors, 2024, 99, 0031-8949, 105236, 10.1088/1402-4896/ad729d | |
6. | Muhammad Mudassar Hassan, Topological Descriptors of Molecular Networks via Reverse Degree, 2023, 1040-6638, 1, 10.1080/10406638.2023.2274473 | |
7. | Qasem M. Tawhari, Muhammad Naeem, Abdul Rauf, Muhammad Kamran Siddiqui, Oladele Oyelakin, Modeling and estimation of physiochemical properties of cancer drugs using entropy measures, 2025, 15, 2045-2322, 10.1038/s41598-025-87755-5 |