Citation: Christopher D. Chambers, Eva Feredoes, Suresh D. Muthukumaraswamy, Peter J. Etchells. Instead of “playing the game” it is time to change the rules: Registered Reports at AIMS Neuroscience and beyond[J]. AIMS Neuroscience, 2014, 1(1): 4-17. doi: 10.3934/Neuroscience.2014.1.4
[1] | William Ramírez, Can Kızılateş, Daniel Bedoya, Clemente Cesarano, Cheon Seoung Ryoo . On certain properties of three parametric kinds of Apostol-type unified Bernoulli-Euler polynomials. AIMS Mathematics, 2025, 10(1): 137-158. doi: 10.3934/math.2025008 |
[2] | Letelier Castilla, William Ramírez, Clemente Cesarano, Shahid Ahmad Wani, Maria-Fernanda Heredia-Moyano . A new class of generalized Apostol–type Frobenius–Euler polynomials. AIMS Mathematics, 2025, 10(2): 3623-3641. doi: 10.3934/math.2025167 |
[3] | Mohra Zayed, Taghreed Alqurashi, Shahid Ahmad Wani, Cheon Seoung Ryoo, William Ramírez . Several characterizations of bivariate quantum-Hermite-Appell Polynomials and the structure of their zeros. AIMS Mathematics, 2025, 10(5): 11184-11207. doi: 10.3934/math.2025507 |
[4] | Mohra Zayed, Shahid Ahmad Wani . Properties and applications of generalized 1-parameter 3-variable Hermite-based Appell polynomials. AIMS Mathematics, 2024, 9(9): 25145-25165. doi: 10.3934/math.20241226 |
[5] | Mohra Zayed, Shahid Ahmad Wani, Georgia Irina Oros, William Ramírez . Unraveling multivariable Hermite-Apostol-type Frobenius-Genocchi polynomials via fractional operators. AIMS Mathematics, 2024, 9(7): 17291-17304. doi: 10.3934/math.2024840 |
[6] | Waleed Mohamed Abd-Elhameed, Omar Mazen Alqubori . New expressions for certain polynomials combining Fibonacci and Lucas polynomials. AIMS Mathematics, 2025, 10(2): 2930-2957. doi: 10.3934/math.2025136 |
[7] | Rajiniganth Pandurangan, Sabri T. M. Thabet, Imed Kedim, Miguel Vivas-Cortez . On the Generalized $ \overline{\theta({\tt{t}})} $-Fibonacci sequences and its bifurcation analysis. AIMS Mathematics, 2025, 10(1): 972-987. doi: 10.3934/math.2025046 |
[8] | Mohra Zayed, Shahid Ahmad Wani, William Ramírez, Clemente Cesarano . Advancements in $ q $-Hermite-Appell polynomials: a three-dimensional exploration. AIMS Mathematics, 2024, 9(10): 26799-26824. doi: 10.3934/math.20241303 |
[9] | Tingting Du, Li Wang . On the power sums problem of bi-periodic Fibonacci and Lucas polynomials. AIMS Mathematics, 2024, 9(4): 7810-7818. doi: 10.3934/math.2024379 |
[10] | Tingting Du, Zhengang Wu . Some identities involving the bi-periodic Fibonacci and Lucas polynomials. AIMS Mathematics, 2023, 8(3): 5838-5846. doi: 10.3934/math.2023294 |
Special polynomials, generating functions, and the trigonometric functions are used not only in mathematics but also in many branches of science such as statistics, mathematical physics, and engineering.
Let $ \mathbb{N}, \mathbb{Z}, \mathbb{R} $ and $ \mathbb{C} $ indicate the set of positive integers, the set of integers, the set of real numbers, and the set of complex numbers, respectively. Let $ \alpha \in \mathbb{N} _{0} = \mathbb{N} \cup \left\{ 0\right\} $ and $ \lambda \in \mathbb{C} $ (or $ \mathbb{R}). $
The Apostol-Bernoulli polynomials $ \mathcal{B}_{n}^{(\alpha)}(x; \lambda) $ of order $ \alpha $ are defined by means of the following exponential generating function (see [1,2,3]):
$ ∞∑n=0B(α)n(x;λ)tnn!=(tλet−1)αext, $
|
(1.1) |
$ (λ∈C; |t|<2π, when λ=1; and |t|<|logλ|, when λ≠1). $
|
(1.2) |
Note that $ \mathcal{B}_{n}^{(\alpha)}(x; 1) = \mathcal{B}_{n}^{(\alpha)}(x) $ denote the Bernoulli polynomials of order $ \alpha $ and $ \mathcal{B} _{n}^{(\alpha)}(0;\lambda) = \mathcal{B}_{n}^{(\alpha)}(\lambda) $ denote the Apostol-Bernoulli numbers of order $ \alpha, $ respectively. Setting $ \alpha = 1 $ into (1.1), we get $ \mathcal{B}_{n}^{(1)}(\lambda) = \mathcal{B}_{n}(\lambda) $ which are the so-called Apostol-Bernoulli numbers.
The Apostol-Euler polynomials $ \mathcal{E}_{n}^{(\alpha)}(x; \lambda) $ of order $ \alpha $ are defined by means of the following exponential generating function (see [4,5]):
$ ∞∑n=0E(α)n(x;λ)tnn!=(2λet+1)αext, $
|
(1.3) |
$ (|t|<π when λ=1; |t|<|log(−λ)| when λ≠1;1α:=1). $
|
(1.4) |
By virtue of (1.3), we have $ \mathcal{E}_{n}^{(\alpha)}(x; 1) = \mathcal{E}_{n}^{(\alpha)}(x) $ denote the Euler polynomials of order $ \alpha $ and $ \mathcal{E}_{n}^{(\alpha)}(0;\lambda) = \mathcal{E} _{n}^{(\alpha)}(\lambda) $ denote the Apostol-Euler numbers of order $ \alpha, $ respectively. Setting $ \alpha = 1 $ into (1.3), we get $ \mathcal{E}_{n}^{(1)}(\lambda) = \mathcal{E}_{n}(\lambda) $ which are the so-called Apostol-Euler numbers.
The Apostol-Genocchi polynomials $ \mathcal{G}_{n}^{(\alpha)}(x; \lambda) $ of order $ \alpha $ are defined by means of the following exponential generating function (see [6]):
$ ∞∑n=0G(α)n(x;λ)tnn!=(2tλet+1)αext, $
|
(1.5) |
$ (|t|<π when λ=1; |t|<|log(−λ)| when λ≠1;1α:=1). $
|
(1.6) |
By virtue of (1.5), we have $ \mathcal{G}_{n}^{(\alpha)}(x; 1) = \mathcal{G}_{n}^{(\alpha)}(x) $ denote the Genocchi polynomials of order $ \alpha $ and $ \mathcal{G}_{n}^{(\alpha)}(0;\lambda) = \mathcal{G} _{n}^{(\alpha)}(\lambda) $ denote the Apostol-Genocchi numbers of order $ \alpha, $ respectively. Setting $ \alpha = 1 $ into (1.5), we get $ \mathcal{G}_{n}^{(1)}(\lambda) = \mathcal{G}_{n}(\lambda) $ which are the so-called Apostol-Genocchi numbers.
In recent years, many generalizations of these polynomials have been studied by mathematicians. See for example [7,8,9,10,11,12,13,14,15,16,17,18,19,20]. With the aid of these polynomials two parametric kinds of Apostol-Bernoulli, Apostol-Euler and Apostol-Genocchi of order $ \alpha $ defined by Srivastava et al. [15,19] whose generating functions are given by
$ ∞∑n=0B(c,α)n(x,y;λ)tnn!=(tλet−1)αextcos(yt), $
|
(1.7) |
$ ∞∑n=0B(s,α)n(x,y;λ)tnn!=(tλet−1)αextsin(yt), $
|
(1.8) |
and
$ ∞∑n=0E(c,α)n(x,y;λ)tnn!=(2λet+1)αextcos(yt), $
|
(1.9) |
$ ∞∑n=0E(s,α)n(x,y;λ)tnn!=(2λet+1)αextsin(yt), $
|
(1.10) |
and
$ ∞∑n=0G(c,α)n(x,y;λ)tnn!=(2tλet+1)αextcos(yt), $
|
(1.11) |
$ ∞∑n=0G(s,α)n(x,y;λ)tnn!=(2tλet+1)αextsin(yt). $
|
(1.12) |
Remark 1.1. Note that the symbols $ c $ and $ s $ occurring in the superscripts on the left-hand sides of these last Eqs (1.7)–(1.12) indicate the presence of the trigonometric cosine and the trigonometric sine functions, respectively, in the generating functions on the corresponding right-hand sides.
The motivation of this paper is to obtain $ F $-analogues of the Eqs (1.7)–(1.12) with the help of the Golden calculus. Namely, we define the parametric Apostol Bernoulli-Fibonacci, the Apostol Euler-Fibonacci, and the Apostol Genocchi-Fibonacci polynomials by means of the Golden Calculus. Utilizing the Golden-Euler formula and these generating functions with their functional equations, numerous properties of these polynomials are given. The special cases of these polynomials and numbers are studied in detail. The rest of this paper is structured as follows. In Section 2, we present some key definitions and properties that are crucial to Golden calculus. Then, with the help of the Golden calculus, we mention some polynomials that have been previously defined in the literature. In Section 3, considering the properties of Golden calculus, we introduce six families of two-parameter polynomials with the help of Golden trigonometric functions and exponential functions. Then, in the three subsections of this section, we examine the various properties of these polynomials defined with the help of generating functions and their functional equations.
In this part of the our paper, we mention some definitions and properties related to Golden calculus (or $ F $-calculus).
The Fibonacci sequence is defined by means of the following recurrence relation:
$ Fn=Fn−1+Fn−2, n≥2 $
|
where $ F_{0} = 0, $ $ F_{1} = 1. $ Fibonacci numbers can be expressed explicitly as
$ Fn=αn−βnα−β, $
|
where $ \alpha = \frac{1+\sqrt{5}}{2} $ and $ \beta = \frac{1-\sqrt{5}}{2}. $ $ \alpha \approx 1, 6180339\ldots $ is called Golden ratio. The golden ratio is frequently used in many branches of science as well as mathematics. Interestingly, this mysterious number also appears in architecture and art. Miscellaneous properties of Golden calculus have been defined and studied in detail by Pashaev and Nalci [21]. Therefore, [21] is the key reference for Golden calculus. In addition readers can also refer to Pashaev [22], Krot [23], and Ozvatan [24].
The product of Fibonacci numbers, called $ F $-factorial was defined as follows:
$ F1F2F3…Fn=Fn!, $
|
(2.1) |
where $ F_{0}! = 1. $ The binomial theorem for the $ F $-analogues (or-Golden binomial theorem) are given by
$ (x+y)nF=n∑k=0(−1)(k2)(nk)Fxn−kyk, $
|
(2.2) |
in terms of the Golden binomial coefficients, called as Fibonomials
$ (nk)F=Fn!Fn−k!Fk! $
|
with $ n $ and $ k $ being nonnegative integers, $ n\geq k. $ Golden binomial coefficients (or-Fibonomial coefficients) satisfy the following identities as follows:
$ (nk)F=βk(n−1k)F+αn−k(n−1k−1)F, $
|
and
$ (nk)F=αk(n−1k)F+βn−k(n−1k−1)F. $
|
The Golden derivative defined as follows:
$ ∂F∂Fx(f(x))=f(αx)−f(−xα)(α−(−1α))x=f(αx)−f(βx)(α−β)x. $
|
(2.3) |
The Golden Leibnitz rule and the Golden derivative of the quotient of $ f(x) $ and $ g(x) $ can be given as
$ ∂F∂Fx(f(x)g(x))=∂F∂Fxf(x)g(αx)+f(−xα)∂F∂Fxg(x), $
|
$ ∂F∂Fx(f(x)g(x))=∂F∂Fxf(x)g(αx)−∂F∂Fxg(x)f(αx)g(αx)g(−xα), $
|
respectively. The first and second type of Golden exponential functions are defined as
$ exF=∞∑n=0(x)nFFn!, $
|
(2.4) |
and
$ ExF=∞∑n=0(−1)(n2)(x)nFFn!. $
|
(2.5) |
Briefly, we use the following notations throughout the paper
$ exF=∞∑n=0xnFn!, $
|
(2.6) |
and
$ ExF=∞∑n=0(−1)(n2)xnFn!. $
|
(2.7) |
Using the Eqs (2.2), (2.4), and (2.5), the following equation can be given
$ exFEyF=e(x+y)FF. $
|
(2.8) |
The Fibonacci cosine and sine (Golden trigonometric functions) are defined by the power series as
$ cosF(x)=∞∑n=0(−1)nx2nF2n!, $
|
(2.9) |
and
$ sinF(x)=∞∑n=0(−1)nx2n+1F2n+1!. $
|
(2.10) |
For arbitrary number $ k $, Golden derivatives of $ e_{F}^{kx}, $ $ E_{F}^{kx}, $ $ \cos _{F}\left(kx\right), $ and $ \sin _{F}\left(kx\right) $ functions are
$ ∂F∂Fx(ekxF)=kekxF, $
|
(2.11) |
$ ∂F∂Fx(EkxF)=kE−kxF, $
|
(2.12) |
$ ∂F∂Fx(cosF(kx))=−ksinF(kx), $
|
(2.13) |
and
$ ∂F∂Fx(sinF(x))=kcosF(kx). $
|
(2.14) |
Using (2.4), Pashaev and Ozvatan [25] defined the Bernoulli-Fibonacci polynomials and related numbers. After that Kus et al. [26] introduced the Euler-Fibonacci numbers and polynomials. Moreover they gave some identities and matrix representations for Bernoulli-Fibonacci polynomials and Euler-Fibonacci polynomials. Very recently, Tuglu and Ercan [27] (also, [28]) defined the generalized Bernoulli-Fibonacci polynomials and generalized Euler-Fibonacci polynomials, namely, they studied the Apostol Bernoulli-Fibonacci and Apostol Euler-Fibonacci of order $ \alpha $ as follows:
$ (tλetF−1)αextF=∞∑n=0Bαn,F(x;λ)tnFn!, $
|
and
$ (2λetF+1)αextF=∞∑n=0Eαn,F(x;λ)tnFn!. $
|
Krot [23] defined the fibonomial convolution of two sequences as follows. Let $ a_{n} $ and $ b_{n} $ are two sequences with the following generating functions
$ AF(t)=∞∑n=0antnFn! and BF(t)=∞∑n=0bntnFn!, $
|
then their fibonomial convolution is defined as
$ cn=an∗bn=n∑l=0(nk)Falbn−l. $
|
So, the generating function takes the form
$ CF(t)=AF(t)BF(t)=∞∑n=0cntnFn!. $
|
Let $ p, q\in \mathbb{R}. $ The Taylor series of the functions $ e_{F}^{pt}\cos _{F}\left(qt\right) $ and $ e_{F}^{pt}\sin _{F}\left(qt\right) $ can be express as follows:
$ eptFcosF(qt)=∞∑n=0Cn,F(p,q)tnFn!, $
|
(3.1) |
and
$ eptFsinF(qt)=∞∑n=0Sn,F(p,q)tnFn!, $
|
(3.2) |
where
$ Cn,F(p,q)=⌊n2⌋∑k=0(−1)k(n2k)F pn−2kq2k, $
|
(3.3) |
$ Sn,F(p,q)=⌊n−12⌋∑k=0(−1)k(n2k+1)F pn−2k−1q2k+1. $
|
(3.4) |
By virtue of above definitions of $ \mathcal{C}_{n, F}\left(p, q\right) $ and $ \mathcal{S}_{n, F}\left(p, q\right) $ and the numbers $ \mathcal{B} _{n, F}^{\left(\alpha \right) }\left(\lambda \right), $ $ \mathcal{E} _{n, F}^{\left(\alpha \right) }\left(\lambda \right) $ and $ \mathcal{G} _{n, F}^{\left(\alpha \right) }\left(\lambda \right) $, we can define two parametric types of the Apostol Bernoulli-Fibonacci polynomials, the Apostol Euler-Fibonacci polynomials, and the Apostol Genocchi-Fibonacci polynomials of order $ \alpha, $ as follows:
$ B(c,α)n,F(p,q;λ)=B(α)n,F(λ)∗Cn,F(p,q), $
|
$ B(s,α)n,F(p,q;λ)=B(α)n,F(λ)∗Sn,F(p,q), $
|
$ E(c,α)n,F(p,q;λ)=E(α)n,F(λ)∗Cn,F(p,q), $
|
$ E(s,α)n,F(p,q;λ)=E(α)n,F(λ)∗Sn,F(p,q), $
|
$ G(c,α)n,F(p,q;λ)=G(α)n,F(λ)∗Cn,F(p,q), $
|
$ G(s,α)n,F(p,q;λ)=G(α)n,F(λ)∗Sn,F(p,q), $
|
whose exponential generating functions are given, respectively, by
$ (tλetF−1)αeptFcosF(qt)=∞∑n=0B(c,α)n,F(p,q;λ)tnFn!, $
|
(3.5) |
$ (tλetF−1)αeptFsinF(qt)=∞∑n=0B(s,α)n,F(p,q;λ)tnFn!, $
|
(3.6) |
$ (2λetF+1)αeptFcosF(qt)=∞∑n=0E(c,α)n,F(p,q;λ)tnFn!, $
|
(3.7) |
$ (2λetF+1)αeptFsinF(qt)=∞∑n=0E(s,α)n,F(p,q;λ)tnFn!, $
|
(3.8) |
$ (2tλetF+1)αeptFcosF(qt)=∞∑n=0G(c,α)n,F(p,q;λ)tnFn!, $
|
(3.9) |
$ (2tλetF+1)αeptFsinF(qt)=∞∑n=0G(s,α)n,F(p,q;λ)tnFn!. $
|
(3.10) |
Remark 3.1. By virtue of (3.5) and (3.6), when $ \lambda \neq 1 $, $ \mathcal{ B}_{0, F}^{(c, \alpha)}\left(p, q; \lambda \right) = 0 $ and when $ \lambda = 1, $ $ \mathcal{B}_{0, F}^{(c, \alpha)}\left(p, q; 1\right) = 1. $ Moreover for $ \forall \lambda \in \mathbb{C}, $ $ \mathcal{B}_{0, F}^{(s, \alpha)}\left(p, q; \lambda \right) = 0. $
Remark 3.2. By virtue of (3.7), when $ \lambda = -1 $, $ \mathcal{E}_{0, F}^{(c, \alpha)}\left(p, q; -1\right) $ is undefined and when $ \lambda \neq -1, $ $ \mathcal{E }_{0, F}^{(c, \alpha)}\left(p, q; \lambda \right) = \left(\frac{2}{\lambda +1} \right) ^{\alpha }. $ Also, from (3.8), when $ \lambda \neq -1, $ $ \mathcal{E}_{0, F}^{(s, \alpha)}\left(p, q; \lambda \right) = 0. $ For $ \lambda = -1, $ $ \mathcal{E}_{0, F}^{(s, \alpha)}\left(p, q; -1\right) $ is determined according to the values of $ \alpha. $
Remark 3.3. By virtue of (3.9) and (3.10), when $ \lambda \neq -1 $, $ \mathcal{G}_{0, F}^{(c, \alpha)}\left(p, q; \lambda \right) = 0 $ and $ \lambda = -1, $ $ \mathcal{G}_{0, F}^{(c, \alpha)}\left(p, q; -1\right) = \left(-2\right) ^{\alpha }. $ Moreover for $ \forall \lambda \in \mathbb{C}, $ $ \mathcal{G}_{0, F}^{(s, \alpha)}\left(p, q; \lambda \right) = 0. $
Remark 3.4. If we take $ \alpha = 1 $ and $ q = 0 $ in (3.5), (3.7), and (3.9), we get Apostol Bernoulli-Fibonacci polynomials, Apostol Euler-Fibonacci polynomials, and Apostol Genocchi-Fibonacci polynomials
$ teptFλetF−1=∞∑n=0Bn,F(p;λ)tnFn!, $
|
(3.11) |
$ 2eptFλetF+1=∞∑n=0En,F(p;λ)tnFn!, $
|
(3.12) |
$ 2teptFλetF+1=∞∑n=0Gn,F(p;λ)tnFn!, $
|
(3.13) |
respectively. If we take $ p = 0 $ in (3.11)–(3.13), we obtain Apostol Bernoulli-Fibonacci numbers $ \mathcal{B}_{n, F}\left(\lambda \right) $, Apostol Euler-Fibonacci numbers $ \mathcal{E}_{n, F}\left(\lambda \right) $, and Apostol Genocchi-Fibonacci numbers $ \mathcal{G}_{n, F}\left(\lambda \right). $
Theorem 3.1. The following identities hold true:
$ B(c,α)n,F(p+r,q;λ)=n∑k=0(−1)(n−k2)(nk)FB(c,α)k,F(p,q;λ)rn−k, $
|
(3.14) |
and
$ B(s,α)n,F(p+r,q;λ)=n∑k=0(−1)(n−k2)(nk)FB(s,α)k,F(p,q;λ)rn−k. $
|
(3.15) |
Proof. By applying (3.5), we first derive the following functional equation:
$ ∞∑n=0B(c,α)n,F(p+r,q;λ)tnFn!=(tλetF−1)αe(p+r)FtFcosF(qt)=(tλetF−1)αeptFcosF(qt)ErtF, $
|
which readily yields
$ ∞∑n=0B(c,α)n,F(p+r,q;λ)tnFn!=(∞∑n=0B(c,α)n,F(p,q;λ)tnFn!)(∞∑n=0(−1)(n2)(rt)nFn!)=∞∑n=0(n∑k=0(−1)(n−k2)(nk)FB(c,α)k,F(p,q;λ)rn−k)tnFn!. $
|
Comparing the coefficients of $ t^{n} $ on both sides of this last equation, we have
$ B(c,α)n,F(p+r,q;λ)=n∑k=0(−1)(n−k2)(nk)FB(c,α)k,F(p,q;λ)rn−k, $
|
which proves the result (3.14). The assertion (3.15) can be proved similarly.
Remark 3.5. We claim that
$ B(c,α)n,F(p+1,q;λ)−B(c,α)n,F(p,q;λ)=n−1∑k=0(−1)(n−k2)(nk)FB(c,α)k,F(p,q;λ), $
|
and
$ B(s,α)n,F(p+1,q;λ)−B(s,α)n,F(p,q;λ)=n−1∑k=0(−1)(n−k2)(nk)FB(s,α)k,F(p,q;λ). $
|
Theorem 3.2. For every $ n\in \mathbb{N}, $ following identities hold true:
$ ∂F∂Fp{B(c,α)n,F(p,q;λ)}=FnB(c,α)n−1,F(p,q;λ), $
|
(3.16) |
$ ∂F∂Fp{B(s,α)n,F(p,q;λ)}=FnB(s,α)n−1,F(p,q;λ), $
|
(3.17) |
$ ∂F∂Fq{B(c,α)n,F(p,q;λ)}=−FnB(s,α)n−1,F(p,q;λ), $
|
(3.18) |
and
$ ∂F∂Fq{B(s,α)n,F(p,q;λ)}=FnB(c,α)n−1,F(p,q;λ). $
|
(3.19) |
Proof. Using (3.5) and applying the Golden derivative operator $ \frac{ \partial _{F}}{\partial _{F}p}, $ we obtain
$ ∞∑n=0∂F∂Fp{B(c,α)n,F(p,q;λ)}tnFn!=∂F∂Fp{(tλetF−1)αeptF}cosF(qt)=t(tλetF−1)αeptFcosF(qt)=∞∑n=0B(c,α)n,F(p,q;λ)tn+1Fn!=∞∑n=1B(c,α)n−1,F(p,q;λ)tnFn−1!. $
|
By comparing the coefficients of $ t^{n} $ on both sides of this last equation, we arrive at the desired result (3.16). To prove (3.18), using (3.5) and applying the Golden derivative operator $ \frac{\partial _{F}}{\partial _{F}q}, $ we find that
$ ∞∑n=0∂F∂Fq{B(c,α)n,F(p,q;λ)}tnFn!=∂F∂Fq{(tλetF−1)αeptFcosF(qt)}=∂F∂Fq{cosF(qt)}(tλetF−1)αeptF=−tsinF(qt)(tλetF−1)αeptF=∞∑n=1−B(s,α)n−1,F(p,q;λ)tnFn−1!. $
|
Comparing the coefficients of $ t^{n} $ on both sides of this last equation, we arrive at the desired result (3.18). Equations (3.17) and (3.19) can be similarly derived.
Theorem 3.3. The following identities hold true:
$ B(c,1)n,F(p,q;λ)=n∑k=0(nk)FBk,F(λ)Cn−k(p,q), $
|
(3.20) |
and
$ B(s,1)n,F(p,q;λ)=n∑k=0(nk)FBk,F(λ)Sn−k(p,q). $
|
(3.21) |
Proof. Setting $ \alpha = 1 $ in (3.5) and using (3.1), we find that
$ ∞∑n=0B(c,1)n,F(p,q;λ)tnFn!=tλetF−1eptFcosF(qt)=(∞∑n=0Bn,F(p;λ)tnFn!)(∞∑n=0Cn,F(p,q)tnFn!)=∞∑n=0(n∑k=0(nk)FBk,F(λ)Cn−k(p,q))tnFn!. $
|
Comparing the coefficients of $ t^{n} $ on both sides of this last equation, we arrive at the desired result (3.20). Equation (3.21) can be similarly derived.
Theorem 3.4. The following identities hold true:
$ B(c,1)n,F(p,q;λ)=⌊n2⌋∑k=0(−1)kq2k(n2k)FBn−2k,F(p;λ), $
|
(3.22) |
and
$ B(s,1)n,F(p,q;λ)=⌊n−12⌋∑k=0(−1)kq2k+1(n2k+1)FBn−2k−1,F(p;λ). $
|
(3.23) |
Proof. Setting $ \alpha = 1 $ in (3.5) and using (2.9), we find that
$ ∞∑n=0B(c,1)n,F(p,q;λ)tnFn!=tλetF−1eptFcosF(qt)=(∞∑n=0Bn,F(p;λ)tnFn!)(∞∑n=0(−1)nq2nt2nF2n!)=∞∑n=0(⌊n2⌋∑k=0(−1)kq2k(n2k)FBn−2k,F(p;λ))tnFn!. $
|
Comparing the coefficients of $ t^{n} $ on both sides of this last equation, we arrive at the desired result (3.22). Equation (3.23) can be similarly derived.
Theorem 3.5. The following identities hold true:
$ Cn,F(p,q)=λn∑k=01Fk+1(nk)FB(c,1)n−k,F(p,q;λ)+(λ−1)Fn+1B(c,1)n+1,F(p,q;λ), $
|
(3.24) |
and
$ Sn,F(p,q)=λn∑k=01Fk+1(nk)FB(s,1)n−k,F(p,q;λ)+(λ−1)Fn+1B(s,1)n+1,F(p,q;λ). $
|
(3.25) |
Proof. Using the following equation for the proof of (3.24), we have
$ eptFcosF(qt)=λetF−1ttλetF−1eptFcosF(qt)∞∑n=0Cn,F(p,q)tnFn!=(λ∞∑n=0tn−1Fn!−1t)(∞∑n=0B(c,1)n,F(p,q;λ)tnFn!)=(λ∞∑n=1tn−1Fn!+λ−1t)(∞∑n=0B(c,1)n,F(p,q;λ)tnFn!). $
|
Considering $ \mathcal{B}_{0, F}^{(c, 1)}\left(p, q; \lambda \right) = 0, $ and doing some calculations, we arrive at the desired result (3.24). Equation (3.25) can be similarly derived.
Theorem 3.6. The following identities hold true:
$ B(c,1)n,F(p,q;λ)=n∑k=0pk(nk)FB(c,1)n−k,F(q;λ), $
|
(3.26) |
and
$ B(s,1)n,F(p,q;λ)=n∑k=0pk(nk)FB(s,1)n−k,F(q;λ). $
|
(3.27) |
Proof. By applying (3.5), we have
$ ∞∑n=0B(c,1)n,F(p,q;λ)tnFn!=tλetF−1eptFcosF(qt)=(∞∑n=0B(c,1)n,F(q;λ)tnFn!)(∞∑n=0pntnFn!)=∞∑n=0(n∑k=0pk(nk)FB(c,1)n−k,F(q;λ))tnFn!. $
|
Comparing the coefficients of $ t^{n} $ on both sides of this last equation, we arrive at the desired result (3.26). Equation (3.27) can be similarly derived.
Theorem 3.7. Determinantal forms of the cosine and sine Apostol Bernoulli-Fibonacci polynomials are given by
$ B(c,1)n+1,F(p,q;λ)=1(λ−1)n+2|Fn+1Cn,F(p,q)λFn+1λFn+1(n1)F⋯λ(nn)FFnCn−1,F(p,q)λ−1λFn(n−10)F⋯λ(n−1n−1)FFn−1Cn−2,F(p,q)0λ−1⋯λ(n−2n−2)F⋮⋮⋮⋱⋮F0C−1,F(p,q)00⋯λ−1|, $
|
and
$ B(s,1)n+1,F(p,q;λ)=1(λ−1)n+2|Fn+1Sn,F(p,q)λFn+1λFn+1(n1)F⋯λ(nn)FFnSn−1,F(p,q)λ−1λFn(n−10)F⋯λ(n−1n−1)FFn−1Sn−2,F(p,q)0λ−1⋯λ(n−2n−2)F⋮⋮⋮⋱⋮F0S−1,F(p,q)00⋯λ−1|. $
|
Proof. Equation (3.24) cause the system of unknown $ \left(n+2\right) $-equations with $ \mathcal{B}_{n, F}^{(c, 1)}\left(p, q; \lambda \right), $ $ \left(n = 0, 1, 2, \ldots \right). $ Then we apply the Cramer's rule to solve this equation. We obtain the desired result. In a similar way, we can obtain the determinantal form for sine Apostol Bernoulli-Fibonacci polynomials.
In subsections 3.2 and 3.3, we give the some basic properties of the polynomials $ \mathcal{E}_{n, F}^{(c, \alpha)}\left(p, q; \lambda \right), $ $ \mathcal{E}_{n, F}^{(s, \alpha)}\left(p, q; \lambda \right), $ $ \mathcal{G} _{n, F}^{(c, \alpha)}\left(p, q; \lambda \right), $ and $ \mathcal{G} _{n, F}^{(s, \alpha)}\left(p, q; \lambda \right). $ Their proofs run parallel to those of the results presented in this subsection; so, the proofs are omitted.
Theorem 3.8. The following identities hold:
$ E(c,α)n,F(p+r,q;λ)=n∑k=0(−1)(n−k2)(nk)FE(c,α)k,F(p,q;λ)rn−k $
|
and
$ E(s,α)n,F(p+r,q;λ)=n∑k=0(−1)(n−k2)(nk)FE(s,α)k,F(p,q;λ)rn−k. $
|
Remark 3.6. We claim that
$ E(c,α)n,F(p+1,q;λ)−E(c,α)n,F(p,q;λ)=n−1∑k=0(−1)(n−k2)(nk)FE(c,α)k,F(p,q;λ), $
|
$ E(s,α)n,F(p+1,q;λ)−E(s,α)n,F(p,q;λ)=n−1∑k=0(−1)(n−k2)(nk)FE(s,α)k,F(p,q;λ). $
|
Theorem 3.9. For every $ n\in \mathbb{N}, $ following identities hold true:
$ ∂F∂Fp{E(c,α)n,F(p,q;λ)}=FnE(c,α)n−1,F(p,q;λ), $
|
$ ∂F∂Fp{E(s,α)n,F(p,q;λ)}=FnE(s,α)n−1,F(p,q;λ), $
|
$ ∂F∂Fq{E(c,α)n,F(p,q;λ)}=−FnE(s,α)n−1,F(p,q;λ), $
|
and
$ ∂F∂Fq{E(s,α)n,F(p,q;λ)}=FnE(c,α)n−1,F(p,q;λ). $
|
Theorem 3.10. The following identities hold true:
$ E(c,1)n,F(p,q;λ)=n∑k=0(nk)FEk,F(λ)Cn−k(p,q), $
|
and
$ E(s,1)n,F(p,q;λ)=n∑k=0(nk)FEk,F(λ)Sn−k(p,q). $
|
Theorem 3.11. The following identities hold true:
$ E(c,1)n,F(p,q;λ)=⌊n2⌋∑k=0(−1)kq2k(n2k)FEn−2k,F(p;λ), $
|
and
$ E(s,1)n,F(p,q;λ)=⌊n−12⌋∑k=0(−1)kq2k+1(n2k+1)FEn−2k−1,F(p;λ). $
|
Theorem 3.12. The following identities hold true:
$ Cn,F(p,q)=12E(c,1)n,F(p,q;λ)+λ2n∑k=0(nk)FE(c,1)n−k,F(p,q;λ), $
|
and
$ Sn,F(p,q)=12E(s,1)n,F(p,q;λ)+λ2n∑k=0(nk)FE(s,1)n−k,F(p,q;λ). $
|
Theorem 3.13. The following identities hold true:
$ E(c,1)n,F(p,q;λ)=n∑k=0pk(nk)FE(c,1)n−k,F(q;λ), $
|
and
$ E(s,1)n,F(p,q;λ)=n∑k=0pk(nk)FE(s,1)n−k,F(q;λ). $
|
Theorem 3.14. Determinantal forms of the cosine and sine Apostol Euler-Fibonacci polynomials are given by
$ E(c,1)n,F(p,q;λ)=(2λ+1)n+1|Cn,F(p,q)λ2(n1)Fλ2(n2)F⋯λ2(nn)FCn−1,F(p,q)λ+12λ2(n−11)F⋯λ2(n−1n−1)FCn−2,F(p,q)0λ+12⋯λ2(n−2n−2)F⋮⋮⋮⋱⋮C0,F(p,q)00⋯λ+12|, $
|
and
$ E(s,1)n,F(p,q;λ)=(2λ+1)n+1|Sn,F(p,q)λ2(n1)Fλ2(n2)F⋯λ2(nn)FSn−1,F(p,q)λ+12λ2(n−11)F⋯λ2(n−1n−1)FSn−2,F(p,q)0λ+12⋯λ2(n−2n−2)F⋮⋮⋮⋱⋮S0,F(p,q)00⋯λ+12|. $
|
Theorem 3.15. The following identities hold true:
$ G(c,α)n,F(p+r,q;λ)=n∑k=0(−1)(n−k2)(nk)FG(c,α)k,F(p,q;λ)rn−k, $
|
and
$ G(s,α)n,F(p+r,q;λ)=n∑k=0(−1)(n−k2)(nk)FG(s,α)k,F(p,q;λ)rn−k. $
|
Remark 3.7. We claim that
$ G(c,α)n,F(p+1,q;λ)−G(c,α)n,F(p,q;λ)=n−1∑k=0(−1)(n−k2)(nk)FG(c,α)k,F(p,q;λ), $
|
$ G(s,α)n,F(p+1,q;λ)−G(s,α)n,F(p,q;λ)=n−1∑k=0(−1)(n−k2)(nk)FG(s,α)k,F(p,q;λ). $
|
Theorem 3.16. For every $ n\in \mathbb{N}, $ following identities hold true:
$ ∂F∂Fp{G(c,α)n,F(p,q;λ)}=FnG(c,α)n−1,F(p,q;λ), $
|
$ ∂F∂Fp{G(s,α)n,F(p,q;λ)}=FnG(s,α)n−1,F(p,q;λ), $
|
$ ∂F∂Fq{G(c,α)n,F(p,q;λ)}=−FnG(s,α)n−1,F(p,q;λ), $
|
and
$ ∂F∂Fq{G(s,α)n,F(p,q;λ)}=FnG(c,α)n−1,F(p,q;λ). $
|
Theorem 3.17. The following identities hold true:
$ G(c,1)n,F(p,q;λ)=n∑k=0(nk)FGk(λ)Cn−k(p,q), $
|
and
$ G(s,1)n,F(p,q;λ)=n∑k=0(nk)FGk,F(λ)Sn−k(p,q). $
|
Theorem 3.18. The following identities hold true:
$ G(c,1)n,F(p,q;λ)=⌊n2⌋∑k=0(−1)kq2k(n2k)FGn−2k,F(p;λ), $
|
and
$ G(s,1)n,F(p,q;λ)=⌊n−12⌋∑k=0(−1)kq2k+1(n2k+1)FGn−2k−1,F(p;λ). $
|
Theorem 3.19. The following identities hold true:
$ Cn,F(p,q)=λ2n∑k=01Fk+1(nk)FG(c,1)n−k,F(p,q;λ)+λ+12Fn+1G(c,1)n+1,F(p,q;λ), $
|
and
$ Sn,F(p,q)=λ2n∑k=01Fk+1(nk)FG(s,1)n−k,F(p,q;λ)+λ+12Fn+1G(s,1)n+1,F(p,q;λ). $
|
Theorem 3.20. The following identities hold true:
$ G(c,1)n,F(p,q;λ)=n∑k=0pk(nk)FG(c,1)n−k,F(q;λ), $
|
and
$ G(s,1)n,F(p,q;λ)=n∑k=0pk(nk)FG(s,1)n−k,F(q;λ). $
|
Theorem 3.21. Determinantal forms of the cosine and sine Apostol Genocchi-Fibonacci polynomials are given by
$ G(c,1)n+1,F(p,q;λ)=(2λ+1)n+2|Fn+1Cn,F(p,q)λ2Fn+1(n0)Fλ2Fn+1(n1)F⋯λ2(nn)FFnCn−1,F(p,q)λ+12λ2Fn(n−10)F⋯λ2(n−1n−1)FFn−1Cn−2,F(p,q)0λ+12⋯λ2(n−2n−2)F⋮⋮⋮⋱⋮000⋯λ+12|, $
|
and
$ G(s,1)n+1,F(p,q;λ)=(2λ+1)n+2|Fn+1Sn,F(p,q)λ2Fn+1(n0)Fλ2Fn+1(n1)F⋯λ2(nn)FFnSn−1,F(p,q)λ+12λ2Fn(n−10)F⋯λ2(n−1n−1)FFn−1Sn−2,F(p,q)0λ+12⋯λ2(n−2n−2)F⋮⋮⋮⋱⋮000⋯λ+12|. $
|
Our aim in this article is to define the $ F $-analogues of the parametric types of the Apostol Bernoulli, the Apostol Euler, and the Apostol Genocchi polynomials studied by Srivastava et al. [15,19]. Namely, we have defined parametric types of the Apostol Bernoulli-Fibonacci, the Apostol Euler-Fibonacci, and the Apostol Genocchi-Fibonacci polynomials using the Golden calculus and investigated their properties. In our future work, we plan to define the parametric types of some special polynomials with the help of Golden calculus and to obtain many combinatorial identities with the help of their generating functions.
All authors declare no conflicts of interest in this paper.
[1] |
Ioannidis JPA. (2005) Why Most Published Research Findings Are False. PLoS Med 2: e124. doi: 10.1371/journal.pmed.0020124
![]() |
[2] |
John LK, Loewenstein G, Prelec D. (2012) Measuring the prevalence of questionable research practices with incentives for truth telling. Psychol Sci 23: 524-532. doi: 10.1177/0956797611430953
![]() |
[3] | Simmons JP, Nelson LD, Simonsohn U. (2011) False-positive psychology: Undisclosed flexibility in data collection and analysis allows presenting anything as significant. Psychol Sci 22: 359-366. |
[4] |
Kerr NL. (1998) HARKing: hypothesizing after the results are known. Pers Soc Psychol Rev 2: 196-217. doi: 10.1207/s15327957pspr0203_4
![]() |
[5] |
Makel MC, Plucker JA, Hegarty B. (2012) Replications in Psychology Research: How Often Do They Really Occur? Perspect Psychol Sci 7: 537-542. doi: 10.1177/1745691612460688
![]() |
[6] |
Faneli D. (2010) “Positive” Results Increase Down the Hierarchy of the Sciences. PLos One 5: e10068. doi: 10.1371/journal.pone.0010068
![]() |
[7] |
Button KS, Ioannidis JP, Mokrysz C, Nosek BA, Flint J, et al. (2013) Power failure: why small sample size undermines the reliability of neuroscience. Nat Rev Neurosci 14: 365-376. doi: 10.1038/nrn3475
![]() |
[8] |
Wicherts JM, Bakker M, Molenaar D. (2011) Willingness to share research data is related to the strength of the evidence and the quality of reporting of statistical results. PLoS One 6: e26828. doi: 10.1371/journal.pone.0026828
![]() |
[9] |
Cohen J. (1962) The statistical power of abnormal-social psychological research: a review. J Abnorm Soc Psychol 65: 145-153. doi: 10.1037/h0045186
![]() |
[10] | Sterling TD. (1959) Publication Decisions and their Possible Effects on Inferences Drawn from Tests of Significance—or Vice Versa. J Am Stat Assoc 54: 30-34. |
[11] |
de Groot AD. (2014) The meaning of "significance" for different types of research [translated and annotated by Eric-Jan Wagenmakers, Denny Borsboom, Josine Verhagen, Rogier Kievit, Marjan Bakker, Angelique Cramer, Dora Matzke, Don Mellenbergh, and Han L. J. van der Maas]. Acta Psychol (Amst) 148: 188-194. doi: 10.1016/j.actpsy.2014.02.001
![]() |
[12] | Nosek BA, Spies JR, Motyl M. (2012) Scientific Utopia : II. Restructuring Incentives and Practices to Promote Truth Over Publishability. Perspect Psychol Sci 7: 615-631. |
[13] |
Ioannidis JPA. (2012) Why Science Is Not Necessarily Self-Correcting. Perspect Psychol Sci 7: 645-654. doi: 10.1177/1745691612464056
![]() |
[14] |
Chambers CD. (2013) Registered reports: a new publishing initiative at Cortex. Cortex 49: 609-610. doi: 10.1016/j.cortex.2012.12.016
![]() |
[15] |
Wolfe J. (2013) Registered Reports and Replications in Attention, Perception, & Psychophysics. Atten Percept Psycho 75: 781-783. doi: 10.3758/s13414-013-0502-5
![]() |
[16] |
Stahl C. (2014) Experimental psychology: toward reproducible research. Exp Psychol 61: 1-2. doi: 10.1027/1618-3169/a000257
![]() |
[17] |
Munafo MR, Strain E. (2014) Registered Reports: A new submission format at Drug and Alcohol Dependence. Drug Alcohol Depend 137: 1-2. doi: 10.1016/j.drugalcdep.2014.02.699
![]() |
[18] | Nosek BA, Lakens D. (in press) Registered reports: A method to increase the credibility of published results. Soc Psychol. |
[19] | Chambers CD, Munafo MR. (2013) Trust in science would be improved by study pre-registration. The Guardian:http://www. theguardian. com/science/blog/2013/jun/2005/trust-in-science-study-pre-registration. |
[20] | Scott SK. (2013) Will pre-registration of studies be good for psychology? : https://sites. google. com/site/speechskscott/SpeakingOut/willpre-registrationofstudiesbegoodforpsychology. |
[21] | Scott SK. (2013) Pre-registration would put science in chains. Times Higher Education: http://www. timeshighereducation. co. uk/comment/opinion/science-in-chains/2005954. article. |
[22] |
Rouder J, Speckman P, Sun D, Morey R, Iverson G. (2009) Bayesian t tests for accepting and rejecting the null hypothesis. Psychon Bull Rev 16: 225-237. doi: 10.3758/PBR.16.2.225
![]() |
[23] |
Wagenmakers EJ. (2007) A practical solution to the pervasive problems of p values. Psychon Bull Rev 14: 779-804. doi: 10.3758/BF03194105
![]() |
[24] |
Dienes Z. (2011) Bayesian Versus Orthodox Statistics: Which Side Are You On? Perspect Psychol Sci 6: 274-290. doi: 10.1177/1745691611406920
![]() |
[25] |
Mathieu S, Chan AW, Ravaud P. (2013) Use of trial register information during the peer review process. PLoS One 8: e59910. doi: 10.1371/journal.pone.0059910
![]() |
[26] | Gelman A, Loken E. (2014) The garden of forking paths: Why multiple comparisons can be a problem, even when there is no fishing expedition" or "p-hacking" and the research hypothesis was posited ahead of time. Unpublished manuscript: http://www. stat. columbia. edu/~gelman/research/unpublished/p_hacking. pdf. |
[27] |
Strube MJ. (2006) SNOOP:a program for demonstrating the consequences of premature and repeated null hypothesis testing. Behav Res Methods 38: 24-27. doi: 10.3758/BF03192746
![]() |
[28] |
Fiedler K, Kutzner F, Krueger JI. (2012) The Long Way From α-Error Control to Validity Proper: Problems With a Short-Sighted False-Positive Debate. Perspect Psychol Sci 7: 661-669. doi: 10.1177/1745691612462587
![]() |
[29] |
Whelan R, Conrod PJ, Poline JB, Lourdusamy A, Banaschewski T, et al. (2012) Adolescent impulsivity phenotypes characterized by distinct brain networks. Nat Neurosci 15: 920-925. doi: 10.1038/nn.3092
![]() |
[30] | Brembs B, Button K, Munafo M. (2013) Deep impact: unintended consequences of journal rank. Front Hum Neurosci 7: 291. |
[31] | Nelson LD. (2014) Preregistration: Not just for the Empiro-zealots. http://datacoladaorg/2014/01/07/12-preregistration-not-just-for-the-empiro-zealots/. |
[32] |
World Medical A (2013) World medical association declaration of helsinki: Ethical principles for medical research involving human subjects. JAMA 310: 2191-2194. doi: 10.1001/jama.2013.281053
![]() |
1. | Hao Guan, Waseem Ahmad Khan, Can Kızılateş, Cheon Seoung Ryoo, On Certain Properties of Parametric Kinds of Apostol-Type Frobenius–Euler–Fibonacci Polynomials, 2024, 13, 2075-1680, 348, 10.3390/axioms13060348 | |
2. | Maryam Salem Alatawi, Waseem Ahmad Khan, Can Kızılateş, Cheon Seoung Ryoo, Some Properties of Generalized Apostol-Type Frobenius–Euler–Fibonacci Polynomials, 2024, 12, 2227-7390, 800, 10.3390/math12060800 | |
3. | Ugur Duran, Mehmet Acikgoz, A note on Fibonacci-Hermite polynomials, 2025, 117, 0350-1302, 91, 10.2298/PIM2531091D |